Jan Mařík Заметка к теории поверхностного интеграла

Czechoslovak Mathematical Journal, Vol. 6 (1956), No. 3, 387-400

Persistent URL: http://dml.cz/dmlcz/100204

Terms of use:

© Institute of Mathematics AS CR, 1956

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

ЗАМЕТКА К ТЕОРИИ ПОВЕРХНОСТНОГО ИНТЕГРАЛА

ЯН МАРЖИК (Jan Mařík), Прага.

(Поступило в редакцию 10/Х 1955 г.)

Главным результатом настоящей работы является теорема 4. Равенства (8) и (11) показывают, каким образом можно для некоторых множеств определить поверхностный интеграл первого и второго типа; равенство же (12) представляет собой известную интегральную формулу Гаусса.

1. Если m — натуральное число, то пусть E_m означает множество всех m-членных последовательностей действительных чисел. Элементы пространства E_m мы будем называть точками или векторами. Если $a = [a_1, ..., a_m] \in \epsilon E_m$, то мы скажем, что числа a_k являются координатами точки a или составляющими вектора a. Если, кроме того, $b = [b_1, ..., b_m] \in E_m$, то число $a \cdot b = \sum_{k=1}^m a_k \cdot b_k$ назовем скалярным произведением векторов a, b. Вместо $a \cdot a$ мы пишем также a^2 ; далее положим $|a| = \sqrt{a^2}$ (норма вектора a). Если $a \cdot b = 0$, то скажем, что векторы a, b ортогональны.

Пусть $a_1, \ldots, a_{m-1}, a \in E_m$ (m > 1). Мы скажем, что вектор *a* является енешним произведением векторов a_1, \ldots, a_{m-1} , если для всякого вектора $x \in E_m$ скалярное произведение *a*. *x* равно определителю матрицы со столбцами a_1, \ldots, a_{m-1}, x . Для данных векторов a_1, \ldots, a_{m-1} существует точно один такой вектор *a*; действительно, если M — матрица со столбцами a_1, \ldots, a_{m-1} , то составляющие вектора *a* будут минорами (m - 1)-го порядка матрицы M, взятыми с надлежащими знаками. Тогда вектор *a* ортогонален ко всем векторам a_1, \ldots, a_{m-1} ; векторы a_1, \ldots, a_{m-1} будут линейно зависимы тогда и только тогда, если a = 0 (нульвектор). Если же $a \neq 0$, то и векторы a_1, \ldots, a_{m-1}, a линейно независимы и, следовательно, образуют базис пространства E_m . Если в таком случае вектор *v* ортогонален ко всем векторам a_1, \ldots, a_{m-1} , то можно написать $v = \sum_{k=1}^{m-1} a_k a_k + \alpha a_k$, $\alpha \in E_1$ и где для

вектора $v_1 = \sum_{k=1}^{m-1} \alpha_k a_k$ имеет место $v = v_1 + \alpha a, v \cdot v_1 = a \cdot v_1 = 0,$ откуда

 $0 = v \cdot v_1 = v_1^2 + \alpha a \cdot v_1 = v_1^2$, и, значит, $v_1 = 0$, $v = \alpha a$. Мы видим, что всякий вектор, ортогональный ко всем векторам a_1, \ldots, a_{m-1} , является кратным вектора а.

2. Пусть n, m — натуральные числа; пусть φ — отображение открытого множества G ⊂ E_n в пространство E_m. Мы скажем, что φ есть отображение класса C_1 (на множестве G), если $\varphi(t) = [\varphi_1(t), \ldots, \varphi_m(t)]$, где функции φ_k имеют (на множестве G) непрерывные производные 1-го порядка. Тогда напишем

$$\frac{\partial \varphi(t)}{\partial t_j} = \left[\frac{\partial \varphi_1(t)}{\partial t_j}, \dots, \frac{\partial \varphi_m(t)}{\partial t_j}\right] \quad (t = [t_1, \dots, t_n] \epsilon G, \ j = 1, \dots, n) \ .$$

Если k, m — целые числа, $m>1, \ 1\leq k\leq m, \ x=[x_1,...,x_m]$ ϵ E_m , то пусть

$$\pi_k(x) = \tilde{x}^k = [x_1, ..., x_{k-1}, x_{k+1}, ..., x_m]$$

Если φ — какое-либо отображение в E_m , то пусть $\tilde{\varphi}^k$ означает отображение в E_{m-1}, определениое при помощи соотношения

$$ilde{arphi}^{\scriptscriptstyle k}(t) = \pi_k\left(arphi(t)
ight)$$
 .

Если φ — отображение класса C_1 открытого множества $G \subset E_{m-1}$ в E_m , то каждому t є G можно поставить в соответствие вектор

$$w^{arphi}(t) = \left[w^{arphi}_1(t), \, \ldots, \, w^{arphi}_m(t)
ight],$$

являющийся внешним произведением векторов $\frac{\partial \varphi(t)}{\partial t_1}, \ldots, \frac{\partial \varphi(t)}{\partial t_{m-1}}$. Тогда $w_k^{\varphi}(t) = (-1)^{m+k}$. $D_k(t)$, где D_k есть функциональный определитель отображения $\tilde{\varphi}^k$.

Пусть m — целое число, m > 1. Пусть φ — отображение класса C_1 открытого множества $G \in E_{m-1}$ в E_m ; пусть $A \in E_m$. Мы скажем, что отображение φ является *А*-допустимым, если оно взаимно однозначно и если для каждого $b \in G$ существует окрестность U точки b ($U \subseteq G$) и положительное число є так, что справедлива импликация

$$t \in U, 0 < \alpha < \varepsilon \Rightarrow \varphi(t) + \alpha w^{\varphi}(t) \operatorname{non} \epsilon A, \quad \varphi(t) - \alpha w^{\varphi}(t) \epsilon A.$$
 (1)

Тогда, очевидно, $w^{\varphi}(t) \neq 0$ для любого $t \in G$ и множество $\varphi(G)$ есть часть границы множества А.

Далее введем следующее обозначение: Если $A \subseteq E_m$ (m > 1), k — целое, $1 \leq k \leq m, \ x = [x_1, ..., x_{m-1}]$ є E_{m-1} , то пусть A^k_x означает множество всех $y \in E_1$, для которых $[x_1, ..., x_{k-1}, y, x_k, ..., x_{m-1}] \in A$.

