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ЧехословацЕий математический журнал, т . 7 (82) 1^57, Прага 

MEASURES T H E VALUES OF W H I C H ARE 
CLASSES OF EQUIVALENT MEASURABLE FUNCTIONS 

VACLAV FABIAN, Praha. 

(Received January 13, 1956.) 

In this paper we consider properties of measures, the values of 
which are classes of equivalent measurable functions; such classes 
are called random variables. 

0. Introduction and summary 

The concept of a measure the values of which are random variables is a 
simultaneous generalization of the concepts of the real-valued measure and 
of the conditional probability. I t is possible sometimes (but not always) to 
t reat the conditional probability as a system of real-valued measures; we say 
in this case t ha t the conditional probability is regular. I t is, however, of interest 
t o study the analogy between conditional probability and real-valued measure 
without the assumption of regularity and this is to what the following pages 
are essentially devoted. 

The most important fact we systematically use is tha t the system of all 
finite random variables on a measurable space is a regular i^-space and tha t 
the space of all random variables (not necessarily finite) on a measurable 
space, although being not a regular ^K^-space, has certain important properties 
of a regular ^ -space . These properties are studied in sec. 3. 

In sec. 4 three lemmas useful for further considerations are stated. 
In sec. 5 a theorem on extension of a measure defined on a ring to a measure 

defined on a a-ring is proved. 
In sec. 6 the weak integral of a real-valued measurable function is defined 

and a theorem on a representation of a functional (the values of which are 
random variables) by a weak integral is proved. 

In sec. 7 we study thé problem of integration of functions the values of 
which are again measurable functions. The W-integral is defined, for 
lunctions the values of which are ( W) measurable functions. 
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Both the W-integral and the weak integral have the usual properties of 
nonnegativity, linearity and continuity from below, the later implying the 
usual continuity /^ -> /? 0 g /^ ^ g, Jg finite => Jf^ -> J / , where J denotes 
the weak or the W-integral and -> denotes the convergence induced by the 
partial ordering of measurable functions and random variables respectively. 

The concept of a strong measure is introduced; a measure [л is strong if, 
roughly speaking, the W-integral exists for sufficiently ample cr-algebra W. 
Three theorems show conditions under which a measure // is strong. In the 
third of them the concept of the degenerate functional is used; these function
a l are used in the mathematical theory of the dynamic of turbulence (BLAÎSTC-
L A P I E B R E , F O R T E T [2], p . 613). 

In sec. 8 further properties of the W-integral are proved. First the domain 
of definition of the W-integral is extended in a way analogous to the extension 
of a real-valued measure to its completion. The relation with the integral 
with respect to a system of real-valued measures is stated and theorems 
analogous to those of Fubini and Radon-Nikodym are proved. 

In sec. 9 the conditional probability is studied. The assertion of Theorem 
9.4 is near to the results of S H U - T E H C H E N M O Y [8], whose method we have 
used in the proof of Lemma 7.14. Theorem 9.5 says tha t every conditional 
probability is (as a measure) strong; on the other hand every strong measure 
is closely related to a conditional probability (Theorem 9.6). 

In sec. 10 a further property of conditional probability is studied and re
sults are obtained generalizing the author 's results in [3]. 

There are essentially two ways in defining the integral. The first supposes 
essentially the elementary integral is first defined for characteristic functions 
of sets in a ring or in a c-ring. This method is commonly used in the theory 
of measure and probability. The other method supposes the elementary integral 
is defined on a linear space of arbitrary real-valued functions, or, in a more 
general case, on a lattice (see e. g. MCSHANE [9], STONE [11]). 

Thus extending the domain of the elementary integral to a c-complete 
lattice we obtain in the first case the system of all measurable characteristic 
functions, in the second case the system of all measurable functions. Thus in 
the first case further considerations are necessary to obtain the usual domain 
of the integral. 

In this paper we use essentially the measure-theoretic consideration, bu t 
we a t tempt to unify the two aspects. For example we consider the outer 
measure /г* *-induced by a functional / and the measure /г induced by /г* and 
study the relation between J and fx. We suppose tha t J (which may be infinite) 
is defined on a system 2J of non negative finite functions on a set X. Con
cerning 2J we suppose only tha t with two functions / and g the system ^J 
contains the functions max(/, g), min(/, g) and / — min(/, g). (See Theorems 
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5.8 and 5.13.) Thus S J may be for example the system of characteristic 
functions of sets in a ring, or the system of all non negative continuous funtions 
on a topological space. Both cases are of great importance but so far as I know, 
they are commonly treated by two different manners. 

On the other hand, the two aspects differ more in our case than in the simpler 
case of a real-valued integrand, since the majority of difficulties does not 
consist in extending the elementary integral (the functional J in Lemma 7.9) 
but in proving tha t the elementary integral has the necessary properties, 
in particular tha t it is continuous from below. 

We note tha t , under the restriction to Ö-finite measures. Theorem 5.15 
can be easily proved by means of Theorem 4.21, Chapt. I X of KANTOKOVIC, 
VULICH, PlNSKEE [5] . 

1. Basic definitions and notations 

1Л, The symbol E denotes the space of all real numbers, £"* = E U {—o:)}u 
и {+oo} with usual conventions about ordering, multiplication and addition; 
in particular 0 . ( J:: oo) = 0. Further we denote E^ = {c; с с £ ,̂ с ^ 0} and 
El = {c]C€ E^, с ^ 0} . 

Let {bi} be a finite or infinite sequence, let Ĵ  be a set and let В be the set 
of all bi. Then we write {6,} C-Aior BQA, {b^} О A ior В Э A and {5,} = A 
for Б = A. 

1.2. If S is a system of sets, then S ^ (S^^ ) is the system of all finite (countable) 
unions of sets inS; similarly S^ is the system of all finite intersections of sets 
in S; S_ denotes the system of all differences A — B, where A e S, В e S. S is 
called a lattice, if 0 e S , S^ CS, S^ CS; Sb pseudolattice^), if the system of all 
finite unions of disjoint sets in S is a lattice; airing, if 0 € S , S ( j C S , S _ C S ; 
a (7-ring, if 0 e S, S^-^C S, S__ С S. A ring (a-ring) S is an algebra (cr-algebra), 
if и ^ ^ ^- If С is a system of sets, then rC resp. s С denotes the smallest ring 
resp. (7-ring which contains C. We denote by S8 the smallest a-algebra containing 
all intervals I С E and the sets {— oo}, {-f oo}. 

1.3. If T is a transformation, then ^T is the set on which T is defined and 
^T = T{9T). The meaning of symbols T{A), Т-ЦВ), T(x) = Tx for A С 
С ^Т, в с ^Т, Х€^Т is obvious. If F is also a transformation, ^V D ^T, . 
then the symbol VT denotes the composed transformation. li A С ^T, then 
Tj^ is the transformation of A into ^T defi,ned by the relation TJJC = Tx 
for every x e A. If F and T are two transformations and S F С ^T, T^y = F, 
then T is an extension of F, in symbols T У V, К transformation T is called 
measurable (V, S), if S and У are cr-rings, U S =- ^T, U ^ Э ^ У and J. e ¥=> 

1) I t is easy to see tha t every semiring (see [4]) is a pseudolattice. 
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1.4. A (finite) real-valued function is a transformation / with âêf С ^ * 
i^f С iE'). If ^ is a set, then f*^ (fA) is the system of all (finite) real-valued 
functions defined on A. By the symbol f^A resp. f^A we denote the system 
of all functions belonging to f^'A resp. fA, which are non negative. If fi e f^A 

(i = 1, 2, . . . , k), we denote Afi'^fiAfz^-'^h^ inf(/i, . . . , fj,), Y fi = 

- / i V / , V . . . V / . = sup ( / „ . ' . , / , ) , / + - / V 0 , / _ ^ ( - _ / ) ^ ^ - ( /ДО). The 
œ 00 

symbols V fi and Д fi have the analogous meaning. Fur ther /^ ^ /^ means 
г = 1 г = 1 

/i(^) ^ /гС^) in E^ for ел^егу a; e J. = S/,-; /^ < /^ means /^ ^ /2 and /1 4= f^; 
fi -> / or lim fi = f means fi{x) -> /(a;) in E^ for every x e J.; /г Я' / (fi \ /) 
means / , ^> / and / , ^ fi^^ {fi ^ Д+i) for i = 1, 2, . . . 

1.5. If A is a set, we denote by c^ the characteristic function of the set A (the 
meaning of the complement of A will be always clear from the context). Le t 
S be a system of sets. Then we denote by cS the system of all functions c^ with 
A e S. If S is a system of sets, then a real-valued function / is called S-simple, 

n 

iî ^f := и s and f = ^ai . c^., where â  e E+, yl,- e S. If S is a cr-ring, then a real-

valued function / is called (S) measurable if ^ / = U ^ ^nd /~^(^) e S as soon as 
0 non € ̂ 4 € 23. If ей/ С f^A then we denote by k j / the smallest (j-ring such t h a t 
every f € A m (kj/) measurable. We denote by m^S (mS) the system of all 
(finite) real-valued (S) measurable functions, by m* S (m+S) the system of all 
/ € m'^S {f € mS) which are non negative. 

If J. is a set, s/ С f* ,̂ then .я/^ resp. J / ^ resp. J / ^ ^ denotes the set of all 
00 

/ Vg resp. fhgresp. Y/*, where / € ^ , g e J / , { /J f^^iC-^. If ^ С f^A, ^ С f+-4, 
i -= 1 

then we define 
. c / _ ( ^ ) = = { / , ^ / i ; 0 ^ / , ^ / , ^ / c ^ , / , € ^ , / 2 6 ^ } ^ . 

If .?/ 3= ^ € f+^ we write J3/_ = j / _ ( . ^ ) . 
Let ^ CfA. Then J / is called an /-lattice, if j^f С f^A, 0 e J ^ , J / ^ С ^ , ^ л С ^ ; 

an /-ring, if ей/ is an /-lattice and se_ С ^ ; a basic system, if se is an /-ring and 
/ € J / , C e J S ' + = > C . / € e # , / A l € . ^ . 

1.6. A real measure is a real-valued non negative function 11 such t h a t 
00 " 00 

S)li is acr-ring and /г( U ^г) == ^l^k-^i) as soon as Ai€ ^fi and Air\Aj = 0 for 
г - 1 i - 1 

every i == 1, 2, . . . ; j 4= i. A measure /i is said to be totally c-finite, if there 
exists a sequence of sets {^,}f^i C* ̂ {л such t ha t \}Ai = U^jbt and /г(-4^) < 
< + 00 for every i = 1, 2, . . . . A measurable space is such a couple of o*-rings 
(S, SQ) t ha t there exists a totally a-finite measure /LI such t ha t S = ^/bt and 
SQ = {A; A € S, ju{A) = 0}. In such a case we say tha t (S, SQ) is induced by //, 
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or tha t 1Л induces (S, SQ). If (S, SQ) is a measurable space, then two (S) measurable 
functions / i , /2 are (SQ) equivalent if there exists a set FQ e S^ such t h a t fi{x) = 
= f^(x) for Sill xeU s — VQ. Thus the system m*S can be divided into disjoint 
classes of (S^) equivalent functions; such classes are called random variables. 
Ji ^ (Zm^Sy then the system of all such random variables, wiiich contain a t 
least one element of e^, is denoted by n^ (S , S^). In particular we denote by 
ri*(S, SQ) resp. n*(S, So) resp. n(S, S )̂ resp. ri+(S, SQ) the set n^ (S , S Ĵ) where 
^ •= m*S resp. ^# = rri*S resp. ^ = mS resp. rJ/ = m+S. 

The addition, multiplication and ordering of random variables are defined 
as follows ((% and ß are supposed to be random variables beloging to 
n* (S, SQ)): First we define a -{- ß if and only if there exist two functions 
/ б a, g € ß such tha t f -\- g is defined. In this case we define 

a, -j-- ß =z [f -\- g-^ f e a, g € ß, f ~\- g has a meaning} . 

Fur ther we put a . ß =^ {f . g; f e a, g e ß} . Finally we write oc ^ ß ii and only 
if there exist f e a, g e ß such tha t f ^ g. Obviously oc -}- ß and a . ß are ran
dom variables and belong to n*(S, S^). 

If f € ОС e n^ {S, SQ), let us write for a moment x = n{f). 
If ^ e S then we denote XA = ^(c^)- ^ с e E"^, / с m*S, fx = с for every 

X € S / , we denote both / and n{f) by the same symbol c. Everj/ totally c-finite 
real-valued measure | induces a measurable space (S, SQ); in such a case we 
write n^^l :=^ n^^{S, SQ) etc. We denote also the SQ-equivalence of f, g e m'̂ 'S by 
f =: g [I]. The elements of n* resp. гв resp. о J are called random resp. finite 
random resp. non negative random variables. If f e (p en^^, we define 
j<p d | = / / d | . 

1.7. If a binary transitive relation > is given in a set Y, луе write a ^ b 
if and only iî a :> b or a = b. Then a subset В С Y is said to be bounded from 
below in F , if there exists Si y € Y such tha t y ^b for every b e B; we write 
in this case y {^) B. By the symbol inf̂ ^ B, it A С Y, we denote such an ele
ment of A t ha t 

and h (^) B, h € A^=> h ^ inf^ B. If inf^ В exists and if the relation ^ is 
antisymmetric, then inf^ В is uniquely determined. 

In an analogous way the boundedness from above and sup^ В are defined. 
If Б :£r {&Jf=i? we write also 

к к 
sup^ В = b,yb^V .,.\/bj, = y/bi, inf^ В = b^Ab,A.,.Abj, = Abi-

г = 1 i = 1 

The convergence in a partially ordered set Y is defined in the folloAving way: 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6, -> bg if and only if 6̂  € F , V Л ^i ^^^ A V г̂ exist, 6Q = V Л г̂ = Л V &*•• 
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I t is easy to see tha t for real-valued functions this convergence coincides 
with the convergence everywhere. For random variables this convergence 
means a, -> л^ if and only if there exists a sequence a, e a^ such ha t a, -> a^ 
or, what is the same, if for every sequence a^ e cx, there exists a set N € SQ 
(if ai € n*(S, SQ)) such t ha t lim а^{х) =• а^{х) for every x e\jS — N. 

i—¥O0 

1.8. If (S, S(j) and {Ч, YQ) are two measurable spaces, we write (S, Ŝ ) ^ 
^ (¥, Vo) if and only if S С V, и ^ = и S, So = ¥o; i- е., if n=^(S, S«) С «^(V, ¥~), 
ivhere С denotes the usual set inclusion. If 0 € e^ С n*(\^, V^), where (¥, V )̂ 
is a measurable space, then there exists a smallest measurable space 
( q ^ , %^) such tha t o* (q.^, q^^yi) contains ^J/. It is easy to see tha t 

q o ^ - - M;C4 € 0 € ^ } , 
q^# = s{J.; ^ = д-ЦВ); 0 non е Л е ^ , д € 7 е ^ } . 

2. The Radon-Nikodym derivatives 

In this section we remind of certain properties of the Radon-Nikodym de
rivatives. 

2.1. Definition. Let /i and v be two real-valued measures. We say tha t v is 
absolutely continuous лvith respect to /i (г̂  < < /i) if S^f^i = ^^^ and if J. e ^a, 

2.2 Lemma, i e^ //. a?id î  fte ̂ гб'о real measures, let /u be totally a-finite and let 
V < < /i. Then there exists one and only one oc such that 

cxenlf.1, (2.2.1) 
ß € п*^г => jß dv = fa. . ß dfi . (2.2.2) 

2.3. Definition. Let /u and v satisfy the conditions of the preceding Lemma, 
let a be the (unique) random variable satisfying (2.2.1) and (2.2.2). Then a is 

dî̂  
called the Badon-Nikodym^ derivative; it is denoted by the symbol — . 

2.4. Lemma. Let fi and Vi be real measures, let ju be a-finite and Vi < < fi for 
every i = 1, 2, ... , Then 

à{vi + ^2) ^ ^ I ^ . (2 4 1) 
dд d/i d/i ' 

di^ ^ d>'9 ,^ , _, 
^ ~^ ^ dfi "" d^u ^ ^ 

• d lim V,-
dv • 

^1 = ^3 ^ ••• =^ 1™ ^i '^'^ ^ real-valued measure, '"-~7f"— = 1™ т-^ • (2.4.3) 

For proofs of (2.2) and (2.4) see for example HALMOS [4], § 31, Theorem В and 
Exercises 7, § 32, Theorems A and B. 
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3. The spaces of random variables and the K-spaces 

3.1. Lemma. Let {V, У^) be a measurable s face. Then there exists a pseudo-
probability | {i. e. a real-valued measure f such that f (U Ю '^^ equal to 0 or to 1) 
inducing (V, VQ). 

Proof . From the definition it follows tha t there exists a totally cr-finite 
measure т] inducing (V, VQ), If 7](\J V) = 0, we put I = ^. If ^(U Ю > ^J then 

00 ' 

there exists a sequence {A^}f_i C- V' such tha t U ^г = U ?̂ Ö < /uiA^) < + oo; 
г 1 

3.3. Definition.^) F is a K-space, if F is a linear space with a binary rela
tion > , satisfying 

y>z<:>y — z>0, (3.2.1) 

y>0^y +0, (3.2.2) 

^ > 0 , 2 : > 0 = > ^ + ^ > 0 , (3.2.3) 

a y eY, then there exists Sb z еТ such tha t z ^ 0 , z^y , (3.2.4) 

у eY, CeE, у > 0, C > 0 = > c . ^ > 0 , (3.2.5) 

for every non empty set В С Y bounded from below in Y there exists 
inf^ В . (3.2.6) 

3.3. N o t a t i o n . If oc and ß are random variables, we write a > ^ if and 
only a oc ^ ß and oc + ß. 

3.4. Theorem. Let {V^VQ) be a measurable space, let S С У* = n^(^, ^o)-
Then both int^* В and sup^.* В exist. Moreover a countable subset B' С В exists 
such that infp* B' = inf̂ * В and sup^.* B' = sup^.* B. 

Proof . If 5 = 0, then inf̂ * 5 - - + oo, sup,.* В = - аэ. И В ^ {ßi}Zi. 
00 

then obviously sup^.* В is the random variable containing the element V г̂? 
i = i 

where 5̂  € ßi. If В is uncountable, we proceed as follows. 

Put , for every oc e Г*, g{oc) = I ^—^—r--, d | , where -— and -̂ —, 
•̂  ^ ^ ^ J l + I^l 1 + 00 1 + 00 

mean 1 and — 1 respectively and where | is a pseudoprobability inducing 
(V, VQ), Clearly 

oc <ß^Q(oc) <Q(ß). (3.4.1) 
00 

Let С be the set of all random variables of the form Y oc^, oci € B, It is evident 

t h a t if supy* С exists, so does supj.* В and sup^* С = sup^* B. 

2) See [5]. 
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Now let {yJ^Li be such a sequence t ha t yieC, qiyi) -^ ^Щ Q{y)- Since 
yeC 

00 00 

Уу^еС and ^(7,) ^ ^( V уд i t follows t h a t 
1 - 1 i=1 

00 

e(Vy») = supß(y) (3.4.2) 

00 00 

and V У г = siipy* О = supp* В . Indeed, if for a 7 e С the inequality 7 ^ V 7i 
i - 1 i=i 

00 00 

does not hold, then V 7г < ( V 7«) У у ^C, which is impossible according t o 
i^l г = 1 

00 . 

(3.4.1) and (3.4.2). However, У7г is supremum of a countable subset B^ С B^ 
г = 1 

By a similar argument we obtain a countable set B^Q В such tha t inf̂ p* B^ = 
= inf̂ ,* В and it suffices to pu t B' =^ B^\J B^. 

3.5. Lemma. Let Y = n(V, V^), Г* = n*(V, V^), 0 Ф Б с Г . Then the following 
four conditions are mutually equivalent: 

В is bounded from below in Y , (3.5.1) 

infj,* Л б Г , (3.5.2) 

inf^ В exists and inf^* В =^ miy В , (3.5.3) 

infj, В exists . (3.5.4) 
P r o o f . If (3.5.1) holds, then there exists яп oc e Y such tha t В (^) a. Hence-

infp* 5 ^ a. As _ß Ф 0, there exists a ßeBcY and a ^ inf̂ .* В ^ ß. 
Thus (3.5.2) holds. Clearly (3.5.2) => (3.5.3) :=> (3.5.4) => (3.5.1). 

3.6. N o t a t i o n . In the next, if ^ С î""̂  = п(¥, ¥Q), the symbol inf A denotes 
infj,* A. 

3.7. Definition. Let F be a .Ä'-space. Denote by Y the space Г U { + So} U 
U {— ш}, where — ю < У < + Z ior every yeY. [Уп-^У in Г] means of 
course the convergence induced by the ordering in Y, 

3.8. Lemma. Let Y = ri(¥, VQ), {aJfLj C- Y, a,- e a-i. Then a« -> + œ in 
~ 00 

Y if and only if the following condition is satisfied: A л:̂  e F and there exists 

a set V eV -— VQ such that lim ai(x) = -\- 00 for every x eV. 
г—>oo 

Proof . Let ßi = inf^locj', j = i,i + I, ...}. Then a^ -> + ^ in Г if and only 

if iß,- -> + œ in Y. 
^ 00 

First let л:̂  -> + 00 in F . Then ßi^ e Y for some i^, and thus also Д oc^ =• 
i = l 

i^-l 00 

= A ^г A ßi, € У' Further , if 5, = A ^3^ ^hen b^ e /?, and b = lim 6,- exists. Ob-
i = 1 i = г' i—>oo 
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viously Ъ is not in m ^ and thus there exists a set F e К — V̂  such t h a t Ъ{х) = 
= + 00 for X eV', hence it follows t ha t а^{х) -> + oo for every x eV and the 
*'only if" is proved. 

On the other hand, if a^ e oci, F € V — V ,̂ â  {x) -> + oo for every x eV and 
00 ^ 

Д oci € F , then supj; ß^ = -{- '^ and thus {%̂- -> + oo iïi Y, 
i l i 

The following lemma is a slight generalization of a theorem due to F R E C H E T 
(see [5], p . 177). 

3.9. Lemma. Let Y = n{V, VQ), let ocij e Y, (%,• e Y for every i, j , let 

lim ocij = oci, i — 1 ,2 , . . . and (х^-> a in F . 
i—>oo 

Then there exists a sequence of integers щ < П2 < 7г^ <c . . . such that oci^. -> oc 
in Y. 

Proo f . Let I be a pseudoprobability (see Lemma 3.1) inducing {V, VQ), let 
a^j € oiij, a^ € oCi, aeoc. For every n there exists (Jegorov's Theorem) a set W^ e V 

s-ucli t ha t f ( Wn) < — and a^j -> a^ uniformly on U '̂  — W^ for every i = I, 2,.... 
n 

n 
But, for every i = 1, 2, . . . , a^j -> a^ uniformly on U ^ — F^, where F^ == fl Wj. 

j .= 1 
00 

Clearly Fl Э Fg D . . . and f ( (% Vn) = 0. Accordingly, we may choose a sequence 

of integers 0 < ^^ < ^2 < . . . such tha t 
1 

l^imi^) — Cii{^)\ < -^ for every x e IJV — Vi . 
ъ 

со 

Suppose (Xi -^ ос eY, a € (X, ai -> a. If о; e U ^ — П ^i, then there exists an 
г = 1 

index 0̂ such tha t x € JijV ~ V^ for all i > igi thus 

\aini(x) — ai{x)\ < -T for i > i^, 
ъ 

00 

which implies ain.{x) -> a{x). Thus â -̂ . -^ a on U ^ — П F^, i. е., ос^^^ -> л. 
г = 1 

Suppose â - -> + 00- This is equivalent (see the preceding Lemma) to the 
existence of a set Ж e V — Vg such t ha t a Да:) -> + ^ foi* every x e M and 

00 00 00 

Д (Xi € Y. But obviously Д oci^ e Г and ai^J^x) -> 00 for every x e M — (\Vi. 

Thus also (Xin. -> + So. 

Suppose a^ -> — ^ . Then (— л,) -> + да. (-- осщ) -> + да and (%,-̂^ -> 
-> + да. Thus the Theorem is proved. 
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3.10. Lemma. Let M с n*.(V, У^) and let 

осеМ, ßeM, oc=¥ß^ocAß = 0 : 

Then M is countable. 
00 

P r o o f . For every sequence {^,} C- M we have 2 /^^ Л 1 d l ^ 1, if I is 
г - 1 

a pseudoprobability inducing (V, VQ), Thus the set of all (% Л 1, where oc с Jf, 
is at most countable. Fur ther oc Ф ß, oc Aß = 0=> oc A I + / З А 1 , which fini
shes the proof. 

3.11. Theorem. Let {V, VQ) be a measurable space. Then n{V, ¥Q) is a regular 

К-space. 
P r o o f . n{V, VQ) is a Ж'-space according Theorem 3.4 and Lemma 3.5 and is 

regular according Lemmas 3.9 and 3.10 (see [5], Chapt. V.). 
3.12. Definition. A subset Б of a partially ordered set A is called dovm 

oriented, ii a e B, b e В implies the existence of such дь d e В tha t d ^ a, d ^ b^ 
3.13. Theorem. Let В С n*(V, VQ) and let В be down oriented. Then there exists 

a sequence {ßi}T^ lO ^ '̂г̂ сА that ß^ \ inf B. 

P r o o f . From Theorem 3.4 it follows tha t there exists a sequence {oc^j^^i C- В 
00 

such tha t Д oc^ = inf B. Now it suffices to choose ß^eB, ß^ ^ ßn-i A oci A • - • A oc^ 

for every n (this is possible for В is down oriented). 
3.14. Definition. If (V, VQ) is a measurable space, A eV, then we denote by 

P^ the transformation from n^(V, VQ) onto n*(^V', JVQ), where 

J={B;ADBeV}, ,V, = {B;ADBeV,}, 

which satisfies the condition f e (p e n'^iV, VQ) => f^ e P/p. 
Further , if oc €П^{Ч,Уо), ВеЪ, then we denote by oc~^{B) the system 

{A) A = а~-ЦВ),а€ос}, 
3.15. Lemma. Let Г* = n*(V', V^), M e V, Let oceY^^ße Г*. Then 

oc^ß^P^oc^P^ß, (3.15.1) 

Pj,a >PMß<=>oc.XM> ß -Хм, (3.15.2) 
Рж^ ^ ^nß , ^UV^MOC ^ Puv-Mß ^oc>ß; (3.15.3) 

if ос + ß is defined, then 

PAoc + ß) = Рш^ + ^Mß ' (3.15.4) 

P r o o f . The Lemma follows from the definition of P^ immediately. 

3.16. Theorem. Let A с п^{У, VQ), M eV. Then 

P,, inf A = inf P^^(A) (3.16.1) 

and 
P ^ s u p ^ = s u p P ^ ( ^ ) . (3.16.2) 
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Hence, in particular, if {a,}^^i C- n* (V, VQ), then 
CO 00 

p . 2 «,• = 2 P .̂«i • (ЗЛ6.3) 
г 1 г - 1 

Proo f . Both members of (3.16.1) have a meaning. Let у e Pjf(-4). Then 
there exists дь oc e A such tha t у = Pĵ x̂. I t is a ^ inf A and thus according 
to the preceding Lemma, у ^ P̂ ^ inf ^ . Hence P^ inf A ^ inf Pj^(A). On the 
other hand, if 

у = inf P^(^) > P^ inf A and 7 = P^/3 , л = inf ^ , 

then ß ^ XM '> ^ • XM according to (3.15.2); thus 

ß ' XM + ^(^ — XM) > oc = inf A and ß . Хм + Ф — Хм) ( ^ ) -^ . 

as it follows from (3.15.3). But this is impossible. Thus P^ inf A :=^ inf P^(A), 
By duality P^ sup J^ = sup P^(^ ) . We have proved (3.16.1) and (3.16.2). 
Since (3.16.3) follows from (3.15.4) and (3.16.2), the proof is complete. 

In this paragraph three lemmas, which are more or less known, are stated 
for the convenience of the reader. 

4 .1 . N o t a t i o n . If ^ is a set, ^ С f+^ , then j^_^ = {f;f = g -f /г, g eJ^, 
00 

4.2. Lemma. Let С be a pseudolattice, . ^ С f+(U ^)? 

^a+ С ^ , еЯ/_(сС) С ^ , cC С ^ . (4.2.1) 
Then 

s/Э csC . (4.2.2) 
/ / even 

then 
s/DmlsC. (4.2.3) 

P roo f . Let us denote by Â the system of all sets the characteristic functions 
of which are in J ^ . For В e С let us denote by ^C the pseudolattice of all A, 
which satisfy В 3 A € С Clearly Â D ^C. Then from [4], § 5, Ex. (2), (3e) and 
(5) it follows tha t A D s^C. Thus 

A D ß = и {SBC; Be С}, 

where ß is defined by the context. Now, if we define 
00 

D =:{2А^;А,€В,А,пА^ = 0 for i Ф j} , 
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then, since ß С ^ and se^^^ с ^ , we obtain D С -A, or equivalently cD С ^-
But D is a cr-ring, D Э C, and thus D Э sC. (In fact D = sC.) We obtain 
«^ D cD Э csC and (4.2.2) is proved. 

Now suppose tha t se ^ Q^sé. Let / с m*sC. Then there exists a sequence of 
00 

sC-simple functions /^ such tha t 2 /n = /• But /^ are Hnear combinations of 
n- \ 

elements of csC and thus, since se y^Q, se and se^^ с «^, we obtain {/̂ } C- ^ 
00 

and ^jn'^i ^^' Thus .5/ Э m* sC. 

4.3. Lemma. Let ^ Ъеа basic system/, denote 

Then for every / e #", с e E^ we have 

{x; f(x) > cjeF 

and thus 
kJ^ = sF. 