Смысл символа $\sum_{n \in N} a_n$, где N — счетное множество и где $a_n \in E_1$ или $a_n =$ $=\pm\infty$, определим согласно [1], гл. III, § 3 (или, что то же самое, согласно [3], стр. 214). Мы будем также писать $\sum a_n$ и т. п.

Кроме того предполагаем, что читателью известны основы теории интеграла Лебега (приблизительно в объеме первых четырех глав из [2]) и элементы теоретико-множественной топологии (в объеме гл. VI из [1]). Например, мы будем без объяснений пользоваться основными свойствами непрерывных отображений компактных множеств.

3. Пусть т, k — целые числа, m > 1, $1 \leq k \leq m$; пусть $A \subseteq E_m$. Пусть φ есть A-допустимое отображение открытого множества $G \subseteq C \equiv E_{m-1}$, $\varphi(t) = [\varphi_1(t), \ldots, \varphi_m(t)]$. Пусть $b \in G$, $\tilde{\varphi}^k(b) = x$, $\varphi_k(b) = y$ (следовательно, $\varphi(b) = [x_1, \ldots, x_{k-1}, y, x_k, \ldots, x_{m-1}]$) и пусть $w_k^{\varphi}(b) > 0$ (coome. $w_k^{\varphi}(b) < 0$). Тогда существует $\eta > 0$ так, что

$$(y - \eta, y) \in A_x^k, \quad (y, y + \eta) \cap A_x^k = \emptyset$$
 (2a)

(coome.
$$(y - \eta, y) \cap A_x^k = \emptyset$$
, $(y, y + \eta) \in A_x^k$). (2b)

Доказательство. Функциональный определитель отображения $\tilde{\varphi}^k$ равен $\pm w_k^{\varphi}$. Следовательно, существует такая открытая окрестность U_1 точки b, что на множестве U_1 отображение $\tilde{\varphi}^k$ взаимно однозначно и регулярно (см., напр., [1], гл. VIII, § 2); пусть ψ — соответственное обратное отображение. Так как отображение φ A-допустимо, то существует окрестность U точки b и число $\varepsilon > 0$ так, что справедливо (1). Пусть $U_0 = U_1 \cap U$. Выберем $\delta > 0$ так, чтобы замкнутый шар K радиуса δ с центром x ($= \tilde{\varphi}^k(b)$) был частью $\tilde{\varphi}^k(U_0)$; пусть $L = \psi(K)$. Далее, пусть $\beta = \min[w^{\varphi}(t)]$ для $t \in L$, $\eta = \min(\delta, \epsilon\beta)$. Пусть, напр., $w_k^{\varphi}(b) > 0$; докажем, что $(y, y + \eta) \cap A_x^k = \emptyset$. Итак, пусть $z = [z_1, ..., z_m] \in E_m$, $\tilde{z}^k = x$, $z_k \in (y, y + \eta)$. Определим на множестве L функцию $f(t) = |z - \varphi(t)|$. Пусть c — точка, где f претерпевает на L свой минимум. Докажем прежде всего, что

$$\varphi_k(c) \leq z_k$$
 . (3)

Допустим поэтому, что $\varphi_k(c) > z_k$. Определим в интервале $\langle 0, 1 \rangle$ функцию g соотношением

$$g(\tau) = \varphi_k(\psi(x + \tau(x' - x))),$$

где $x' = \tilde{\varphi}^k(c)$. Имеем $g(0) = \varphi_k(b) < z_k$, $g(1) = \varphi_k(c) > z_k$; поэтому существует число τ_0 так, что $g(\tau_0) = z_k$. Пусть $d = \psi(x + \tau_0(x' - x))$. Имеем $\varphi_k(d) = g(\tau_0) = z_k$; далее, $f(d) = \tau_0 |x' - x|^1 > \sqrt{|x' - x|^2 + (\varphi_k(c) - z_k)^2} = f(c)$. Однако, это противоречит выбору точки c, чем и доказывается соотношение (3).

Если бы было $\varphi(c) = z$, то было бы $\tilde{\varphi}^k(c) = \tilde{z}^k = \tilde{\varphi}^k(b)$, т. е. $c = b, z = \varphi(b)$, что невозможно; итак,

$$\varphi(c) \, + \, z \tag{4}$$

¹) Подразумевается, конечно, норма в E_{m-1} .

или f(c) > 0. Кроме того, $|\tilde{\varphi}^k(c) - x| = |\tilde{\varphi}^k(c) - \tilde{z}^k| \leq |\varphi(c) - z| = f(c) \leq \leq f(b) = |z - \varphi(b)| = z_k - y < \eta \leq \delta$, так что точка $\tilde{\varphi}^k(c)$ лежит внутри K, а точка c — внутри L. Поэтому все частные производные функции $f(t) = = \sqrt{\sum_{j=1}^m (z_j - \varphi_j(t))^2}$ равны в точке c нулю, т. е. $\sum_{i=1}^m (z_j - \varphi_j(c)) \cdot \frac{\partial \varphi_j(c)}{\partial t_i} = 0$

для i = 1, ..., m - 1. Итак, вектор $z - \varphi(c)$ ортогонален ко всем векторам $\frac{\partial \varphi(c)}{\partial t_i}$; согласно п. 1, существует число α так, что

$$z = \varphi(c) + \alpha w^{\varphi}(c) . \tag{5}$$

Тогда будет также

$$z_k = \varphi_k(c) + \alpha \, u_k^{\,q}(c) \;. \tag{6}$$

Из (4), (5) следует $\alpha \neq 0$; так как $w_k^{\varphi}(t) > 0$ для любого $t \in L$, то $w_k^{\varphi}(c) > 0$, так что, согдасно (3), (6), будет $\alpha > 0$. Так как $\alpha\beta \leq \alpha |w^{\varphi}(c)| = |z - \varphi(c)| =$ $= f(c) \leq f(b) < \eta \leq \varepsilon\beta$, будет $\alpha < \varepsilon$, следовательно (см. (1)) $z \operatorname{non} \epsilon A$, $z_k \operatorname{non} \epsilon A_x^k$. Этим в нашем случае (когда $w_k^{\varphi}(b) > 0$) доказано соотношение $(y, y + \eta) \cap A_x^k = \emptyset$. Аналогично можно доказать, что $(y - \eta, y) \subset A_x^k$, и подобным же образом можно исследовать случай $w_k^{\varphi}(b) < 0$.