P r o o f . The following proof is due to М А Ш К [6]: 

Let je^^ceE^. P u t 

/ A c 

(4.3.1) 

(4.3.2) 

(4.3.3) 

Яп == ri H-Ï) 
Then Qn / C(a;;/(a;)>c}? which proves (4.3.2). Hence it follows tha t k J^C sF. On 
the other hand kJ^ Э F and thus kJ^ = sF. 

4.4. Lemma. Let Ш Ъеа basic system, 

s/ 3^ , ^ ^ + С ся/ , j / x С ^ , .5/_(J^) С ^ . (4.4.1) 
ГАе?ге5^Эт^к^. 

P r o o f . Let / € ̂ , C^ = {^; Яп/ c^^ /, {g j , t . i C- ^ } . We have cC, С ^i^. 
Indeed, if {g^} C- ^ , g« / Cj^^f and Â  =- gr̂ , /̂ ^ = gn — Яп-г for 71 = 2, 3, . . . , 

00 

then Ä„ € se Jß) С ^^ and с^ = 2 ^n ^ ^0-+ С ^ . Clearly every С^ is а lattice; 

since ^ is a basic system, the union С =. \J {Cf, j e Щ \s д. lattice, too. We 
have cC С ^ ^ïid we deduce easily t h a t se_{cC) С ^^• Thus all the assump
tions of Lemma 4.2 are satisfied, we get j / Э m*sC and it remains to prove 
tha t sC D k ^ . 

Let / , c e ^ + . Then there exists a sequence {д^^О.-^ such tha t 

Ö̂n /^ 4^-j{x)>c) (see Lemma 4.3). Since g^ ^ — . / e ^ , we have {a;; /(it;) > c} 
с 

€ Cl ^̂  С С and k ^ с sC. 
с 
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5. Functional^ measure and outer measure 
Definitions and principal properties 

5.1. Definition. J is a functional, if J is a transformation, ^J С f*^? where 
X is a set (we shall write X = ^^J), Ш С n*(V, V^), where (¥, ^o) is a measurable 
space. J is called finite, if MJ С п(У, ^Q); additive, if {/, g, f + g} C' ^J=> 
=> J{f + g) = Jf + Jg\ homogeneous, if {f, с . /} C- ^J, с e E => J{c . f) = с , Jf; 
linear, if it is additive and homogeneous; continuous from below, if {fn}n^o С 
С- ^J, fn /^ fo^ Jfn /^ Jfo', non negative, if / e ̂ J, f ^ 0 :=> Jf ^ 0; subad
ditive, if {/i, /2, /1 V / J C- ^J -> J(fi V /2) ^ e//i + Jfi, monotone, if {/1, /2} С 

5.2. Definition, /u is called a ê̂  function, if ^/г is a system of sets, ^fi С 
С n*(V, VQ), where (V, VQ) is a measurable space. We say that /г is non negative, 
if % с n* (V, \Го); monotone, if {^, J5} C- % , ^ С -ß => /^(J.) ^ /i(5); (T-st̂ è-

00 00 сю 

additive, if {J^Jf^^ C-^,^, U Ai € ^fi=> fi{U A^) ^ ^ fi{Ai); a-additive, if 
г = 1 г = 1 г = 1 

СХЭ 00 00 

{ ,̂}Г^1 с- % , и ^г ^ % , Ai nAj=0 for г Ф / =^ /.е( и ^.О = 2 /^(^^•)' "̂Ẑ -
г = 1 г = 1 г = 1 

ш^е, if for every А € ^/и there exists а sequence {J^J^LiC %i such that 
00 

^{Ai) € n(V, VQ) for every i and U ^г =̂  ^- /̂  is called a measure if /̂  is a non 
г = 1 

negative cr-additive set function and if ^/u is a a-ring. 
5.3. Definition. H is a hereditary cr-ring, if H is a cr-ring and A С В € H => 

=>A€H, 
5.4. Definition, /u^ is an outer measure, if /i* is a non negative, monotone 

and or-subadditive set function, if ^/u^ is a hereditary cr-ring and /^*(0) = 0. 
5.5. Lemma. Let J be a functional continuous from below, let 3J be an f-lattice. 

Then there exists a unique functional J continuous from, below such that J У J 
and Ш = {h; /^ /^ h, f^ e ^J}. 

Proof. Put 
J / - l i m J / , , (5.5.1) 

n—>oo 

if / e S J, {fnjn^i C- ^J, fn /^ /. We shall show that this definition is independ
ent of the choice of the particular sequence {/̂ }. First we remark that con
tinuity from below implies monotony. Now let /^ € ^J, gn e ̂ J, gn / f,fn /^ /• 
We have fn^fnh g^ / gn, and thus Hm Jfn > Jgn,- Making щ ~> со v^e get 

w—>oo 

lim Jfn ^ Km Jgn and from symmetry lim Jf^ = lim Jg^. It remains to prove 

the continuity from below of J . Let /„, /, f^,^) f^i e ̂ J, fn / /• P^^ gn = fm V 

)̂ The index i in /^ is used with the obvious meaning for preventing misunderstand
ings. 
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V /2п V . . . V /nn. Then ö'n € ̂ J, Яп / f and g^ ^ /^. Thus Jg^ < Jfn ^ Jf and 
Jgf̂  /^ J / . Consequently Jf^ / Jf* 

5.6. N o t a t i o n . If J is a functional satisfying the conditions of Lemma 5.5, 
then we denote by J the functional defined by (5.5.1). 

5.7. Lemma. Let J be a functional continuous from below, let S J be an f-lattice. 
Then 

(5.7.1) S J is an f-lattice, {Ш)^у С ^'J, 
(5.7.2) non negativity of J implies non negativity of J , 
(5.7.3) subadditivity of J implies subadditivity of J, 
(5.7.4) if J is additive, {^J)+ С ^J, then J is additive, ( ^ J )+ С ^7, 
(5.7.5) if J is homogeneous, {^J) x С ^J, then J is homogeneous and (^J) x С ^"J-

P r o o f obvious. 
5.8. Theorem. Let J be a non negative, homogeneous, subadditive and from 

below continuous functional, let В J be an f-lattice, let Ej^, H and ///̂  be defined 
as follows: 

АС^Ч^Е^^ {lg; c,<g€ Ш) , (5.8.1) 
И = {А',АС ^^e/, E^ + 0} (5.8.2) 

and 
A€H=> fi^(A) = inf E^ . (5.8.3) 

Then fi^ is an outer measure. 
Proo f . H is obviously a hereditary a-ring, /^*(0) = 0, ju^{A) ^ jbi'^(B) 

whenever A С B, В e H. I t remains to prove the cj-subadditivity. We observe 
tha t every Ej^ is down oriented. Let {A^}^^^i C- H and let | be a pseudopro-
bability inducing (V, VQ) = {t\MJ, q^^J). Then there exist sequences (see Theo
rem 3.13) 

Ы Г } , " i C ^ . , (i - 1, 2, . . . ; m = 1, 2, . . .) 
such tha t 

and such tha t there exist sets M^^, M^, satisfying the following relations: 

M,r. e WTY4+ œ}] , M, e Ь1ЧА,)ГЧ{+ œ}) , 

i ¥ , „ D Ж,,™+1 , i{M,^ - Jf , ) < ^ . 
Z''m 

00 00 -| 00 00 00 

We obtain | ( U M^^ - U Ж , ) < — and | ( П U Ж , „ - Ö М^) = 0. 
г = 1 i = 1 m w = 1 г = 1 г = 1 

Accordingly, we may suppose, after modifying the sets M^j, M^ by substraction 
00 00 • 00 00 

of a set in V ,̂ t ha t П U ^ш = U ^^i- Defining N^ = U ^ — U ^ш we obtain 
Ш = 1 ^ - 1 « - 1 i = l 

00 00 

\jy-\}N^ = }jM,. (5.8.4) 
m - 1 i = 1 
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Now, fix an index m and denote (x\^'' = ocij. Then Pj^^a^^ are elements of the 
regular Ä'-space 

and Рдг̂ л̂:,̂  . \ P^^/^*(^,) for every i = I, 2, ... (see 3.15, 3.16). Now the 
regularity of Y^ implies (see [5], Chapt» V, Theorem 1,25) the existence of 
a, Q € Y^ satisfying the following condition: for every £ > 0 there exists a 
sequence of integers Щ, n^, ... such that 

Р .̂Л-гп. ^ P^r.p4^i) + j,Q, i=l,2,.... (5.8.5) 

However, for every г there exists a g^ such that 

00 __ 

thus J{Y Qi) € E ̂  ^.. Therefore, since J is subadditive and continuous from 

below, 
00 00 00 00 

ИЧ и Л,) ̂  J( V ^Л ^ 2 J9i = 2 ««•«. • 

We get (Lemma 3.15, Theorem 3.16) 
00 00 00 

i = l г 1 г 1 

Thus, using (5.8.5), 
00 00 

Р^^^Ц и At) ^ 2 PivJ/*(^,) + S.Q. 
i l i 1 

As £ > 0 was arbitrary, we get, using (3.15) and (3.16), 
00 00 

Р^„^*(иЛ)^Р.„2/«*(^г) (5.8.7) 
i l г 1 

for every m = 1, 2, ... 
Hence it is easy to see that 

00 00 

P^fc4UA)^P^J^/,*{A,) (5.8.8) 
i = 1 г = 1 

00 

where N = Ц ^m,- If U ̂  — -̂ ^ ^ V^, then (5.8.8) holds for Ж = U ̂  and the 

Theorem is proved. In the contrary case it follows from (5.8.4) that 
00 • 00 00 

Puy iv̂ 2 /^*Иг) = + 00. This together with (5.8.8) gives/i*( U ̂ i) ^ 2 /^*(^^) 
i 1 г = 1 г = 1 

and again the Theorem is proved. 
5.9. Definition. We say that /** is ^-induced by J, if ju^ and J satisfy the 

conditions of Theorem 5.8. We say that u^^ is *-induced by a non negative 
or-additive set function pt, if /i* is ^-induced by J and JCj^ = ^{A) for every 
A € ^fl, 9J = C^jU. 
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5.10. Definition. If /г* is an outer measure, then any set A € S//*, for which 

В € ^/л"^ => lu'^(B) = ^л^{ВпА) + ^л^{В — A) , (5.11.1) 

is called /i*^-measurable. 

5.11. Definition. /̂  is a complete measure, if it is a measure and if В С A e ^/u, 
fi(A) = 0^ Be^ju, 

5.12. Theorem. / / /г* is an outer measure, S the system of all /ьс"^-measurable 
sets, then S is a a-ring and /^| is a complete measure. 

P r o o f . The Theorem can be proved in a way formally identical with tha t 
of [4], §11 . 

5.13. Theorem. Let /u* be an outer measure '^-induced by an additive functional 
J, let ^J be an f-ring. Then c^ e ^J implies the [I'^-measurability of A and 

рьЦА) = lcj,. (5.13.1) 

P r o o f . (5.13.1) follows immediately from (5.8.3) and it remains to prove 
the /^^-measurability of A. Let В e^/u."^. Theorem 3.13 implies the existence 
of {ßi}Zi С- Ej, such tha t ß^ \ /г*(5). Choose a sequence Ж^ D ifg D . . . such 
t ha t Mi e ßi^{{+ oo}). Fix an integer m. Denote (V, VQ) = (q^J, Цс,Ш), pu t 
N^^U^-M^ and denote Y^ = n{,y, ,.4,). Then {P^J,}t^C- Y^ 
and Y^ is a regular Z^-space. Thus, according to [5], Chapt. V, Theorem 1.24, 
there exists a ^^ e Г ^ satisfying the following condition: for every e > 0 there 
exists an index ^o such tha t P^^ßn, ^ ^л /^^(B) -j- e , QJ_. 

We have ß^^ = Jg, where g >: c^, g e ^J. Since c^ belongs to ^J too, 

there exist {gn}n..i C- ^J, {̂ n}n = i C- ^J such tha t 

Thus also gn Ah^ /^ g A c^, J{g^ Д k^ / l{g д c^) and 

Р^ЛЯп л An) /\ P^Jig Д cj . 
This is again the convergence in Y^ and thus there exists a ^^ e T ^ satisfying 
the following condition: for every ô > 0 there exists an integer Jc such t ha t 

Pл^/(g A c,) ^ P^Jig, Ahj,) + Ô.Q,. 

Thus P^^^fi^A пВ)^ P^JiÇk Ah) + ô,Q, for c^^^^gA c^- Bu t c^„, ^ 
^g — 9 Ac^i^g — QkAhe 9J, Thus 

P ^ > * ( 5 ПА)+ 1л^{В - A)-] = Р,г^/лЦВ_п A) + P^ji^B ^A)^ 
^ ^Njßk Ahj,) + Ô .g^-{- Pj,J(g — gjcA Ю = 
= P^Jg + Й . ea ^ Pi../^*(5) + à,Q, + s.Q^. 

Making first (3 -> 0 and then e --> 0, we obtain P^^(/^* (BoA) -\- fz^{B ~~ A)) ^ 

^ ^M^l^^i^) fo-̂  every m and thus 

P s ^Jf^*{BnA) + /л*(В - ^ ) ] ^ P S ,j^*{B) . 
w==l w = l 
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Finally 

w = 1 w = 1 

and thus /лЦВпА) + ^ЦВ — A) < ß^{B). Since /г* is subadditive, (5.11.1) 
holds and the proof is finished. 

5.14. Definition. Let /̂  be a measure. Then /u is called the completion of /u, if Д 
is a complete measure, [л)- fx, and if to every A e ^[л there exist M С М^^ e % i , 
N С N^€ ^/л, J-i € 9[л such tha t 

A = {A^-~ M)UN , fi(M^) = fi{N^) = 0 . 

5.15. Theorem. Let ju be anon negative a-additive set function, let Я pi be a ring, 
[л^ the outer measure *-induced by /u, S the a-ring of all /u^-measurable sets, 

Then V is a measure and v )> /LC. 
If, in addition, fi is a-finite and v^ is a measure defined on s^fi, v^ У pt, then 

V is the completion of v^ and v is a-finite. 

P r o o f . The first assertion of the Theorem follows from Theorem 5.8, if 
we pu t Jcj^ ^= 1л{А) for every A e ^[л, from Theorem 5.12, which shows tha t 
r is a measure, and from Theorem 5.13, which shows v У /и. The other assertions 
are easy to prove in a way commonly used for the case of real measure ([4], 
Sec. 13). 

5.16. The following two Theorems are easy consequences of Lemmas 4.2 
and 4.4. 

Theorem. Let ^ be a basic system or let ^ = cC, where С is a pseudolattice. 
Let J i , Jg be two non negative, linear and from below continuous functionals 
defined on m * k ^ and finite on Ш, Let J^ and J^ agree on J*. 

Then J^ ™ Jg-

P r o o f . Let j ^ =- {/; J J -= J J). T h e n . ^ D ^ , ^a-+ С ^ , ^ x С ^ . If 0 ^ /i ^ 
^ /2 ^ / € ̂ , /1 e j / , /2 e j / , then J J i = JJ^, JJ^ = J-J г ^^^^ both these 
random variables are finite, since J^f is so. Thus Jiif^ — f^) = ^/^(/g — /1) + 
+ JJi — Л / i = J if 2 — Л / i = -̂ 2/2 — J%fi = J%{i% — /1); we obtain ^ _{^) с J / . 

We may apply Lemma 4.2 (if ^ = cC) or Lemma 4.4 (if J* is a basic system). 
We get .я/ D m* k ^ , i. e. J^ = Jg. 

5.17. Theorem. Let ^^ be a basic system or let ^^ = cC,, where C^ is a pseudo-
lattice {i = 1, 2). Let ^ 1 D ^1 and [^i]^+ = m^kJ^i. 

Let Fj {for j = 1,2) be a transformation defined on m^kJ^i X m^kJ^g. For 
every [/, gr] em^kJ*i x m ^ k ^ ^ let both Fj{f, .) and Fj(.,g) are non negative, 
linear and from below continuous functionals. Let F^ be finite on ^1 X ^g-
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Let F^ and F.^ agree on M-^ x ^2-
Then F^ = F^, 

P r o o f . The proof consists in a repeated application of the preceding 
Theorem, 

Let g e ^2, be fixed. Then Fi(., g), F^{., g) are two non negative, Hnear and 
from beloiv continuous functionals which agree and are finite on ^^. Thus 
according to the preceding Theorem, i^i(., g) = F^^i., g); in particular j ^ ^ and 
#2 agree and are finite on ^^ x ^2 -

Now let /i e ^i be fixed. A new application of the preceding Theorem shows 
t ha t Fj^(f, .) = F^if, .) and thus F^^, F^ agree on ^^ x m*k^2-

Finally let [/, g] e т ^ к ^ ^ x m^k^g . Then there exists a sequence {/^}^^i C' 

C- ^ 1 such tha t f = '^fn- Thus from the additivity and continuity from below 
n = 1 

00 00 

it follows tha t F,(f, 9) = 2 ^i(fn^ Ö') = 2 ^^(fn' 9) = F^f, g) and the Theorem 
n = 1 n = 1 

is proved. 

6. The weak integral 

6.1. In the whole section let [i be a measure. 

6.2. Lemma. There exists a unique linear functional J such that ^J consists 
of all ^fi-simple functions and such that JCj^ = fÂ{A) for every A e^ji. The 
functional J is non negative, linear and continuous from below; if а^еЕ.^, 
A^ € %г, then 

n n 

jy^ai.c^,. = yai./.i{Ai). (6.2.1) 
i - 1 г - 1 

Proo f . From additivity of ju it follows tha t J can be unambiguously defined 
by (6.2.1). Then J is non negative and linear. Conversely, if J is linear and 
Jc^ = fi{A) for every A e S/i, then J must be of the form (6.2.1). I t remains 
to prove tha t J is continuous from below. 

к 
Let fi be ^/i-simple, fi / h = ^a^ , c^., a^ e E+, Ai e ^fi. We may suppose 

I ^ - 1 

1 ^ I Л 
t ha t 0 < «1 < 6̂2 < . . . < «7,. Fix an m > — and put Ä^ = 2 \^i 1 • ^^г• 

h 
Clearly h,n is simple too. If Q^ = {x; x e {J A.^, fn{x) > h^(x)}, then 

Тс 

Qne^ß, QnCQn+i-^U^i' 
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Thus 

Jfn ^ JCQ. .fn^-J ( Д ( « i - - ) • С^пПл] = 

= 2 % - - • /4Qn n Ai) /„ 2 «г - A • М ^ Л = ^^^m • 
i - 1 \ "«-/ г = 1 \ " t / 

I t follows tha t lim J/^ ^ lim J Ä ^ . On the other hand 

n —>-oo ^—>oo 

^ / 1 \ '̂  

m-^00 г 1 \ " 7 г 1 

Thus lim e//^ ^ JA and, since J/„ ^ JA for every ti, we get J/^ / Jh. 
6.3. Definition. Let J be defined by (6.2.1). We define, for every / e ^ J , the 

weak integral of / with respect to ji by the relation 
Jfd/Lt^Jf. (6.3.1) 

6.4. Theorem. The weak integral J . d/i is a non negative, linear, continuous 
from below functional defined on т^^/л. 

Proof . The Theorem is a consequence of Lemmas 6.2, 5.7 and 5.5. 
6.5. Theorem. Let J be a non negative, linear and from below continuous 

functional defined on a basic system ^J. Let /u^ be ^-induced by J, let jii = ju^^j. 
Then ju is Sb measure and 

/ . d/̂  y j , (6.5.1) 

If J is finite, then /u is the unique measure on k S J satisfying (6.5.1). 

P roof . Put t ing ^J = #" and using the notation of Lemma 4.3 we obtain 
k^J = sF. Let S be the system of all /i*-measurable sets. Prom Theorem 5.13 
i t follows tha t F С S; as S is a cr-ring, we have k^J === sF С S. Hence and from 
Theorem 5.12 it follows tha t /̂  is a measure. Using (5.13.1) we obtain 

A € F^ fi{A) = lu^(A) = 7c^ . (6.5.2) 

Now let / € ^J, For every a e E+ the set M^ = {x; f(x) > a} belongs to 
F, Cj^^ 6 Ш (Lemma 4.3) and Jcj^^ = [л{Ма) ((6.5.2)). 

Pu t 
00 

Япт — • (^мт, g^i V gnm • 
n n m = 1 

We have Смш e ^J and, for S^J is a basic system, g^^ e ^J, g^ € S J ((5.7.1), 

(5.7.5)). Fur ther g^ = 2 "" • ̂ ^^ ^^^^' from the linearity and continuity from 
w = l n n 

below of J and of / . d/i (Lemmas 5.5 and 5.7), 
1 00 I 00 
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Again, since ^2* / f, Jf = Mm Jg^n = Km /^2^ d/̂  = ff dfi. The unicity of the 
fe—>00 A - » 00 

measure ju in the case J is finite follows easily from Theorem 5.16. Indeed, if 
fi and V are measures defined on k^J and Jf dju = Jf dv = Jf for every 
/ e ^ J , then J . dfi = J , dv; hence it follows tha t /u = v, 

6.6. Definition. We say tha t a measure //- is induced by a functional J, if J is 
non negative, linear and continuous from below, if S J is a basic system, 
^jLi = кШ and / . d/г У J. 

6.7. Theorem. Let ju be a measure, let {/n}n = o C- m * S / / , ^ ç ^/г, /^(J^) ^mïe, 
(/ € m* S/^, Jg d/i ^ш^е. Then 

/n • c^ -> /o • ̂ л "uniformly => / /n . c^ d/̂  -^ //o . c^ dfi ; (6,7.1) 

/ , è ' g , ^ г = l , 2 , . . . , / , - ^ / o = : > / / . d / i - > / / o d / . . (6.7.2) 

P roof . The Theorem is a consequence of the linearity and continuity from 
below oi J. dpi . 

6.8. Definition. A functional J is called a-finite, if for every / e S J there 
exists such a sequence {fnjn.i C- ^J t ha t Jf^ are finite and fn / f-

6.9. Theorem. Let ii be a measure. Then the following three propositions are 
mutually equivalent : 

/i is G-finite , (6.9.1) 

J . dfi is a-flnite , (6.9.2) 

pi is induced by a finite functional . (6.9.3) 

P roo f . Let J be a finite functional inducing /i, let A e ^pi. Then ii{A) = 
= inf J/^, £'4 Ф 0, where JEĴ  is defined by (5.8.1) (see Theorems 5.8 and 6.5). 

00 

Thus there exists a non-decreasing sequence {gn^n.^i C- ^J such tha t V ŵ ^ 
00 

^ c^. If we pu t Л^ = J[ П {x] gn{x) > J}, then U ^ ^ = ^ ' Vov, if x e A, 
n = 1 

then there exists an index n^ such tha t g^ix) > | ; thus ;r € J5^ . Now /г(5^) 
are finite. Indeed, 

pi(B^) ^ /^({x; g^(x) > 1}) ^ / 2 . 0̂^ d// == 2 . Jgr^ . 

We have proved (6.9.3) => (6.9.1). 
Let /i be (T-finite, let / e m*^/^; then there exists a sequence of sets B^ in 

^pi the measure of which is finite and the union of which is equal to 
{x; f{x) > 0}. Then the sequence fn = n/\f.Cg^ has the properties required 
in Definition 6.8. Thus / . d^ is a-finite and (6.9.1) => (6.9.2). 

If J . dpi is (7-finite and if =âf is the system of all such / e m^^pt t ha t / / dpi is 
finite, then J^ is a basic system and [/ . dpt]^ induces pt. Thus (6.9.2) => (6.9.3). 
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7. The strong measure 

7.1. N o t a t i o n . If S^ and S^ are cr-rings, then we denote 

If /i is a measure, V a cr-ring, we denote V^ = ^/u x V, 

7.2. N o t a t i o n . I f / i s a function, ß is a set, then by /^ we denote the function 
defined on S / x fi by the relation f\x, œ) = f{x) for every x e ^ / , со с Q. 

Similarly by ^f we denote the function defined on Ü X ^f and such t h a t 
^f((D, x) -=• f(x) for every со e Q, x e ^f. 

7.3. R e m a r k . The purpose of the remark is to motivate the definitions of 
this section. 

In the preceding section we have defined the weak integral for functions, 
the values of which are real numbers. But since the values of our measure 
are random variables, it seems to be natural to define an integral for functions, 
the values of which are random variables, too. Unfortunately this way leads 
to an integral with little useful properties, as we shall see in (7.17). Thus we 
shall proceed in a somewhat different way, which will be shown to be more 
successful. 

To fix the ideas, let /j be a measure, ^ / i С Û'^(¥, ¥Q); we shall t ry to extend 
the domain of the weak integral to the class • Ш with the following properties: 
I. The elements of Ш are functions defined on U ^pt with values in rri*¥. (If 
f eWly X6 и ^ju,, V e IJV, then fx e m* ¥, fxv € E^,) 2. Ш contains all non negative 
(^jLi) measurable real-valued functions, the values of which are regarded as 
constant functions. (We note tha t constant functions are (¥) measurable for 
¥ is a (7-algebra.) 3. Wlo-+ С 5Ш; if / e ЭД, g еШ, f — g has a meaning, then 
(/ — ^)+ 6 5Ш. 4. g e rri^¥, f €Wl,hissü function, ^h -= U ^fh ^h С m*¥, hxv = 
= gv . fxv => Ä 6 5Ш. ê. Wî is the smallest class satisfying the conditions al
ready listed. 

The conditions 1., 2., 3. and 5. have an obvious meaning. The condition 4, cor
responds to the fact that , if S is a d-ring, then / e m* S, g € ̂ * :=> g . f e m* S. 

Now it is easy to see tha t instead of considering a function / such t h a t 

S / = и ^/^ and ^ / С fiT^+^ it is possible and less complicated to consider t he 
real valued function / defined on U ^/и X ЦУ and satisfying the relation 
f(x, v) = fxv. In this language it is easy to see tha t the class Ш (or, more 
precisely, the image of SOî) is equal to the class m^(S / / x V). 

Now in the extension of the domain of the weak integral (which may be 
supposed to be т * ( ^ / г x {U ^, 0})) to m*(S/^xV) , the following homo
geneity condition will be essential. If ^ e mJV and / e m^(S/^ xV), X = \J ^/Lt, 
Q = IJV, then J^g . f) = g > Jf, where J denotes the integral and g is t h e 
random variable containing g. Thus starting with the definition JC^^Q = ju{A} 
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for A € ^ju, we have by the homogeneity condition Jc^^^ = J^c^ - CAKD =• 
= XB • MA) and the further extension from с(^/г oV), if it is possible, is de
termined by additivity and continuity. 

Perhaps it is convenient to say something else about the meaning of the 
homogeneity condition. If we notice tha t in the analogy between our measure 
and the real measure the random variables and (V) measurable functions 
play the rôle of the real numbers, we may regard our homogeneity condition 
as analogical to the usual homogeneity. 

Now we are not able to prove in general the existence of an integral with the 
properties mentioned above. Moreover, the cr-algebra V in the above considera
tions is not uniquely determined by the measure /u (and it would be unreasonable 
to pu t V = q^ju). Thus if ju is given, we shall consider the extension of the 
weak integral to the system т^(^/л x W), w^here W is a cr-algebra of subsets 
of Й == и q^ / i . Let us rewrite the homogeneity condition: if / e т ^ ( ^ м x W), 
g c m * W, then J(^g . f) = g . h, where g is the random variable containing 
g. However, we must define what it means " the random variable containing 
^ " and what is the meaning of the multiplication g . Jf. This can be made, if 
we require tha t there exists a measurable space (V, VQ) such tha t ^J С n+(^, V̂ ) 
and such tha t W C^- Then we can define g by the relation деде n*(V, V )̂, 
which has a meaning, since g e W C^- Fur ther we can define the multiplication 
g . Jf as the multiplication in n* (V, VQ). We note t ha t VQ = Цо^/л, since the 
hereditary ö'-ring VQ is determined by the random variable JO = /л(0). Thus 
the relation g e g e n * {V, VQ) for a function g e W does not depend on the parti
cular choice of the measurable space (V, VQ) (i. е., on the particular choice of 
t he (T-algebra V), since it holds if and only if g is the class of all functions 
measurable {s(WuV(j)}, which are {VQ) equivalent with g. If g is finite then 
д = {д + в;ве^1(0)}. 

7.4. Definition. A functional J is called a W-integral with respect to a measure 
ju, if W is a cr-algebra, U ^ = U 4^ß, J is non negative, linear, continuous 
from below, defi,ned on m* W ,̂ and if the following conditions hold (we denote 

X -= и % , ß = и V̂ ): 
There exists a measurable space (V, V )̂ such tha t ^ J С п^(^ ' ^o )^^C V; (7.4.1) 

^ € % => Jc f = fi{A) ; (7.4.2) 

/ e m * W ^ , gemlW, g eg e H^V^VQ) ^ Ji'^g . f) = g . Jf , (7.4.3) 

7.5. R e m a r k . If V/={0, U Я % } , Jf^"^ = jfà^i for / € m * % , then J is 
t he unique W-integral with respect to //. 

Further we note that , if W is a cr-algebra, U W' = U q^/ i . Vi cZ and a 
Z-integral with respect to the measure /̂  exists, then a W-integral with respect 
t o 1Л exists, too. For, if J is a Z-integral, then Jm*w^^ is a W-integral. 
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Finally we remark tha t if J is a W-integral with respect to a cr-finite measure 
/i, if (Z, ZQ) is a measurable space such tha t Mpt С n*(Z, Z^) and W c Z, then 
MJ (Zn^{Z, ZQ). This can be proved as follows. Let J / denote the system 
of all such functions / which belong to ^J and for which J / e n*(Z, Z^). 
Then from (7.4.2) and (7.4.3) it follows tha t ^ D c [ % о W] D c[S о W], where 
S is the system of all such sets J. eS^fi for which [i{A) is finite. An appli
cation of Lemma 4.2 gives the desired result: s^ = nri*s[S о W] = т* [%.* x 
xW] - : S J . 