4. Пусть m — целое, m > 1; пусть $A \,\subset E_m$. Пусть H — граница множества A. Пусть φ_n (соотв. ψ_n) есть A-допустимое отображение открытого множества G_n (соотв. U_n) (n = 1, 2, ...); напишем $w^{\varphi_n}(t) = w^n(t) =$ $= [w_1^n(t), ..., w_m^n(t)], w^{\psi_n}(t) = W^n(t) = [W_1^n(t), ..., W_m^n(t)]$. Пусть $\varphi_i(G_i) \cap$ $\cap \varphi_i(G_i) = \psi_i(U_i) \cap \psi_i(U_i) = \emptyset$ для $i \neq j$; пусть (m - 1)-мерная мера множества $\pi_k(H - \bigcup_n \varphi_n(G_n))$ и множества $\pi_k(H - \bigcup_n \psi_n(U_n))$ равна нулю для $k = 1, ..., m^2$) Тогда множество H_x^k будет счетным для почти есех $x \in E_{m-1}$ (значит, H есть множество меры нуль); для произвольной неотрицательной непрерывной функции t на множестве H имеет место

$$\int_{E_{m-1}} \left(\sum_{y \in H_x^k} f(x_1, \dots, x_{k-1}, y, x_k, \dots, x_{m-1}) \right) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_{m-1} = \\ = \sum_n \int_{G_n} f(\varphi_n(t)) \cdot \left| w_k^n(t) \right| \, \mathrm{d}t \quad (k = 1, \dots, m) \,,$$
(7)

$$\sum_{n} \int_{G_n} f(\varphi_n(t)) \cdot \left| w^n(t) \right| \, \mathrm{d}t = \sum_{n} \int_{U_n} f(\varphi_n(t)) \cdot \left| W^n(t) \right| \, \mathrm{d}t \, . \tag{8}$$

Если (— непрерывная функция на множестве Н такая, что

$$\sum_{n} \int_{G_n} \left| f(\varphi_n(t)) \right| \, \cdot \, \left| w^n(t) \right| \, \mathrm{d}t \, < \, \infty \, \, , \tag{9}$$

то справедливо также соотношение (8).

²) Определение *π_k* см. п. 2.

Если
 v — непрерывное отображение множества H в пространство
 $E_{\mathfrak{m}}$ такое, что

$$\sum\limits_{n} \int\limits_{G_n} \left| v(arphi_n(t)) \right| \, . \, \left| w^n(t)
ight| \, \mathrm{d}t < \infty \, \, ,$$

mo

$$\sum_{n} \int_{G_n} v(\varphi_n(t)) \cdot w^n(t) \, \mathrm{d}t = \sum_{n} \int_{U_n} v(\psi_n(t)) \cdot W^n(t) \, \mathrm{d}t \,. \tag{11}$$

Пусть, наконец, v есть непрерывное отображение множества \overline{A} в E_m ($v(z) = [v_1(z), ..., v_m(z)]$), имеющее следующие свойства:

1) Существует $M \subseteq A^{\circ 3}$ так, что множества M_x^1, \ldots, M_x^m счетны для почти всех $x \in E_{m-1}^{-4}$ и что для любого $z \in A^{\circ} - M$ существуют собственные производные $\frac{\partial v_k(z)}{\partial z_k}$ $(k = 1, \ldots, m);$

2) существуют конечные интегралы Лебега

$$\int\limits_{\mathrm{A}}rac{\partial v_k(z)}{\partial z_k}\,\mathrm{d} z\quad (k=1,...,m)\,;$$

3) для всякого $\varepsilon > 0$ существует C > 0 так, что для любого $z \in A$, где |z| > C, имеет место $|v(z)| < \varepsilon;$ ⁵)

4) выполняется условие (10).

Тогда

$$\int_{A} \operatorname{div} v(z) \, \mathrm{d}z = \sum_{n} \int_{G_n} v(\varphi_n(t)) \cdot w^n(t) \, \mathrm{d}t \,. \tag{12}$$

Доказательство. Пусть множества A, H, G_n и отображения φ_n обладают требуемыми свойствами. Выберем индекс k и положим $P = \pi_k(H - \bigcup_n \varphi_n(G_n))$. Пусть B_n —множество тех $t \in G_n$, для которых $w_k^n(t) = 0$; пусть Q_n — образ множества B_n при отображении $\tilde{\varphi}_n^k$. Так как функциональный определитель отображения $\tilde{\varphi}_n^k$ равен $\pm w_k^n$, то согласно [3], лемма 3, множество Q_n имеет ((m - 1)-мерную) меру, равную 0 (n = 1, 2, ...). Мера множества $P \cup Q$, где $Q = \bigcup_n Q_n$, равна поэтому также нулю.

Если $x = [x_1, ..., x_{m-1}] \epsilon E_{m-1}$, $y \epsilon E_1$, будем писать $[x, y] = [x_1, ..., x_{k-1}, y, x_k, ..., x_{m-1}] \epsilon$). Возьмем $x \epsilon E_{m-1} - (P \cup Q)$; пусть $z = [x, y] \epsilon H$. Так как x поп ϵP , то существует индекс n и точка $t \epsilon G_n$ так, что $z = \varphi_n(t)$; так как x поп ϵQ_n , будет $w_n^k(t) \neq 0$. Следовательно, существует $\eta > 0$ так, что

³) \overline{A} есть замыкание, A° — открытое ядро множества A.

⁴) Если M — нигде не плотное замкнутое множество и если у всех множеств M_x^1, \ldots, M_x^m ($x \in E_{m-1}$) имеется лишь счетное количество компонент, то эти множества счетны для почти всех $x \in E_{m-1}$. (См. [4], замечание к теореме 2.)

⁵⁾ Это выполняется, если множество А ограничено.

⁶⁾ Индекс k все время фиксирован.