7.6. Theorem. If /u is a a-finite measure, W is a a-algebra, then there exists at 
most one W-integral with respect to /u, , 

P roof . Let J^ and J2 be two W-integrals with respect to /u; denote Ü = 
= и '^^ Let S be the system of all such sets A e S// for which ii{A) is finite. 
Let A €$, В € W. Then JiC^^^ = x^ . J^c^ = Xß • M-^) =^ 2̂<̂ 4 x д? where 
XB = К + 0 ; 0 € /.(0)}. 

Thus J j and J^ agree and are finite on c[S о W]. 
But S o W is a pseudolattice, m*kc[S о W] = SJ^^ = ^^â- î ' rom Theorem 

5.16 it follows tha t J^ = J^. 

7.7 Definition, /г is a strong measure, if there exists a measurable space 
(¥, VQ) such tha t ^ / i С n*(V, \̂ Q) and such tha t there exists a V-integral with 
respect to /i. 

R e m a r k . From Remark 7.5 it follows tha t ju is strong if and only if a 
q-^/^-integral Л¥1и1 respect to fi exists. 

R e m a r k . The rest of this section is devoted to give sufficient conditions 
for a measure to be strong. We do not know if there exists a measure which 
is not strong. 

7.8. Definition.*) A system J^ С ЦХ), where X is a set, has the property LK, 
if 

{fn}Zo C- ^^ , /n /^ /0 => sup |/,(x) - /o(^)| -> 0 . 

A a-ring S is said to be an LK-a-Tuig, if there exists a basic system J / 
with the property LK such tha t «̂̂  С f+(U ^) and k j / = S. 

A measure ju is an LK-measure, if there exists a basic eystem J / С ^+(U < /̂̂ ) 
with the property LK such tha t кся/ = ^/u and f e ^ => Jf dju is finite. 

7.9. Lemma. Jjet /LI be a measure, W a a-algebra, М^л с n*(¥, 4ç), Wc^, X = 
= и "̂ Â j Ü = и ^ == и W'. Suppose there exists a non negative, finite, linear 
and from below continuous functional J defined on such a basic system ^J that 
k^J = ^^i X W. Let ^ and ^ be basic systems, 

W=^k^, % = - k J ^ . (7.9.1) 

)̂ See also Remark 7.16. 
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Let 
ge^, ЬеШ, g eg e n{V,¥^) ^ ^g . h^ e ̂ J , J[^g . h"] == g . Jh dju . (7.9.2) 

Then fi is G-finite and the (unique) W-integral tvith respect to /u exists. 

Proo f . From Theorems 6.5 and 6.9 it follows tha t there exists a c-finite 
measure v defined on S/i x W such tha t J . dv )> J. The weak integral J . dî  is 
defined on m * ( ^ / ^ x W) = m^ W^; we shall prove t ha t it is the W-integral 
with respect to /л. The conditions to be verified are contained in Definition 
(7.4); the only nontrivial among them are (7.4.2) and (7.4.3). 

For every g € m* W let g denote the random variable in ii^(¥, V )̂ containing 
g. Let us denote, for g e m^ W, he fn^^/Lt 

F,(g,h) = gjhdf.i, F,{g,h) = J^^g^^dv. (7.9.3) 

(We note tha t ^'g . h^ is (%i x W) measurable although ^g may not be so.) 

P u t J ' l -= ̂ , ^^=: Ш, ^^ = m^ W, The funct ional F^ig, . ) , Fi{,,h) are non 
negative, linear and from below continuous; Fj_, F^ are defined on m*k.^j X 
X nn*k^2. We shall show tha t F^ is fi.nite on ^ ^ x J^g- b e t h€^^^ = ^,. 
Since W is a cr-algebra and k!ë == W, we can choose a sequence gn^ ^ such 

00 

t ha t ß = и ^^n^ where M^ = {со; gn{(Jo) > 0}. According to (7.9.2) the in-

tegrals J[^gn - h^] =- 9np'^ Ф^ ^^^ finite, which yields the finiteness of jh d/^. 
Hence F^ is finite on J*i X ^ 3 . Now F^^ agree with JP^ on ^^ x ^ 2 (see (7.9.2)). 
From Theorem 5.17 it folloAvs tha t Fj_ = F^^. In particular, we get, for every 
Ä € ^fl, 

f4A) =-- F,{h c j - F,(h c j = jc^ dv ; (7.9.3) 

thus (7.4.2) is satisfied. 

Now, if-f e m+ W, J. € %/ , В eW, then 

g > jc^l^sàv = g . I'с, , c^ dv = g . F^{c^, c,) = g . F.^{c^, c^) = g . c^ . / c^ dfi = 
-= Fj^ig . c,, с J = F^ig . ĉ ., с J ^ J^^g . c,) . c? dî  = J^^g . c^,,^ dî̂  . 

Now we beg the reader to forget the former definitions of F-^^, F^,^^, J*2, 
Wj. We define, for every g e m* W, / e m* W^ 

Л ( / . g) = g^Jfdv, F,{f, g) = J^g.fdv. 
We have proved tha t F^^ig, f) = F^(g, f) for g etn^W, f e с [%/ о W]. Denote 
by С the pseudolattice of all sets С in ̂ /u о W for which v{C) is finite. As v is 
cr-finite, s С = ¥^^. Again the assumptions of Theorem 5.17 are satisfied, if 
we put ^^=zMj^ = m_^W, ^ 2 = cC. Thus F^ = F^, i. е., (7.4.3) is satisfied. 
Thus J . dî̂  is the W-integral with respect to /̂ e. 

The (7-finiteness of // follows from the o-finiteness of v and from (7.9.3). The 
unicity of the W-integral follows froni the o-finiteness of /г and from Theo
rem 7.6. 
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7.10. Theorem. Let jn be a o-finite measure, let ^fi с ri*(¥, V^) and let W be 

an LK-a-algebra, W сУ, U^ = U^^ = Q-
Then the W-integral with respect to the measure /n exists. 
P r o o f . Denote X = U ^/LI, let ^ be a basic system with the property LK, 

such tha t k ^ -= W. Let further В = {A; A € ^ju, iu(A) finite} and let Ш be the 
system of all ß-simple functions. 

If J.,; € ß , gie'^ , gi € g^ e n{Y, VJ (г - : 1, 2, . . . , n), pu t 

^2"о^.-<-=2.^.--МЛ). (7.10.1) 

From the additivity of [л it follows tha t the relations 
n m _ 

i ^1 г - 1 

imply 

2 Яг • р^'Цо = 2 г̂ • /4Д:) ; 
г - 1 i l 

thus J is unambiguously defined. Since in (7.10.1) we may always suppose 
tha t the sets A^ are disjoints, it is easy to see, tha t ^J is a basic system. 
Fur ther obviously k^J =- ^ptxW; k^ = 9fi; 

ge^, ge~gen{4,%), f e ^ ^ ^g , f e^ J, J'g . f = g , jf dfi; 

J is non negative, finite, linear. Thus, if J is continuous from below, then 
all the assumptions of Lemma 7.9 are satisfied and the WJ . dp exists. 

We shall prove the continuity from below of J . 

Let /, /^ /o, {/,}-0 C- ^ e / . P n t K, == h - 1 1 . 

We have {U{x, .)}^^oC- ^ for every x^X and ^ has the property LK, I t 
follows tha t for every ж e X and m > 0 there exists an index n such t h a t 

— f^mV^i • ) • /n(^, . ) ^ /o(^. . ) — ~ and hence j^{x, . ) ^ Щх, . ) — - - j V 0 -= Ä, 

Fix an m and denote Q^^ = {x; x € X, f^{x, . ) ^ h^(x, . )}. Clearly Q^ С Qn+iy 
и Qn = и ^ß- Since /о e ^J, we can write 

7c 

/o == 2 ^9J • 4 ' ^ i € ß , Aj n ^ , -= 0 for i + ь ô̂ ,- € ^ , 
3 = 1 

and i^^ == 

^ is a basic system and thus Ig^ — — J = ĝ  — jg^ д — j € ^ . Consequently 

Jfn ^ ^^ш . 4 = e / 2 ^ |g,- "~ ^ 1 ^ . 4 n , , ^ 2 (̂ -̂ ~ J • /^И^- П Qn) 
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and thus 

lim / / , ^ 2 Ö'i - - : . M^j) /"- 2 9i . /w(^.) - Jfo. 
n~>oo i = 1 \ Ш/ j ^i 

Since J /„ ^ J/o we get J /„ /^ J/^. 

7.11. Theorem. Le^ /i be an LK-measure, M^ с n* (У, ^o). TAe^ Ä̂,e V-integral 
t(;tïA respect to /LC exists; thus /u is a strong measure. ^ 

P r o o f . Let ^ be a basic system with the property LK, k^ = ^/i, / e ^ => 
=> J / dfi is finite. Denote F = [f . d//].^. 

P u t J 2 4 , . / f - i b , « i ^ A - for 5 , б ¥ , / , c ^ ( . = 1,2, . . . , 7 i ) . 
i l г 1 

Let ^ be the system of all ^-simple functions. Clearly ^J is a basic system, 
k^J = V^^, (7.9.1) and (7.9.2) hold. J is non negative, finite and linear. We 
shall prove the continuity from below of / . 

Let {fi}toC-^J, fi/^h-

P u t h^ = UQ 1 , Qn = {^; /n(-5 ^ ) ^ Äm(-5 oj)}. As in the preceding 

proof, we have Q^ С Qn+iC -••, U Qn = U ^ 

И /o = 2 \ • 9f, where 
3 = 1 

B^eV , B^ пВ^ = 0 for i Ф j , gj€^ , 

then h^=^ ""CBJ \ЯО — ~] and 

Thus hm J/„ ^ 2 Хщ • F [g, - - ^ „ 2 I . , . J'g, = .//« . Finally J /„ ^ / / „ 
n—5-00 5 = 1 \ " ^ / + i 1 

implies t h a t Jfn / J fa- Thus the conditions of Lemma 7.9 are satisfied for 
W = Ч and the V-integral with respect to [л exists. 

7.12. Definition. J is called a degenerate functional if: 
(7.12.1) J is a non negative, linear and from below continuous functional, 
(7.12.2) there exists SÜ ceE^ such tha t / € S J , / ^ 1 => / / ^ c, 

(7.12.3) there exists a transformation Z from ^^J into Uq^J such tha t 

0 ^geg еШ , f€^J=>f.gZ€^J, J(f , gZ) = g . Jf . 
7.13. Lemma. If fi is a measure induced by a degenerate functional J, then 

the weak integral f . d/u is degenerate and [л is finite. 
Proof . Without loss of generality we may suppose tha t the functional 

J is finite,. (In the contrary case we may put J^ = / ^ , where ^ is the system 
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of all bounded functions in ^J. Clearly^) ^ = ^JQ is a basic system and JQ 
induces [л, since, as it is easy to see, J = JQ. From (7.12.2) it follows t ha t JQ is 
finite.) 

Let Z be the transformation satisfying (7.12.3). We shall prove tha t 

0 ^ g eg = Jhdju , he m^^ja , / € m^^ju => 

:=> f , gZ e m^S/i , g . ff dfi = JgZ . f d/ti , 

Let h € ̂ J and let ^^ denote the system of all such / e m*^/*, for which (7,13.1) 
holds (the function h being fixed). We have sé^C^J, es/^^ С ^ ^ , ^ t С ^sé, 
^\{ßJ) С ^ . Lemma 4.4 applied, we get J / Э т * ^ / г and thus (7,13.1) holds 
for every Ь e ^ J , / e m * ^ / i . 

Let ^ be the system of all / e m* S//. such tha t J / d/i is finite. Let / e J^ and 
let '^^ be the system of all such Ji tha t (7.13.1) holds for the fixed function / . 
We have ^^ Э Q)J\ since g . Jf dju is finite for every g e MJ, we see t h a t 
"W^^i^J) С "^^l the inclusions ^^+ С "̂ ^̂  "^i С '^^ are obvious. A new application 
of Lemma 4.4 gives ^^ Э m * ^ / / . 

Thus (7.13.1) holds for every hem^^/bt, f e^. From the continuity from 
below and from the a-finiteness of J . d// it follows tha t (7.13.1) holds for every 
/ and h. 

Thus it remains to prove the existence of a с € £̂ + such tha t 

fem^&fi, f^l^Jfdfi^c. (7.13.2) 

From the assumptions it foUows tha t there exists a> с e E+ such tha t (7.13.2) 
holds for every / e S J . Put t ing ^J = ^ and using the notation of Lemma 4.3, 
we see tha t Ae¥z^ pi{A) <c. For there exists a sequence {fn)n^-iC- ^J, 
/^ / c^. Thus /^ ^ 1, J/^ ^ c, ^{A) ^ lim / /^ d/̂  = lim Jf^ £ с We have 

sF = k^J = ^jLL and F is a lattice. Let В e ^ju. Thus there exists a sequence 
00 W 

{Cn}n.. 1 C- F such tha t UG^DB ([4], § 5, Theorem D). As F is a lattice, U Ĉn € F 
n - 1 n = 1 

for every ш = 1, 2, . . . and thus 
00 m 

[г(В) ^ /.( и C J = lim/i( и C J ^ с • 
n - 1 m->oo n = 1 

Thus В € &ß => ju(B) ^ с and hence 

/ e т+^/л , f ^ l=> Jf dft ^c , 

which accomplishes the proof. 

7.14. Lemma. Let fibe a measure induced by a degenerate functional^ 

(V, V„) = ( q % , Я о % ) . (7.14.1) 

)̂ From Definition 6.6 it follows tha t BJ is a basic system. 
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Then there exists a transformation Z from U S/i into U ^ ^'^^C'h that 

=^ f .gZe ml^i, If .gZdfi = g . If d,u . ( • -> 

Proof . From the preceding Lemma it follows tha t J . d,M is degenerate. Thus 
there exists a transformation Z from U ^/n into U qâ^/u, = {JV such tha t 

:=> f.gZe m j % , ff .gZdfi = g . ffdfi. 

Now let J^ be the system of all bounded functions measurable (^/u). P u t 
Jf = Jf_^ dju — / / _ dju for every / € J^; this is possible because there exists 
( f o r / . d / / is degenerate) such a constant ceE^ t ha t f e m^^ju, f ^ I =^-
=> Jf dfi ^ c; obviously 

/ e ^ , |/| ^ 1 => \Jf\ '< 2c . 

From there we proceed by a method essentially due to Mo Y [8]. Let us denote 
by ^i the system of all bounded functions measurable (V). Let ^ be the system 
of all such g e ^^ for which 

he^ , деде n{4, y^)^h ,gZe^ , J{h . gZ) = g . Jh . 

Denoting ^ ~ {g; 0 ^ g e g e ^[J . d/u]}, we obtain, according to (7.14.3), 

^ D ^ n J ^ i . (7.14.4) 

Clearly I e^ and 

{gvgêC''^'=^9i + 92^"^, gi-gz^"^^ gi-g^^^"^^ (7.14.5) 

the last inclusion being a consequence of 

Jß • (gi • g^) ^) = Ji^ • Яг^. Яг^) = дг. J{^ • gi^) = ^1 • ^2 • J^ • 

Thus if Л is a polynomial, g € ̂ , then Лд e ^. 