справедливо или (2*a*) (если $w_k^n(t) > 0$) или (2*b*) (если $w_k^n(t) < 0$). Точка *у* лежит на границе множества A_x^k . Если бы существовало $y_1 \in (y - \eta, y)$ так, что $[x, y_1] \in H$, то точка y_1 лежала бы тоже на границе множества A_x^k , что невозможно. Аналогично обнаружим, что $(y, y + \eta) \cap H_x^k = \emptyset$. Мы видим, что каждая точка множества H_x^k является изолированной. Ввиду замкнутости множества H_x^k , в каждом ограниченном интервале лежит лишь конечное число точек из H_x^k . Итак, можно написать

где

$$\dots y_{-1} < y_0 < y_1 < \dots \tag{13}$$

(может, конечно, случиться, что эта последовательность имеет первый или последний член или что она пуста). Пусть теперь

 $H_x^k = \{\dots, y_{-1}, y_0, y_1, \dots\},\$

...,
$$I_0 = (y_{-1}, y_0), I_1 = (y_0, y_1), ...;$$

если последовательность (13) обладает наибольшим (соотв. наименьшим) элементом y_p , то пусть, далее,

$$I_{p+1} = (y_p, \infty)$$
 (cootb. $I_p = (-\infty, y_p);$

если $H^k_x = \emptyset$, то выберем (пока произвольно) целое число i и положим

$$I_i = (-\infty, \infty).$$

Если $H_x^k \neq \emptyset$ и если последовательность (13) не обладает наибольшим (соотв. наименьшим) элементом, то $\lim_{i \to \infty} y_i = \infty$ (соотв. $\lim_{i \to -\infty} y_i = -\infty$).

Отсюда легко вытекает, что во всяком случае

$$\bigcup_{i} I_i = E_1 - H_x^k \,. \tag{14}$$

Возьмем какой-либо интервал I_i ; пусть $y', y'' \in I_i$. Если бы было $[x, y'] \in A$, [x, y''] поп $\in A$, то между y', y'' лежало бы число y такое, что $[x, y] \in H$, что невозможно. Итак, каждый интервал I_i является частью множества $(A^\circ)_x^k$ или $(E_m - \overline{A})_x^k$. Так как для каждой точки $y = y_i \in H_x^k$ справедливо (2a) или (2b), то или $I_{i-1} \subset (A^\circ)_x^k$, $I_i \subset (E_m - \overline{A})_x^k$ или $I_{i-1} \subset (E_m - \overline{A})_x^k$, $I_i \subset (A^\circ)_x^k$. Значит, обозначения можно выбрать так, что будет $I_i \subset (A^\circ)_x^k$ для четных $i, I_i \subset (E_m - \overline{A})_x^k$ для нечетных i. Согласно (14), имеем далее

$$(A^{\circ})_{x}^{k} = \bigcup_{i \text{ vertoe}} I_{i}, \quad (E_{m} - \bar{A})_{x}^{k} = \bigcup_{i \text{ hevertoe}} I_{i}.$$
(15)

Пусть S_n — множество тех индексов i, для которых $[x, y_i] \epsilon \varphi_n(G_n)$ (n = 1, 2, ...). Имеем $S_j \cap S_l = \emptyset$ для $j \neq l$; $\bigcup_n S_n$ есть множество всех индексов в (13). Пусть, далее, T_n есть множество всех $t \epsilon G_n$, для которых $\tilde{\varphi}_n^k = x$. Каждому $i \epsilon S_n$ можно поставить в соответствие точку $t \epsilon G_n$, для которой $\varphi_n(t) = [x, y_i]$; очевидно, $t \epsilon T_n$. Если, наоборот, $t \epsilon T_n$, то $\varphi_n(t) = [x, y] \epsilon H$ и, значит, $y = y_i$, где $i \epsilon S_n$. Тем самым мы нашли взаимно однозначное

 $\mathbf{392}$

соответствие между точками $t \in T_n$ и индексами $i \in S_n$. Пусть i, t — одна из таких пар. При четном i для точки $y = y_i$ наступает случай (2a); при нечетном i наступает случай (2b), так что (— 1) $^i = \operatorname{sgn} w_k^n(t)$. Итак, если g — произвольная функция на множестве H, то

$$\sum_{i \in S_n} g(x, y_i) = \sum_{i \in T_n} g(\varphi_n(t))$$
(16)

(COOTB.
$$\sum_{i \in S_n} (-1)^i \cdot g(x, y_i) = \sum_{t \in T_n} \operatorname{sgn} w_k^n(t) \cdot g(\varphi_n(t))), \qquad (17)$$

если только один из двух рядов в (16) [соотв. в (17)] имеет сумму (конечную или бесконечную). Числа y_i и множества S_n , T_n зависят, конечно, от точки x; мы будем поэтому (для $x \in E_{m-1} - (P \cup Q)$) также писать $S_n(x)$ и т. п.

Далее мы будем пользоваться следующей теоремой (см. [3], стр. 214): Пусть λ есть отображение класса C_1 открытого множества $G \subseteq E_{m-1}$ в пространство E_m . Пусть F — такая функция, что существует (конечный или бесконечный) интеграл Лебега $\int_{G} F(t) |D_{\lambda}(t)| dt.^7$ Тогда для почти всех.

 $x \in E_{m-1}$ существует сумма $\Phi(x) = \sum_{\lambda(t)=x}^{\sigma} F(t) u$

$$\int_{G} F(t) \left| D_{\lambda}(t) \right| \mathrm{d}t = \int_{E_{m-1}} \Phi(x) \, \mathrm{d}x \,. \tag{18}$$

Выберем индекс n и положим в этой теореме $\lambda = \tilde{\varphi}_n^k$, $G = G_n$. Тогда получим $|D_{\lambda}(t)| = |w_k^n(t)|$ ($t \in G_n$). Если F — такая функция, что существует $\int_{G_n} F(t) \cdot |w_k^n(t)| dt$, то

$$\int_{G_n} F(t) \cdot |w_k^n(t)| \, \mathrm{d}t = \int_{E_{m-1}} (\sum_{t \in T_n(x)} F(t)) \, \mathrm{d}x \,. \tag{19}$$

Если теперь f — неотрицательная непрерывная функция на множестве H, то в (19) можно положить $F(t) = f(\varphi_n(t))$. Так как, согласно (16),

$$\sum_{t \in T_n(x)} f(\varphi_n(t)) = \sum_{i \in S_n(x)} f(x, y_i)$$

для всех $x \in E_{m-1}$ — ($P \cup Q$), то получаем

$$\int_{G_n} f(\varphi_n(t)) \cdot |w_k^n(t)| \, \mathrm{d}t = \int_{E_{m-1}} \left(\sum_{i \in S_n(x)} f(x, y_i) \right) \, \mathrm{d}x \, .$$

Но индекс *п* был произвольный; поэтому будет также

$$\int\limits_{E_{m-1}} \left(\sum_{y \in H_x^k} f(x, y)\right) \mathrm{d}x = \int\limits_{E_{m-1}} \left(\sum_{n} \left(\sum_{i \in S_n(x)} f(x, y_i)\right)\right) \mathrm{d}x =$$
$$= \sum_{n} \int\limits_{E_{m-1}} \left(\sum_{i \in S_n(x)} f(x, y_i)\right) \mathrm{d}x = \sum_{n} \int\limits_{G_n} f(\varphi_n(t)) \left|w_k^n(t)\right| \mathrm{d}t$$

Этим доказано соотношение (7).

⁷) D_{λ} есть функциональный определитель отображения λ .

Пусть, далее, v — непрерывное отображение множества H в $E_m(v(z) = [v_1(z), ..., v_m(z)])$ такое, что справедливо (10). Так как

$$v_k(\varphi_n(t))| \cdot |w_k^n(t)| \leq |v(\varphi_n(t))| \cdot |w^n(t)| \quad (t \in G_n),$$

то тем более будет

$$\sum_{n} \int_{G_n} |v_k(\varphi_n(t))| \cdot |w_k^n(t)| \, \mathrm{d}t < \infty \,. \tag{20}$$

Отсюда следует прежде всего, что для каждого *n* существует конечный интеграл

$$\int_{G_n} v_k(\varphi_n(t)) \cdot w_k^n(t) \, \mathrm{d}t = \int_{G_n} v_k(\varphi_n(t)) \cdot \operatorname{sgn} w_k^n(t) \cdot |w_k^n(t)| \, \mathrm{d}t \; ;$$

следовательно, в (19) можно положить $F(t) = v_k(\varphi_n(t))$. sgn $w_k^n(t)$. Тогда для почти всех $x \in E_{m-1}$ сходится ряд

$$\gamma_n(x) = \sum_{t \in T_n(x)} v_k(\varphi_n(t)) \cdot \operatorname{sgn} w_k^n(t)$$

И

$$\int_{G_n} v_k(\varphi_n(t)) \cdot w_k^n(t) \, \mathrm{d}t = \int_{E_{m-1}} \gamma_n(x) \, \mathrm{d}x \quad (n = 1, 2, \ldots) \,. \tag{21}$$

Если в (7) написать $f(z) = |v_k(z)|$, то, согласно (20), получим

$$\int\limits_{E_{m-1}} \left(\sum_{y \in H_x^k} |v_k(x, y)| \right) \mathrm{d}x = \sum_n \int\limits_{G_n} |v_k(\varphi_n(t))| \cdot |w_k^n(t)| \, \mathrm{d}t < \infty \,. \tag{22}$$

Возьмем такое $x \in E_{m-1}$ — $(P \cup Q)$, что $\sum_{y \in L_x^k} |v_k(x, y)| < \infty$ (согласно (22)

это справедливо для почти всех х). Согласно (17) будет тогда

$$\gamma_n(\boldsymbol{x}) = \sum_{i \in S_n(\boldsymbol{x})} (-1)^i \cdot v_k(\boldsymbol{x}, y_i) ;$$

таким образом получаем

$$\sum_{i \in H_x^k} (-1)^i \cdot v_k(x, y_i) = \sum_n \sum_{i \in S_n(x)} (-1)^i \cdot v_k(x, y_i) = \sum_n \gamma_n(x)$$

Так как $\sum_{n}^{\gamma(e)_{x}} |\gamma_{n}(x)| \leq \sum_{y \in H_{x}^{k}} |v_{k}(x, y)|$ почти всюду, следует из (22) равенство

$$\sum_{n} \int_{E_{m-1}} \gamma_n(x) \, \mathrm{d}x = \int_{E_{m-1}} (\sum_{n} \gamma_n(x)) \, \mathrm{d}x \,. \tag{23}$$

Итак, согласно (21), (23),

$$\sum_{n} \int_{G_n} v_k(\varphi_n(t)) \cdot w_k^n(t) \, \mathrm{d}t = \int_{E_{m-1}} \left(\sum_{y_i \in H_x^k} (-1)^i \cdot v_k(x, y_i) \right) \, \mathrm{d}x \,. \tag{24}$$

Точно так же докажем соотношение

$$\sum_{n} \int_{U_n} v_k(\psi_n(t)) \cdot W_k^n(t) \, \mathrm{d}t = \int_{E_{m-1}} \left(\sum_{y_i \in H_x^k} (-1)^i \cdot v_k(x, y_i) \right) \, \mathrm{d}x \, ; \tag{25}$$

из (24),(25) следует

$$\sum_{n} \int_{G_n} v_k(\varphi_n(t)) \cdot w_k^n(t) \, \mathrm{d}t = \sum_{n} \int_{U_n} v_k(\psi_n(t)) \cdot W_k^n(t) \, \mathrm{d}t \,. \tag{26}$$

 $\mathbf{394}$

Складывая эти равенства для k = 1, ..., m, мы получим (11).