L e t { g J ^ . i C ^ , \g^ ^aioTn= 1,2, . . . , a с ^ . , , g^-> g. Then g с ^ . 
For if h e ^ , then, by assumption, h . gJZ e ^\ thus h . gZ e tn^^ii and 

h .gZe^ because \h . gZ\ ^ al^-l e ^ , Fur ther from \h . gnZ\ ^a ,\h\ and from 
Theorem 6.7 it follows t ha t J{h . gZ) = lim J (h . g^Z) = lim g^ . Jh = g . Jh, 

n—»00 n-^oo 

where g^ e g^, g € g. Similarly we can prove, using (7.14,3), tha t if {g^}n=i C- ^, 
gn -^ g uniformly on U V, then g e^. 

Let Ф be a continuous real-valued function defined on E, let g e^; we shall 
prove Фд e^. Indeed, g is bounded and thus ^g is contained in a finite interval. 
Thus there exists л, sequence of polynomials Л^ such tha t Л^д -> Фд uniformly 
on и V, what gives Фд e ^; thus if g € "̂ ^ then \g\ e ^, Hence and from (7.14.5) 
it follows tha t ^ = {g\ g e"^; g '^ 0} is a basic system. From (7.14.4) it follows 
t h a t k ^ = q % = У. 
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Let / € m+S/ / and let ^ denote the system of all such gr e m* ¥ tha t f . gZ e 
€ m'^^ju. We have J^ Z)^, ^<r+ С ^ , ^ x С ^ , ^^{ß) С 'Sé, From Lemma 
4.4 it follows tha t J / Э m^¥. Thus / . gZ € т ^ % . for every / em+%^, g e m * ¥ 
and, obviously, for every / e m*^/^, g e m* ¥, too. 

Now let J*2 be the system of all bounded functions / e т + ^ / г , let Ĵ ^ = ^ , 
^ 1 = m^y. P u t i^i(g, /) = g . / / d/i, ^^(g, / ) - / / . gZ d/̂  for every / e m ^ % , 
0 ^g eg € n^(¥, Vo). Then all the assumptions of Theorem 5.17 are satisfied 

and thus F^ = F2, which completes the proof of (7.14.2). 

7.15. Theorem. Every measure /LI induced by a degenerate functional is strong. 

P r o o f . Let {V, ¥0) and Z satisfy (7.14.1) and (7.14.2). Let us denote X = 

= и ^/^? ^ = "Tî ? ß =^ и ^- Let ^ be the system of all ^/г-simple functions. 
For 

0<g,eg,en^(V,V,), / , . ^ 

we pu t 

J i ''Gi •t? = ^ i - Ifi d/г = / i / , . g,Z d/. , (7.15.1) 
i l i = 1 г - 1 

where the last equality follows from the preceding Lemma. 
Clearly (7.9.1) and (7.9.2) hold, J is a non negative, finite and linear function

al, ^J is a basic system, k^J = ^/u x ¥. The only non trivial property is 
t he continuity from below. Thus let 

n. 
fi-l"gH'ffi. fn^^. 0 ^ g , , € g , , € i i ^ ( ¥ , ¥ o ) , / , / r / ^ 

i = l 

and pu t f. = ^ gj.Z . fj^. ïî x e U % i , then [x, Zx] e U ^/^ X U ^ aiid thus 
j==i 

Thus /,- /f IQ, Fur ther from (7.15.1) it folloлvs tha t 

Jfi = ffi àfi /^ //o d/г = J/o . 

J is continuous from below, and the application of Lemma 7.9 yields, if we 
pu t W === ¥, the desired result: pi is strong. 

7.16. R e m a r k . Although we do not know whether every measure is strong, 
Theorems 7.10, 7.11, and 7.15 give sufficient conditions for a measure to be 
strong, which are often satisfied. For example, it is easy to see t ha t the a-ring 
of all Borel (or Baire) sets in a locally compact Hausdorff space is a i/f-cj-ring. 

7.17. R e m a r k . We keep the promise from (7.1) concerning the possibility 
of defining the integral for functions the values of which are random variables. 

Let I be the Lebesgue measure on (0, 1), let (¥, ¥Q) be induced by | , let 
/*(J.) = ;̂ ^ e n(¥, ¥o) for every A € Bfi = V. Let ?Ш be a system of functions 
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defined on (0, 1) the values of which are elements of n(V, VQ). Let Ш contain 
n 

all functions of the form T ос^ , c^^, where oc^ e n+(V, VQ), A ^ e ^>[л. Let J be 

a linear functional on Ш, let 
A € ^/u , ОС € n + (V, VQ) => J((x , cj = ОС . iu(A) . 

n 
Let gn = 2 Xltzl M • ̂ itzl M • Then Jg^ = 1 for every n = I, 2, ..., although 

« == 1 \ n ' nf \ n ' nj 
g2^4 \ 0 € so? )̂ and the functional J is not continuous from below. 

8. The W-mà the Wl-integral 

8.1. C o n v e n t i o n s , b i this section ju denotes always a cr-finite measure, 
(УуУд) a measurable space such tha t Mfi С п*(У, VQ). We shall suppose t h a t 
W is such a cr-algebra t ha t W С ^ and t ha t the (unique, according to Theorem 
7.6 and the assumed cr-finiteness of ß) W-integral with respect to ju exists: 
we shall denote it by WJ . d/^. If/i is a strong measure, then there exists a cr-al
gebra Z such tha t ^^ С ii*(Z, V )̂ and t h a t ZJ . d/bt exists; in this case we shall 
assume the a-algebra ¥ has been chosen is such a way t ha t Vj . dju exists, too . 
Finally we denote X = U % and Q = U^^ = ЦУ-

8.2. Definition. Let us write (for {/^ /2} C- f^(U Vî /*)) /1 = /2 [f^, W], if and only 
if there exist functions g^ e m^ W^ (г == 1, 2) such tha t ĝ  ^ fj ^g^ {j= 1, 2) 
and Wfg-^ dfi = ^^Jg^ d/̂ -

Let us define Ц/и, W) ^ {f; f = f [/u, ¥/]}. 

8.3. Theorem. Let Л = i(//, W). Thm ^^^ с - # , -^x С e^, ^JSAU W;,)) С 
С Л, 

P r o o f . Obvious. 

8.4. Definition. The W/-integral with respect to // is defined on i(//, W) by 
means of the relation 

8.5. Theorem. The W!-integral with respect to ju is non negative, W-linear 
and continuous from below. 

Proof . Obvious. 
8.6. Theorem. Let v be a real-valued function, 9)v = ^ju X Ü. For every 

m € D let v(., со) be a measure. For every A e ^/л let 

v{A,.)eß{A), (8.6.1) 

Then: / / / e m * W ^ , then 

h{co) = Jf(,,(o)dv(.,m) (8.6.2) 

«) I . е., for every x e (0, 1), g^n (x) \ 0 in n{V, У )̂-
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exists for every со e Ü and 

h € Wff dju . (8.6.3) 

If f e \(fi, W), then there exists a set FeV^, such that for every со e Q — V the 
integral 

h(a)) = Jf(., oj) dv(., to) 7) (8.6.4) 

exists and, defining honV in such a way that h e m^V (this can be done, e, д., 
by putting h(x) = 0 for x e V), we have 

h e Wljf dfi . (8.6.5) 

P roo f . We shall prove the first par t of the Theorem. We note tha t , for 
every / e m^W^, / ( . , ш) is (^/u) measurable for every oj e Q and h is measur
able (¥). Let us denote by J J the random variable inn* (У, V )̂ containing h and 
let us write J J = Wff d/u. 

Let S be the system of all sets A e ^fi, for which iu(A) is finite. 

Let A € S, В € W, f = c^^ß. Then Цт) = c^(a)) . v(A, oj) and, according to 
(8.6.1), JJ = XB • M-^) ==• J^f- Ji ^i^d J2 agree and are finite on c(S о V). 
From the a-finiteness of /г it follows tha t kc(S о V) = ^ptx V. Lemma 5.16 
gives JI == J^l thus the first assertion of the Theorem is proved. 

Now let f € \(fi,W). Thus there exist two functions {^i, g2} С- гп* W^^, such tha t 
Qi S f ^ 92 a^nd tha t W jg^ dfi = W jg^ d^. We define 

K{(^) = SgÂ •. со) d^'(., со) (г = 1, 2) . 

We have {\, h^} C- W/g^ dfi. Thus there exists a set F e VQ such t ha t h^(ù)) == 
= h^ioj) for every со e Ü — V, For every со e Ü we have gi(',co) ^ f(,, со) ^ 
^ g2^{., со), which with the preceding equality yields the {^v(., со)) measur-
ability of / ( . , со) for every CJO e Ü — V, But h(co) = Jf{., со) dv(,, coj = h^ico) 
for every cjo e Q — V; hence we deduce easily the second assertion of the 
Theorem. 

8.7. Theorem. Let JUQ, /U^, JU^ be a-finite measures, ^JUQ = ^ju^ x ^ju^. Let 
и 4 % г = -ß, и % г = Xi {i = О, 1, 2) and 

Let the W-integral with respect to jUi (г = 0, 1, 2) exist, let W D 4^ßz- Let 

Ai € % , , gi € lu(Ai) {i =l,2):=>g^.g^€ / /0(^1 X .4^) . (8.7.2) 

)̂ Of course, v(., со) is the completion oiv{., w). 
)̂ This as5nximetry has the following reason. The weakness of the condition (8.7.4) (see 

Remark 8.8) is closely connected with the c-ring Чо^/^2- Î ? ^^^ example, q^^/Zg = {0}» 
then (8.7.4) determines in a unique way the fimction hf. Therefore we require q^^^g ^ 
С Чо'̂ А*о instead of Чо^/^2 = Чо-̂ /̂ о* ^ ^ the other hand such a weakened condition for 
ßi leads to complications and seems to us to be superfluous. 
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Let je mlW^,^, 
Then there exists a 

h.emlW^^ (8.7.3) 

such that 
Xj_€Xi=> hf{x^, . ) € (Xf(x^) = W Jf{Xj^, *, . ) d/i2 , (8.7.4) 

W fhf d/^i = W / / d//o (8.7.5) 

and 
hem^W^^, 

h^{x^, x^, m) = h{x^, co):=>Wjh.hf d/u^ = W Jh"^ . f dju^ . (8.7.6) 

P r o o f . Let us denote, for every g e nn^q^/г,, by ni{g) the random variable 
in n^{€\^fii, Цо^^г) containing g. Fur ther denote 

Si = {A;A€ S/г^, //.,(^) is finite} , ^ = c[S^ о S^ о W] . 

Now let ja/ be the system of all / for which the assertion of . the Theorem 
holds. I t is to prove tha t J / = m^W^^; according to Lemma 4.2 it suffices to 
prove t ha t 

1. ^<r+ с ^ , ^ x с ^ , 2. J3/_(J') С e^, 3. j / D ^ . 
00 00 

1. Let {fi}T^^i C- ^ . Obviously ^fi = f implies 2 ^/Д^х) = ^/(^i) foî" every 

ojĵ  e X i . Let, for every i = I, 2, . . . , the functions hf, satisfy the assertions of 
00 

the Theorem. Then, if we pu t hf = ^ hf,, we have hf{Xi, .) e af{x^) for every 

% € Xj , and (8.7.4) holds. (8.7.3) is obvious. Le tÄem^W^^ or Ä̂  = 1; then, 
by assumption, W Jh , hf dfi^ = W fh"^ . f^ d/i^ and thus 

00 00 

W fh.hfdfi^ = J^Wfh.hfApt^=y W/Ä*./,d/^o = W fh^^ . f dpt^ . 

Hence (8.7.5) and (8.7.6) are satisfied. Thus / e cs/, i. е., we have proved t ha t 
^(T+ с ^- The relation ^ ^Qsé can be proved in an analogous way. 

2. Let {/i, / J C' ^ . /o € ̂ , / , ^ /a ^ /o, let ;̂ ,̂ , hf,^ satisfy (8.7.3) to (8.7.6). 

Let 

-^1 = {[̂ 1? <̂ ]5 [^1' ^^] € Xi X fi , А/Да;!, со) = + 00} , 
i f 2 = {[%, ш]; \x^, од\еХ^ X fi — I f i , hfXx^, со) — Л/Д^, ш) < 0} . 

We note t ha t 
W /c^^. . Ä,̂  d/.i =^ W / 4 ^ . . / , d̂ ô ^ W //o d^o 

where the last integral is finite according to (8.7.2). Hence it follows, in the 

first place, t ha t 

W/c^^d/ i i = 0 . 
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For in the contrary case the integral ni{+ oo) . W fcj^^ d/i^ = ^^Jhf^ . c^^ d/i^ 
is infinite, which is impossible. 

I n the second place, according to (8.7.6), 

^i(O) = ^o(O) ^ W / < . [/, - h] d^o = W / c X . / , d/.o - W / < . / , d^o -
= ^ f<^M, • ̂ д d/^1 - ^ /Сж, • ̂ A d//i = — W /c^^ . [Ä̂ ^ — Ä^J d/ii ^ ?ii(0) . 

Hence 

^ j^M^ d/^1 ^ lim W/92 . Cĵ ^ . [Ад — Ä/J d/^i = 0 
n-->oo 

and thus again W fc^^^ d/Ui = 0. 

We conclude that , if two functions in m^W^^ agree on Ä = X^ X Q — 
— (Ж^ и Жд), then they have the same W-integral with respect to /u^. P u t 
hf^^f^ = Cj .hf^~ c^ .hf^. Clearly hf^_f^€m^W^^, Fur ther the set P(x^) of 
all such CO € Q, for which [xj^, со] e M^ U Ж2, belongs to Яо^/^а according to the 
relations 

Wj7i(xp *, .)d/^2 ^ ^ / / 2 ( ^ 1 . *. Od/^a ^ W'J/ol^i»*. . ) d/̂ a e n(W, Яо%а) • 
Bu t hence it follows tha t Tbf^-.fJ<Xi, •) ^ ^f^~fSp^i) ^^^ every x^ € X^. Thus 
А/^„д satisfies the conditions (8.7.3) and (8.7.4). 

Finally let Ä == 1 or A e т%^[л^. Then 

W //г . hf^__f^ d/ii = lim W f{n Д Ä) . Ä^_^ d̂ Uj =-
n->CXD 

= lim [W J{n A Ä) . c^ . /̂ /̂  d/,̂ ! — W J(n j\h) .Cj^ . hf^ d/^J = 
n->oo 

= lim [W / ( n A Ä) . Ад d/^i — WJ(nAh). hf^ d/uj] = 
n—>oo 

= lim [W j{n Л Ä)* . / , d^„ -WfinA h)* . f, d//o] = 

= lim W fin A h)* . [/, - / J d .̂0 ^Wfh*. [/, - / J d/.„ 

(the integrals W f{n A Ä) • c^ • й-д d/z^ are finite, since W Jhf^ dß^ is so). Thus 
/гд_д satisfies (8.7.5) and (8.7.6) and /2 — /x ^ ^ - Thus еяГ_(^') С ^ . 

3. Let / = c^^xjgx^j ^ 1 ^ ^1^ -^2 € $2, В € W. We shall show tha t the function 
hf, defined by hf = Cj^^^ . ^^'g, g e /^2(^2)? ö' ^ ?̂ satisfies the conditions (8.7.3) 
to (8.7.6). First, since g e q^jti^ С W, we have hf e W^^ and (8.7.3) holds. Fur ther 

ocfixj) := Wfc^p^) .c^^^j, dfi^ = c^i^^i) . Щ{с^) . /i2(^2) ; 

thus hf{Xi, .) € ^/(%) and (8.7.4) holds. 

We shall prove (8.7.6). Let us define, for every h e m ^ W ,̂̂ , 

J^h = Wfh. hf d//i, JJi = Wjh^ ,f d//o . 
If Й. - : c^ ,^ , Ж 6 Si, Ж € W, then 

J^h = ^ jc^j,^ç,M)xiBnN) • ̂ 'g d/ii = щ{д) . %(Csni^) • MA П Ж) . 
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From (8.7.2) and from the assumption Яо^/^о = Яо-̂ /̂ х i^ follows t ha t ni(g) . 
. ßj^{Aj^nM) = ßQ{(A^nM) X A^), Since ^i(c^pjv) = щ(Свп^^)^ ^^ obtain 

Thus J i and J2 agree and are finite on €[5^ о W]. From Theorem 5.16 it fol
lows t ha t J i = Jg and (8.7.6) is satisfied. In particular, ii M = A^^, N ^ B, 
we have h ,hf = hf, h^ , f = f, and thus (8.7.5) holds, too. 

We have / e J / and thus ^ D ^ . 
8.8, R e m a r k . Theorem 8.7 is much weaker then the usual Fubini Theorem, 

for the relation (8.7.4) does not generally determine the integral W fhfdjui. 
We shall illustrate the situation by an example. 
Let I be the Lebesgue measure on (0, I), let (W, WQ) be induced by I, let 

n{g) denote, for every (7 € rri*W, the random variable in n*(W, WQ) which 
contains g. 

Let ^jUi = W and A e ^ju^ => jUi(A) = n{c^), let /г^ be defined on {0, {a}}, 
ju^da}) = n{l), ß^(0) = п{(д). Then S/i^ x ^[л^ = {A X {a}, A e S / / J and we 
may define //Q by the relation fiQ{A X {a}) = ^i{A). The assumptions of 
Theorem 8.7 are satisfied. 

Let f = 0. Then ocf(Xi) = n(0) for every x^e X^ = (0, 1). Choose hf{x-i^, со) = 
= C{«>}(̂ i) ^OY every x-^ e X^, со e (0, 1). Then hf{x-i^, . ) e /̂(0:̂ 1) for every x^ e X^ 
but«) W/Ä^ d/ii = ^(1) Ф W / / djuo = n(0), 

8.9. Theorem. Let ß be a strong measure and let S be a pseudoprobability 
inducing (V, VQ). 

Then there exists one and only one real measure v defined on S/г x \̂  such that 

A X B€^fioV=>v{A X B) = Jpt{A) d | . (8.9.1) 
в 

The measure v satisfies the following conditions: 

!(^, V) = m^SÏ̂  (8.9.2) 

and 
feml^v, B€V::r> fiVIJfaß)di= f fdv, (8.9.3) 

г. е., 

• / € m*S? , Фг(В) = f fdv for every В eV =>V! Jf d/u = ^ ^ , (8.9.4) 

P r o o f . If we define VQ on r(^ß о V) by means of the relation (8.9.1) and 
by the additivity, then VQ is a real-valued, non negative and additive set 
function. If 

{Di}ti = { Ü Л,, X B.^ti С r (S / . о V), 

») See Remark 7.17. 
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where (Aij- x Bij) П (A^j, x B^j^) = 0 for / Ф fe, is a non decreasing sequence of 
sets, the union of which is equal to D e г{^/и, о V), then 

= / [V/c ,^ d^] df /Г / [ V / c , d^] d | = »-„(D) , 

for Cj). / Cjy impHes У J(^D. а/л / У Jcj^ d/u. Thus VQ is a-additive; we shall prove 
tha t it is (T-finite, too. I t suffices to prove t h a t for every A с ^/л there exists 
a sequence {D^} C- ^^o ^^^h tha t {J D^ = A x Ü and г^(Вп) < + oo for 
every n. Let Л e S / i . Then, since ju is supposed to be cr-finite (see 8.1), there 
exists a sequence {An}n..i C- ^ju such tha t IJA^ = A and ^(^n) is finite. We 
can choose, for every n, a finite function g^ € juiA^). P u t В^^т == {̂ >; 9n{^) < ^ } -
We have Vf^iA^ X -ßnw) < + ÛO for every n, m and U U i^n X B^m) = ^ • 

Thus VQ is or-finite and there exists (Theorem 5.15) a unique measure v defined 
on V^ such tha t v y VQ, 

Now let us denote by С the system of all sets in ^/u о V of finite î^-measure. 
С is clearly a pseudolattice and sC = V .̂ Fix В eV and pu t J^/ = f f dv, 

XxB 

J J = f(V Jf d/u) d | for every / с т^^г = m*\^^. From (8.9.1) it follows tha t 
в 

J^ and Jg agree and are finite on cC С c(^/^ о V). Theorem 5.16 gives J^ = Jg; 
we have proved (8.9.3) for/ € m^^v = т*У^. 

Now let g^ ^ ^̂ ^̂  {Ö^P 0̂ 2} С- m^V^. Then 

^ /^1 d/i = Vjg^ dfi <:> fgj^ dv = fg^ dv ; 

hence it is easy to see t ha t both (8.9.2) and (8.9.3) hold. 
R e m a r k . Theorem 8.9 shows tha t the V f . dju can be defined as a Radon-

Nikodym derivative (see 8.9.4). I t is easy to see t ha t all properties of the 
¥-integral studied up to this time (if we suppose tha t /n is strong) are easy 
consequences of the relation (8.9.4) and of the properties of the Radon-Niko-
dym derivatives. 

Unfortunately this method cannot be applied if /u is not strong, for in this 
case there does not exist the real measure v satisfying (8.9.1) and (8.9.4). 

8.10. Theorem. Let ß^ and /i^be two a-finite measures defined on a a-algebra S, 

% , С п * ( У , V,), i=l,2 

and let the ¥-integral exist with respect to ju^ for both i = I, 2. 

Let 

/ e m + ¥ ,̂̂ , Vjfd,u^ = 0 =>•¥/ /d/ i2 = 0 . (8.10.1) 

Then there exists age m* V̂^̂  such that 

f e Hfi,, V) => VI Jf dß, = VI ff .g dfл, . (8.10.2) 
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Proo f . Let I be a pseudoprobability inducing (V, VQ). Let v^ be a measure 
satisfying (8.9,1) for /i = fi^ {i = 1, 2). Let / € m+^v-,^, ff dv^ = 0. Then from 
(8,9.3) it follows tha t V Jf dfi^ = 0; from (8.10.1) and (8.9.4) it follows t h a t 
J / d)̂ 2 = Ö- Thus v^ < < 7\. 

Now ju and i are cr-finite; this implies tha t v-^ is a-finite, too. Finally both 
Vi,V2 are defined on the cr-algebra S x ¥. Thus from Lemma 2.2 it follows t ha t 
there exists a g € m* (S x ¥) = m*¥^^ such t ha t 

/ e mî^^ï^i => / / d^2 =- If .gdv^. 

However, this implies (according to Theorem 8.9) the relation (8.10.2).^®) 
8.11. N o t a t i o n . If Î̂  is a measure, T a transformation measurable (T, ^v), 

then we denote by vT~^ the measure defined on T by the relation 

Ä еТ^гТ-ЦА) = г{Т~ЦА)) . 

We call the attention to the vagueness of the notation just introduced. 
Indeed, the measure vT~^ is not determined bjv,T bu t by Î̂ , J ' and T. However 
the cr-ring T will be always marked before using the symbol vT~^. 

8.12. Theorem. Let T be a transformation measurable (T, ^^a), let iuT~^ be 
G-finite. Let us denote, for every / с f ( y T x Ü), by fj, the function defined on 
X X О by the relation xeX, со e Q => fj,{x, oj) = f(T{x), m). Then the W-integral 
tvith respect to fiT"^ exists and 

f € l{f.iT~\ W)=>f^€ li/Lt, W), Wljf dfA,T~^ = Wljf^ dfi . (8.12.1) 

P roof , Let / € m* W,,y-x. Then clearly the (T, ^ / i ) measurability of T im
plies /y e m^W^. Let us denote Jf = W jf^ df.i for every / e mJW^y-x. Then 
J is a non negative, linear and from below continuous functional. Let 

gemlW, / c m ^ W ^ , - . , дедепЦ¥,¥,), 

Then {g^ . /)y = g^ ,f^ and thus 

J{g" . /) - Wfg^ .f,df, = ~g. W / / , d / . = g.Jf . 

Thus J satisfies (7.4.3). Further , if J. € ̂ fiT'^, we have 

Jc^ = Wj[c% d/. = Wjc%,^ d/. = ßT-ЦА) . 

Thus all the conditions of Definition 7.4 are satisfied and J is the (unique, 
according to the 0-finiteness of ßT~^) W-integral with respect to JLIT~^. 

Now, if 

g'^f:^g\ {g\ g'] c- w^,-., w jg^ а/гТ-^ = w fg^ а,гТ-^, 
then 

gl <fr,<gl, W Jgl dfi = W fgl dju ; 
Wl Jf d/^y-i = W / g i d/лТ-^ = Wjgl dfi = Wl Jf, dß 

and (8.12.1) holds. 

^^) The Theorem is a generalization of a result of A. SPAÖEK [10]. 
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9. Conditional probability and expectation 

9.1. Definition. (% is a probability, if a: is a real measure, S^oc is a (7-algebra 
a n d a ( U ^ ^ ) = 1-

9.2. Definition. A measure /x is called the conditional probability ((%, F , Ч) 
(and denoted by Pa,v,y)^ if 

(% is a probability, ¥ is a a-algebra, (9.2.1) 
F is a transformation measurable (¥, ^^л) , (9.2.2) 
^^ == ^ л , %/. С û*(ocF-i) (¥ = ^(xF-i) , (9.2.3) 
Б € ¥ , ^ e a% => a ( ^ n F -H^) ) = / /^(^) d^l^" ' . (9.2.4) 

ii 

9.3. Definition.^^) If /i is the conditional probability {oc, F , ¥) then the weak 

integral with respect to // is called the conditional expectation {oc, F , ¥) and de

noted by ê ^̂  у . 
9.4. Theorem. Т/ге necessary and swfficient condition for a measure fi to be 

a conditional probability {oc, V, V) for some a, F , V is that fi is induced by a de
generate functional and that U ^/л e ^fi, //.(U ^ß) = 1-

P roof . The necessity follows from the known properties of e^^y^y which is 
a degenerate functional inducing /i. 

Conversely, let /i be induced by a degenerate functional and let (¥, VQ) = 
= (q^/ i , qQ^jii). Then according to Lemma 7.14 there exists a transformation 
F from | J % i into y ¥ such t ha t 

/ € ml^fi , 0 ^g eg € o* (¥, VQ) => 
^=> f .gV € ! n î % i , If • gV djLi ^g , Jf dfi . 

Put t ing / = 1, g = Cji we get Б €¥=> V~^{B) e ^fi, i. е., F is measurable 
(¥, % ) . Put t ing f ^ Cj, g = Cß, we get ^ x -ß с %г о V:=> fi{A П V~^{B)) = 

Thus let us define oc on % i by the relation A e ^/г => a(J[) = jfi(A) d | , 
where | is a probability inducing (V, VQ) (such a probability exists for /^(U ^f^) = 
= 1 and thus ¥ Ф VQ; in addition, /i(U -^.a) = 1 implies tha t c% is a probability,, 
too). We have 

BeV , Ae^ii^ ffÄ{A) di = JXB . / i (^) d | = / / ^ ( ^ n F- i (5 ) ) d | = 

= oi{A n У~ЦВ)) 

and thus (9.2.4) holds if only i = oc'V~^. Bu t 

BeV^ aV~\B) = 1МУ~ЧВ)) df = JMU % ) d| = / d | = |(Б) . 
Thus/^ = p^ yy. 

R e m a r k . Theorem 9.4 is closely related to the results of Moy [8], who^ 
however, assumes the measure oc to be given in advance. 

^̂ ) Obviously our definition coincides with the usual one. 
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9.5. Theorem. For every conditional probability p = Pa,v,v ^^^ У-integral 
exists; therefore p is strong. 

Proof , p is induced by a degenerate functional (Theorem 9.4), is therefore 
strong and the q^^- integral with respect to p exists. Thus it suffices to prove 
цтр = V. If J. e V, then V-\A) € 9fjL and p{V~\A)) = XA- Hence V С Ц^р; the 
contrary inclusion follows from (9.2.3). Thus V = q^p. 

9.6. Theorem. Let fi be a strong measure, U ^fi e ^/bt, ß{U %г) = 1. Then 
there exists a conditional probability p := p^ ,̂ У (for some (x,V,V) and a trans
formation T measurable {^ß, S^p) such that ii = pT~^. 

P r o o f . Let I be such a probability t ha t Mfi С ^%^ and such tha t the Sf- in-
tegral with respect to /̂  exists. Then according to Theorem 8.9 there exists 
a measure v satisfying (8.9.1), if we denote ^^ = V. Let us define 

p[B) = V jcj^ d/г for every D e S/^ x V , 
T{x, (o) = X , V(x, m) = €0 for every x e U ^[л , со € Ц ¥ . 

Then T is (^fi, ^p) measurable, F is (V, ^p) measurable and, for every A e %i., 
В eV, луе have 

pT-^A) = Vfc,^,, da =^fi(A), 
vV~\B) = v(U % X B) = /^e(U % 0 d | = i{B) . 

в 
Finally, iiDe^p,BeV,X = U % , we have (see (8.9.3)) 

v(D n V-ЦВ)) = v{D n (X X B))= f c„ dv = / (V /c« da) d | = 
XxB В 

= jp{D) d r F - i . 
В 

Thus p is the conditional probability (v, V, ^ | ) , ^ = pT"^, q. e. d. 

9.7. Theorem. Let /i be a measure, U ^ Я ^ %*, f4lJ %^) = 1. ^f^ С n*(V, VQ); 
let the V-integral with respect to [л exist. Then there exist oc and V such that ¥,̂  = 

= ^a and the Ч-integral is the conditional expectation {oc, F , V), i. е., 

P r o o f . Regarding the proof of the preceding Theorem, we see t ha t V J . d/i 
is the weak integral with respect to the conditional probability p. Thus it is 
t he conditional expectation. 