Пусть теперь v — непрерывное отображение множества \overline{A} в E_m , имеющее свойства 1), 3), 4). Тогда имеет место (10), а, значит, и (22) (число k мы опять считаем фиксированным); итак, ряд $\sum_{y_i \in H_x^k} (-1)^i \cdot v_k(x, y_i)$ сходится

для почти всех x. Далее, по предположению множество M_x^k является счетным для почти всех x. Возьмем такое x, чтобы соблюдались оба этих условия. Покажем, что

$$\int_{\mathcal{A}_x^k} \frac{\partial v_k(x, y)}{\partial z_k} \, \mathrm{d}y = \sum_{y_i \in \mathcal{H}_x^k} (-1)^i \cdot v_k(x, y_i) \,, \tag{27}$$

причем интеграл в левой части есть интеграл Перрона.⁸) Пусть, напр., $H_x^k \neq \emptyset$ и пусть последовательность (13) имеет первый член y_p , где p — четное число, но не имеет последнего члена; пусть, следовательно, $(A^\circ)_x^k =$ $= I_p \cup I_{p+2} \cup \ldots$ (бесконечная последовательность). Возьмем $a \in (-\infty, y_p)$ и определим в интервале $\langle a, y_p \rangle$ функцию h, предписав $h(y) = v_k(x, y)$. Так как функция v_k непрерывна на множестве \overline{A} , то функция h непрерывна в интервале $\langle a, y_p \rangle$. Так как множество M_x^k счетно, существует в этом интервале собственная производная $h'(y) = \frac{\partial v_k(x, y)}{\partial z_k}$ за исключением не более чем счетного числа значений y. Согласно [2], теорема 178 (стр. 466), будет тогда

$$\int_{a}^{y_{p}} \frac{\partial v_{k}(x, y)}{\partial z_{k}} \, \mathrm{d}y = \int_{a}^{y_{p}} h'(y) \, \mathrm{d}y = h(y_{p}) - h(a) = v_{k}(x, y_{p}) - v_{k}(x, a) \,. \tag{28}$$

Так как по свойству 3) будет $\lim_{a\to -\infty} v_k(x, a) = 0$, то

$$\int_{I_p} \frac{\partial v_k(x, y)}{\partial z_k} \, \mathrm{d}y = \lim_{a \to -\infty} \int_{a}^{y_p} \frac{\partial v_k(x, y)}{\partial z_k} \, \mathrm{d}y = v_k(x, y_p) \,. \tag{29}$$

⁸) Интеграл Перрона $\int_{-\infty}^{\infty} f(x) dx$ мы понимаем в смысле определения 26 из [2] (стр. 457—458). Далее, если функция f определена на множестве $B \subset E_1$, то построим функцию f_1 , предписав $f_1(x) = f(x)$ для $x \in B$, $f_1(x) = 0$ для $x \in E_1 - B$ и положим $\int_{B} f(x) dx = \int_{-\infty}^{\infty} f_1(x) dx$, если только этот интеграл существует. Читатель может, конечно, сразу же предположить, что отображение v имеет и свойство 2); тогда достаточно отыскать такие x, для которых в левой части (27) стоит сходящийся интеграл Лебега. Благодаря этому, упростился бы несколько дальнейший ход. Однако, мы пока не требуем выполнения свойства 2), чтобы доказать соотношение (30) при как можно более общих условиях.

Пусть далее $L = I_{p+2} \cup I_{p+4} \cup \ldots$; для каждого $a > y_p$ положим $L_a = L \cap (y_p, a), g(a) = \int_{L_a} \frac{\partial v_k(x, y)}{\partial z_k} \, \mathrm{d}y$. Для каждого натурального j будет, ко-

нечно (см. аналогичное соотношение (28)),

$$\int\limits_{I_{\boldsymbol{p}+2j}}rac{\partial v_k(x,\,y)}{\partial z_k}\,\mathrm{d}y=v_k(x,\,y_{\,\boldsymbol{p}+2j})-v_k(x,\,y_{\,\boldsymbol{p}+2j-1})\,.$$

Итак, если a лежит в некотором интервале $\langle y_{p+2j}, y_{p+2j+1} \rangle$, то

$$g(a) = \sum_{i=1}^{j} \int_{y_{p+2i-1}}^{y_{p+2i}} \dots = \sum_{i=1}^{j} (v_k(x, y_{p+2i}) - v_k(x, y_{p+2i-1})) = \sum_{i=p+1}^{p+2i} (-1)^i \cdot v_k(x, y_i) \cdot \dots$$

Если же, однако, $y_{p+2j+1} < a < y_{p+2j+2}$, то получим

$$g(a) = \sum_{i=1}^{j} \int_{y_{p+2i-1}}^{y_{p+2i}} \dots + \int_{y_{p+2j+1}}^{a} \dots = v_k(x, a) - v_k(x, y_{p+2j+1}) + \sum_{i=p+1}^{p+2j} (-1)^i \cdot v_k(x, y_i) \cdot \dots$$

Так как ряд $\sum_{i=p+1}^{\infty} (-1)^i \cdot v_k(x, y_i)$ сходится и так как отображение v имеет свойство 3), будет

$$\int\limits_{L} \frac{\partial v_k(x, y)}{\partial z_k} \, \mathrm{d}y = \lim_{a \to \infty} \int\limits_{L_a} \ldots = \lim_{a \to \infty} g(a) = \sum_{i = p+1}^{\infty} (-1)^i \cdot v_k(x, y_i) \, .$$

Отсюда и из (29) непосредственно следует (27). Аналогично можно доказать соотношение (27) и в остальных случаях.

Итак, согласно (24), (27), будет

$$\sum_{n} \int_{G_n} v_k(\varphi_n(t)) \cdot w_k^n(t) \, \mathrm{d}t = \int_{E_{m-1}} \left(\int_{A_x^k} \frac{\partial v_k(x, y)}{\partial z_k} \, \mathrm{d}y \right) \mathrm{d}x$$

(внешний интеграл в правой части является уже интегралом Лебега). Складывая для k = 1, ..., m, получим

$$\sum_{n} \int_{G_{n}} v(\varphi_{n}(t)) \cdot w^{n}(t) dt =$$

$$= \sum_{k=1}^{m} \int_{E_{m-1}} \left(\int_{A_{x}^{k}} \frac{\partial v_{k}(x_{1}, \dots, x_{k-1}, y, x_{k}, \dots, x_{m-1})}{\partial z_{k}} dy \right) dx_{1} \dots dx_{m-1}.$$
(30)

Если отображение v обладает и свойством 2), то соотношение (30) перейдет в соотношение (12).

Пусть, далее, f — неотрицательная непрерывная функция на множестве H и пусть

$$\sum_{n} \int_{G_n} f(\varphi_n(t)) \cdot |w^n(t)| \, \mathrm{d}t < \infty \,. \tag{31}$$

 $\mathbf{396}$

Пусть \mathfrak{V} — множество всех непрерывных отображений множества H в E_m таких, что $|v(z)| \leq f(z)$ для любого $z \in H$. Если $v \in \mathfrak{V}$, то из соотношения (31) следует соотношение (10); итак, каждому $v \in \mathfrak{V}$ можно поставить в соответствие число

$$P_{q}(v) = \sum_{n} \int\limits_{G_{n}} v(\varphi_{n}(t)) \cdot w^{n}(t) \, \mathrm{d}t$$
 .

Если теперь обозначить левую часть (31) буквой L_{w} , то будет, очевидно,

$$P_{q}(v) \leq L_{\varphi} \tag{32}$$

для любого v є 𝔅. Докажем, что

$$L_{\varphi} = \sup P_{\varphi}(v) \quad (v \in \mathfrak{B}).$$
(33)

Для этой цели возьмем $\varepsilon > 0$. Существует натуральное число N так, что

$$\sum_{n>N} \int_{G_n} f(\varphi_n(t)) \cdot |w^n(t)| \, \mathrm{d}t < \tfrac{1}{4}\varepsilon \,. \tag{34}$$

Для каждого $n \leq N$ существует такое компактное множество $K_n \subset G_n$, что $\int_{G_n - K_n} f(\varphi_n(t)) \cdot |w^n(t)| dt < \frac{\varepsilon}{4N}$; тогда будет $\sum_{n \leq N} \int_{G_n - K_n} f(\varphi_n(t)) \cdot |w^n(t)| dt < \frac{1}{4}\varepsilon$. (35)

Возьмем индекс $n \leq N$ и для каждого $z \in \varphi_n(K_n)$ положим

$$s^n(z)=rac{w^n(t)}{|w^n(t)|}$$
 , где $arphi_n(t)=z$.

Так как отображение φ_n является на множестве K_n гомеоморфным, отображение s^n будет непрерывным на множестве $\varphi_n(K_n)$. Определим на множестве $F = \bigcup_{\substack{n \leq N}} \varphi_n(K_n)$ отображение *s* соотношением

$$s(z) = s^n(z)$$
, где $z \in \varphi_n(K_n)$.

Так как множества $\varphi_n(K_n)$ компактны и попарно дизъюнктны, то отображение *s* непрерывно (на *F*); если написать $s(z) = [s_1(z), \ldots, s_m(z)]$, то функции s_k будут непрерывны на (компактном) множестве *F*. По известной теореме (см. напр. [1], теорема 175, стр. 335) на множестве *H* существуют непрерывные функции S_1, \ldots, S_m так, что $S_k(z) = s_k(z)$ для любого $z \in F$ $(k = 1, \ldots, m)$. Положим $S(z) = [S_1(z), \ldots, S_m(z)], g(z) = \max(1, |S(z)|), \sigma(z) =$ $= \frac{S(z)}{g(z)} (z \in H)$. Тогда будет $g(z) \ge |S(z)|$, т. е. $|\sigma(z)| \le 1$ для любого $z \in H$; для $z \in F$ будет, однако, |S(z)| = |s(z)| = 1, g(z) = 1, а, значит, и $\sigma(z) =$ = S(z) = s(z). Пусть теперь $v(z) = f(z) \cdot \sigma(z) (z \in H)$. Очевидно, $v \in \mathfrak{B}$; если $t \in K_n$, то

$$v(\varphi_n(t)) = f(\varphi_n(t)) \cdot \frac{w^n(t)}{|w^n(t)|} .$$
(36)

Пусть далее

$$P_{1} = \sum_{n \leq N} \int_{K_{n}} v(\varphi_{n}(t)) \cdot w^{n}(t) dt , \quad P_{2} = \sum_{n \leq N} \int_{G_{n} - K_{n}} \dots, P_{3} = \sum_{n > N} \int_{G_{n}} \dots, Q_{1} = \sum_{n \leq N} \int_{K_{n}} f(\varphi_{n}(t)) \cdot |w^{n}(t)| dt , \quad Q_{2} = \sum_{n \leq N} \int_{G_{n} - K_{n}} \dots, Q_{3} = \sum_{n > N} \int_{G_{n}} \dots$$

Так как для $t \in K_n$, согласно (36), имеем

$$v(\varphi_n(t)) \cdot w^n(t) = f(\varphi_n(t)) \cdot \frac{(w^n(t))^2}{|w^n(t)|} = f(\varphi_n(t)) \cdot |w^n(t)|,$$

то будет $P_1 = Q_1$. Согласно (34), (35), получаем неравенство $|P_2| + |P_3| + |Q_2| + |Q_3| < \varepsilon$; так как $P_{\varphi}(v) = P_1 + P_2 + P_3$, $L_{\varphi} = Q_1 + Q_2 + Q_3$, то $P_{\varphi}(v) = L_{\varphi} - Q_2 - Q_3 + P_2 + P_3 > L_{\varphi} - \varepsilon$. Отсюда и из (32) непосредственно следует (33).

Пусть теперь $L_{\varphi} = \sum_{n \ U_n} \int f(\varphi_n(t)) \cdot |W^n(t)| \, dt$. Напишем в (7) U_n, φ_n, W_k^n вместо G_n, φ_n, w_k^n . Левая часть от этого не изменится, и мы получим

$$\sum_{n} \int_{G_n} f(\varphi_n(t)) \cdot |w_k^n(t)| \, \mathrm{d}t = \sum_{n} \int_{U_n} f(\varphi_n(t)) \cdot |W_k^n(t)| \, \mathrm{d}t \quad (k = 1, ..., m) \,. \tag{37}$$

Но так как $|w_k^n(t)| \leq |w^n(t)|$, следует из (31), что левая (а, значит, и правая) часть (37) конечна для k = 1, ..., m; однако, $|W^n(t)| \leq \sum_{k=1}^m |W_k^n(t)|$, так что $L_{\varphi} < \infty$. Если положить для каждого $v \in \mathfrak{B}$

$$P_{\psi}(v) = \sum_{n} \int_{U_n} v(\psi_n(t)) \cdot W^n(t) \, \mathrm{d}t \, ,$$

то, конечно, будет опять

$$L_{\psi} = \sup P_{\psi}(v) \quad (v \in \mathfrak{V}) . \tag{38}$$

Однако, согласно (11), имеем $P_{\varphi}(v) = P_{\psi}(v)$ для любого $v \in \mathfrak{B}$; согласно (33), (38), будет поэтому $L_{\varphi} = L_{\psi}$.