10. Further properties of conditional expectation 

10.1. R e m a r k . In this section we shall give some generalizations of the 
results of [3]. 

We recapitulate the problem. Suppose tha t a is a probability, T and F are 
two (Sa) measurable functions and tha t /г. is a non negative real-valued function 
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defined on ^ X JE' such that А(У, F) and ЦТ, v) (for every v e E) are (^oc) 
measurable functions. Now let g e е^у:^ЦТ, V), g^ e е^у^:^ЦТ, v) (for every 
V € E).It the set {г;} has a positive (%F~^-measure, then it is easy to see and well 
known that g^iv) = g{v); roughly speaking, if ocV^^ilv}) > 0, then the con
ditional expectation given V ~ v of the function h(T, V) equals to that of 
the function ЦТ, v). The paper [3] and the following section are devoted to 
similar considerations in the more general case without the assumption 
ocV-mv}) > 0. 

10.2. Assumpt ions . We assume that (x. is a probability, T and F are two 
transformations measurable (T, ̂ oc) and {V, ^oc) respectively, (V, VQ) is the 
measurable space induced by (xV~'^, Let {T, F] denote the transformation 
measurable (T x V, ^oc) defined by the relation [T, F] {x) = [T{x), V(x)] e 
^ и "̂  X и ^ for every x e XJS^oc, We denote by f the conditional probability 
Va,v,y> by e the conditional expectation е^уу, we denote U ^^ = X, {JV=Ü; 
if f ef^dJT X O) then by /^ we denote (as in Theorem 8.11) the function 
defined on X X ß by the relation fj,{x, со) = f{Tx, со) for every [x, ш] e X X ß . 
By Vj, we denote the probability satisfying (8.9.1) with //, ^̂^ pT~^ and i = 
= aV~^. The probability v^,, which is closely related with the V-integral with 
respect to pT~^, has now a self-reliant meaning. For, if J. e T and В e V, then 

v^(A X B) = JpT~^A) d(%F-i = а(Т-ЦА) П У-ЦВ)) . 
в 

Thus Vp = (х[Т, F]~^ (for preventing misunderstandings we recapitulate that 
^OC[T,V]-^ = TKV), 

If, in particular, T is the identical transformation, then we write v^, = v. 
Finally let us denote 

JD Z=Z [[X, СО]; X € X, CO € Ü, VX = СО} , D^ = {[со, со]; со e ü} . 

10.3. Lemma. Let v"^ be the outer measure ^-induced by the measure v. Then 
v^{D) = 1. 

Proof. {А^^г С- ^oc, {B^T^^ C- V, U Л, x B,D D =>2НА X Д ) = 
i^l г* = 1 

00 (X) 

= 2 oc{A,nV-^{B,)) ^ «( и (A,nV-^{B,))) = oc(X) = 1. 

10.4. Lemma. If D^eVxY, then D e ^oc. x V. 
Proof . If we define ü{x, со) = [Vx^ со] for every [x, co]€ X X O, then U is 

(\^x V, 9)(x X У) measurable and thus D ^ TJ~'\B^ € ^oc x V. 
10.5. Theorem. Let f e m*S^, he l{pT-^^,V), f(x) = h{Tx, Vx) for every xeX. 
Then ef = V!jhdpT-\ 
Proof. From h e {(pT"^, V) and from Theorem 8.11 it follows that hj. e l{p, V). 

Hence and from Theorem 8.9 wo obtain that hj, e m^^^v. Further hj, and f^ agree 
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on D, v^(D) = 1 and {h^, f} C- ml^v; it follows tha t h^ = f [^]. Thus Ä̂  = 
= f [ | > , V ] a n d 

e/ = ffdp = Vff dp = Yi fh, dp = VI fh dpT~^, 

which is the desired result. 

10.6. Corollary. LetDe^ocKVorD^eVxV. Let f e ml^oc, h e f* ( Z x Ü), 
f(x) = h{x, Vx) for every x e X. 

Thenef = VI J h dp. 

Proo f . The measurability of D implies v{D) = 1 (Lemmas 10.3 and 10.4); 
thus f^ =•- h[v] and h e i(p,V). The assumptions of the preceding Theorem are 
satisfied for the identical transformation T and thus e/ = VI Jh dp. 

10.7. Theorem. Let the assumptions of Theorem 10.5 hold. Let P be a function 

defined onT x Ü such that P{., w) is a probability for every со € Q and P(A, . ) e 
€ pT--\A) for every AeT. Then, if g e f^Q, g{co) = Jh(.,aj) dP(.,a)) [aV^^], 
then g eef. 

Proof . From Theorem 8.6 it follows tha t geVI Jh dpT-^^ and VI Jh dpT^^ =-
= e/ according to Theorem 10.5. 

10.8. Definition. T and V are oc-independent, if 

AeT, B€V^a{T-ЦA)nV'ЦB)) = аТ-ЦА) . осУ-ЦВ). 

10.9. Theorem. Let the assumptions of Theorem 10.5 hold, let T and V be 
a-independent. 

Then if ge f*ß , g{co) = Jh{., ш) d(xT-^ \о^У~Ц, then g e e/. 
P roo f . If we define P{A, юо) = аТ'^^А), then the conditions of the preceding 

Theorem hold, since the relation aT~^{A) e pT~^{A) is an easy consequence 
of the independence of T and V. (We note tha t the Theorem can be also proved 
by a direct verification of the relation В €V^=> Jg docV'^ = J f doc by the use 

of the Fubini Theorem.) 

10.10. R e m a r k . In all Theorems in this section we have assumed t h a t 
h € l{pT~^, V). This condition is necessary for the integral VI J h dpT"^ to have 
a meaning and thus it is necessary in Theorem 10.5. However in Theorems 
10.7 and 10.9 the integrals /A( . , o)) d P ( . , со) and Jh{., со) d(xT~^ are defined 
for an ampler class of functions t ha t \{pT~~^, V). Nevertheless we shall show 
t h a t the condition h e \{pT~^, V) is essential. For simplicity we shall assume 
tha t T and F are a-independent and tha t Ä is a characteristic function. We 
remark tha t \(pT~\ V) = 9VT = ^аЩТ^К 

10.11. Theorem. Let T be a a-algebra; let A С U T X Ü; h = c/,h(.,a)) e 

em^'^d^ for every m e Ü - У^, V^eV^; f==h(T(.), F ( . ) ) € m S a ; 
hnon € ^ix\T^ F]~^. Finally, let T and V be oc-independent. 
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Put g{ù)) •= Jh(., О)) daT~^ for со € Ü — VQ and define g{oy) for со e FQ ш an 
arbitrary way. 

Then there exists a probability ß with the following properties: T and V are 

ß-independent and measurable (T, ^ß) and (V, ^ß) respectively, осТ~^ = ßT"^, 

Q^y-i ™ ^ F " i , / e m^^ß but g non e ê  p. y/ although obviously g{co) = 
= fh(.,co)dß^^ [ßV^l 

P r o o f . If gnon € e^yyf, then the Theorem holds. We shall consider 
the case g e e^^y^yf- Since it is assumed h non € \(р^ууТ~^, V) = fn^^Vj, = 
= mt^a[T, V]-\ h = c^,we have A non € За[Т, V]-\ Pu t 

S = {B;B= [T, V]-^(B), BeTxV} 

and denote «o = oc^. Then «o is a probability, too, and obviously A non e ^OCQ^ 
where A = [T, V]~'^{A). Hence if follows t ha t there exist infi^nitely many 
measures ß defined on s{SU{^}} and such tha t ß У OCQ. (See for example 
[4], Sec. 16, Ex . 2.) Choose ß in such a way t ha t ß{A) Ф oc{A) (we note t ha t 
A € '^a since / e m^oc). Since^^) ß[T, F ] - i = a[T, V]'^ all the assertions of the 

Theorem are obvious, except possibly the assertion g non € eß^y^yf. 

We have g e e^^y^yf and thus, since ocV"'^ == ßV"'^, I^oc,v,vf àocV~^ = ff doc, 

we obtain fg dßV-^ = jg docV~^ = Jf doc ̂  ос{А) Ф ß{A) - / / d^. Thus 

fg dßV"^ Ф Jf dß, which gives g non e eß^y^yf. 

10.12. E x a m p l e s of non regular conditional probabilities. Theorem 10.11 
together with Theorem I I I of [3] enables us to construct many examples of 
non regular conditional probabilities. (A conditional probability Poc,v,v =^ P 
is regular, if there exists a function P defined on ^p X Q such tha t P ( . , ш) 
is a probability for every m e Ü and P(A, . ) e p{A) for every A e ^p.) 

Suppose tha t the conditions of the preceding Theorem are satisfied and t ha t 
in addition the cr-algebras V and T possess countable bases, i. e. tha t there 
exist two countable systems S ,̂ S^ such tha t sS^ == V and sSg = T. Finally 
let V contain every set {со}, where со e U ^• 

Now if ß satisfies the assertions of the Theorem, in particular if g non e eß^y^yf, 
then Pß^v,y cannot be regular. Indeed, if Pß^yy is regular, then according to Theo
rem I I I of [3] g € eß^y^yf, which is impossible. 

The following example shows tha t the assumptions can be satisfied: 

Let J ' j be the system of all Borel subsets of <0, 1>, let A be the Lebesgue 
measure on X = <0, 1> x <0, 1>. Choose a set ^ С X in such a way, t h a t 
A non e ЗА bu t tha t for every ш e <0, 1> the set {t; (t, со) e A} belongs to ^ j . 

Let now л be a probability such tha t oc У A and Зое = s(3A U{A}). P u t 
T = V = J^i, T(t, со) = t, V(t, со) = CO for every (î , со) e X . I t is easy to see 

12) Again we put ^ß(T, V)'^ = T x V. 
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that all required conditions are satisfied (see Theorem 10.11 and assumptions 
10.2). In particular Ä(., со) € m%^^ С m*S^^^T^, }i(T{.),V{.)) = h = c^e m^^oc. 
Since oc[T, F]"i = Л, we have also h non e m%^oc[T, F]-4 Finally T and F are 
A:-independent and T = V = ^ i has a countable basis and contains every set 
{ш} С и ^ =- <0, 1>. 

j / y , j / д , = ^ _ ( ^ ) , ^ _ , . 

< < 

с 
Хл 
9 
9^ 

Je 

г- 1 
Je 

Л /г = / l А • • • А /fc 

^^ 

t 

^U' ^o-u' ^ п ' ^ -

1.5] 
4.1) 
2.1) 
1.2; 
1.3 

Д.5 
Д.5 
;i.ô 
Д.З 
,5.1 
Д.1 
,9.3 
7,2 

Some symbols 

S^xSg 
sup^. A 
C-, O , = 
inf j. J-

) inf A 
) / . d / i 
) W / . d/i 
) Wl / . d/i 
) J 
) к 
) m, nn*,m^.,m 
) ]л 
) fiZ-^ 

1.4 

1.4 

1.4 
8.2 
1.3 
1.4 
8.2 
1.2 
1.2' 
7.1 

dv 
d/i 
p. 
Po^,Z,V 

r 

VT 

y? — 00? + a 

(1.6), 

(3 

7.1 
1.7 
1.1 
1.7 
3.6 
6.3 
8.1 
8.4 
5.6 
1.5 
1.5 
.14 
.11 
1.6 

2.3 

.14 
9.2 
1.8 
1.2 
1.3 
1.3 
1.3 
7.1 
3.7 
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Резюме 

О МЕРАХ, ЗНАЧЕНИЯ КОТОРЫХ — КЛАССЫ ЭКВИВАЛЕНТНЫХ 
ИЗМЕРИМЫХ ФУНКЦИЙ 

ВАЦЛАВ ФАБИАН (Vaclav Fabian) , Прага. 

(Поступило в редакцию 13/1 1956 г.) 

Пусть I — вероятность определенная на 0-алгебре V подмножеств мно
жества Ü. Пространство всех (V) измеримых функций разбито на классы 
функций, почти всюду взаимно равных. Эти классы называем случайными 
величинами. Пространство всех неотрицательных (не обязательно конеч
ных) случайных величин обозначим через п*|. 

В работе рассматриваются понятия меры, интеграла и функционала, 
значения которых не вещественные числа, но случайные величины. Дока
зана теорема о распространении меры с кольца на ст-кольцо. 

Пусть мера fi определена на (т-кольце S подмножеств множества X. 
Слабый интеграл f. dju определен для неотрицательных (S) измеримых 
функций так, что он аддитивен и что fn / f "=> jtn^H' /^ jf ^И" Доказана 
теорема о представлении линейного функционала в виде слабого интеграла. 

Для (т-алгебры W с ^ определяется понятие W-интеграла Wj . d// для 
абстрактных функций, определенных на множестве X, значения которых 
(W) измеримые вещественные функции. Очевидно, такие абстрактные 
функции можно рассматривать как вещественные функции на X х ß . 
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Итак, Wf.dju определяется для неотрицательных (S к W) измеримых 
функций. При этом (S KW) — сг-кольцо, порожденное классом всех мно
жеств вида А X В, А € S, В € W, 

WJ. djbt (а) аддитивен, (6) fn /^ f => W ff^ dju /^ W ff d/u и (с), если 
f(x, О)) = f{m) для {S-KW) измеримой неотрицательной функции /, то 
Wjfdfi = Jfdju. Наконец, W-интеграл однороден в следующем смысле: 
(d) если f ш g — (S х W) измеримые неотрицательные функции, д(х, со) = 
= д(со), то W Jg . f d/л = g . W ff d/u, где g означает случайную величину, 
содержающаю функцию д. Нетрудно показать, что, если /и (т-конечна, то 
W-иитеграл определяется условиями (а)—(d) однозначно, но мы не 
знаем, существует-ли он всегда. Если W^, Wg — (Т-алгебры, Ŵ  С Wg С ^ 
и если Wg / . d/̂  существует, то существует и Ŵ  J . d/̂ . Если существует 
Vf . d/i, то мы скажем, что ju.— сильная мера. Приведены общие достаточ
ные условия для того, чтобы fi была сильной мерой. Например, если S — 
(Т-кольцо всех борелевских или бэровских множеств локально компактного 
пространства, или если V — су-алгебра всех борелевских множеств локаль
но компактного хаусдорфова пространства, то fi — сильная мера. Также, 
если /и — условная вероятность, то ju является сильной мерой. Н^аоборот, 
если fi — сильная мера, и если /л{Х) = 1, то существует условная вероят
ность р на ст-кольце Q и отображение Т множества U Q на множество X так, 
что ju(A) = р(Т~^{А)) для всякого множества А е S. 

Для \Л^~интеграла доказаны теоремы, аналогичные теоремам Фубини 
и Радона-Никодима. Между W-интегралом и обыкновенным интегралом 
Лебега такая связь: Пусть 7>(А, т) для кая^дого фиксированного m е Ü 
является вещественной мерой на S, пусть для каждого А е S v(A, m), как 
функция переменной со е Ü, является элементом случайной величины 
/л{А). Пусть существует интеграл W f . d/u и пусть / — неотрицатель
ная {S X W) измеримая функция. В таком случае функция h((jû) = 
= / / ( . , со) dv(.j oj) является элементом случайной величины W ff d/u. 

В конце работы рассматриваются прилон^ения, касающиеся условных 
вероятностей. 
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