Таким образом мы доказали соотношение (8) при условии, что левая часть конечна; точно так же можно доказать это соотношение для случая, когда правая часть конечна. Итак, если одна часть равенства (8) бесконечна, то и другая бесконечна и равенство опять справедливо.

Таким образом мы доказали справедливость соотношения (8) для любой неотрицательной непрерывной функции f на множестве H. Отсюда легко вытекает, что соотношение (8) сохраняет силу и для всякой функции f, непрерывной на множестве H и удовлетворяющей соотношению (9). Этим полностью доказано наше утверждение.

Замечание. Пусть $h_k(x)$ — число элементов множества H_x^k ($x \in E_{m-1}$, k = 1, ..., m). Если в (7) положить f(z) = 1, получим

$$\int_{E_{m-1}} h_k(x) \, \mathrm{d}x = \sum_n \int_{G_n} |w_k^n(t)| \, \mathrm{d}t \quad (k = 1, ..., m) \, .$$

 $\mathbf{398}$

Отсюда легко следует, что

$$\sum_{n} \int_{G_n} |w^n(t)| \, \mathrm{d}t < \infty \tag{39}$$

тогда и только тогда, если

$$\sum_{k=1}^{m} \int_{E_{m-1}} h_k(x) \, \mathrm{d}x < \infty \,. \tag{40}$$

Пусть теперь множество H ограничено и пусть справедливо (39). Тогда для произвольной непрерывной функции на множестве H имеет место (9), а, значит, и (8); для любого непрерывного отображения v множества Hв пространство E_m справедливо (10), а, значит, и (11).

Если множество H ограничено и если ограничены и функции h_1, \ldots, h_m , то, очевидно, имеет место (40), а, значит, и (39).

ЛИТЕРАТУРА

- [1] V. Jarník: Diferenciální počet, Praha 1953.
- [2] V. Jarník: Integrální počet II, Praha 1955.
- [3] J. Mařík: Transformation of m-dimensional Lebesgue integrals, Чехословацкий математический журнал 6 (81) (1956), 212-216.
- [4] J. Mařík: Poznámka o řídkých množinách v $E_m,$ Časopis pro pěstování matematiky, 81 (1956), 337-341.

Zusammenfassung

BEMERKUNGEN ZUR THEORIE DES OBERFLÄCHENINTEGRALS

JAN MAŘÍK, Praha.

(Eingelangt am 10. Oktober 1955.)

Wenn a_1, \ldots, a_{m-1}, a Elemente von E_m sind und wenn für jedes $x \in E_m$ das skalare Produkt $a \cdot x$ gleich der Determinante mit den Spalten a_1, \ldots, a_{m-1}, x ist, nennen wir a äusseres Produkt der Vektoren a_1, \ldots, a_{m-1} . Ist φ eine reguläre Abbildung der offenen Menge $G \subseteq E_{m-1}$ nach E_m , wird mit $w^{\varphi}(t)$ das äussere Produkt der Vektoren $\frac{\partial \varphi(t)}{\partial t_1}$, \ldots , $\frac{\partial \varphi(t)}{\partial t_{m-1}}$ bezeichnet.

Es sei nun $A \subseteq E_m$, $G \subseteq E_{m-1}$, G offen; es sei φ eine reguläre Abbildung der Menge G nach E_m . Wir nennen die Abbildung φ A-zulässig, wenn sie schlicht ist und wenn zu jedem $t_0 \in G$ eine Umgebung U des Punktes t_0 ($U \subseteq G$) und eine positive Zahl ε existiert, so dass die Implikation

$$t \in U, \, 0 < lpha < arepsilon \Rightarrow arphi(t) + lpha w^{ ilde{}}(t) \, \mathrm{non} \, \epsilon \, A, \, arphi(t) - lpha w^{ ilde{}}(t) \, \epsilon \, A$$

gültig ist. – Für jedes $x = [x_1, ..., x_m] \epsilon E_m$ schreiben wir weiter $|x| = \left| \left| \sum_{i=1}^m x_i^2, \pi_k(x) = [x_1, ..., x_{k-1}, x_{k+1}, ..., x_m] (k = 1, ..., m). \right|$

Es gilt folgender

Satz. Es sei $A \,\subseteq E_m$ (m > 1); die Grenze von A bezeichnen wir mit H. Es sei weiter φ_n eine A-zulässige Abbildung der offenen Menge $G_n \subseteq E_{m-1}$ (n = 1, 2, ...); es gelte $\varphi_i(G_i) \cap \varphi_j(G_j) = \emptyset$ für $i \neq j$ und das m - 1-dimensionale Mass der Menge π_k $(H - \bigcup_n \varphi_n(G_n))$ sei gleich Null für k = 1, ..., m. Es sei v eine stetige Abbildung der Menge \overline{A} nach E_m $(v(z) = [v_1(z), ..., v_m(z)])$, die folgende Bedingungen erfüllt:

1) Für jeden inneren Punkt z der Menge A existieren endliche Ableitungen $\frac{\partial v_k(z)}{\partial z_k}$ (k = 1, ..., m).

2) Es existieren endliche Lebesguesche Integrale

$$\int\limits_{A} rac{\partial v_k(z)}{\partial z_k} \, \mathrm{d} z \quad (k=1,...,m) \ .$$

3) Zu jedem $\varepsilon > 0$ gibt es eine Konstante C, so dass für jeden Punkt $z \in A$ mit |z| > C die Beziehung $|v(z)| < \varepsilon$ besteht.

4) Es ist $\sum_{n} \int_{G_n} |v(\varphi_n(t))| \cdot |w^{\varphi_n}(t)| dt < \infty$.

Unter diesen Voraussetzungen gilt die Formel

$$\int_{A} \operatorname{div} v(z) \, \mathrm{d}z = \sum_{n} \int_{G_n} v(\varphi_n(t)) \cdot w^{\varphi_n}(t) \, \mathrm{d}t \; .$$