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ON LIPSCHITZIAN MAPPINGS FROM THE PLANE
INTO EUCLIDEAN SPACES

JOSEF KRAL, Praha
(Received November 14, 1957)

In this paper the integrals associated with a Lipschitzian mapping
from the plane into the r-dimensional Euclidean space are studied.
Some theorems are proved, which are in a certain relation to the
Stokes formula.

1. Notation. For every positive integer r, £, is the Euclidean space of r
dimensions. Denoting by p; the i-th coordinate of the point p e E,, we define

7| :V;pi : -

P.q=2>P4:, PEq=1[P +tq,. ..., +q].

i=1

Further we put for p, g e E,

If @ is a mapping from the set M == 0 into E, then @, (1 =1, ..., r) are
functions on M such that @(3) = [D(3), ..., D.(3)] for every je M. Further
we put

@]y = sup |@(3)]

3eM

If A is a subset of E,, we denote by A (resp. A°) the closure (resp. the in-
terior) of 4.

Let now a, b be real numbers, a < b, and let ¢ be a mapping from <a, b)
into E,. We denote by wv(a, b, g) the least upper bound of all the sums

Z lg(t) — g(t1)|, where a = {® < ¢ < ... < {* = b is an arbitrary subdivision

of {a, by.
Let f be a continuous mapping from {a, b) into E,, f({a, b)) = C, and sup-
pose that @, ¥ are continuous mappings from C into E,. Then we define

Joaw = Zfdb (1)) AW (f(t)) ,

i=1la
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provided that the Stieltjes integrals?) on the right exist. If we put
b—a

tF —a + (k=0,...,n), A%F=P(fEmk) —

—W(fert) (k=1,..,n),
then
f(p d¥ = lim ?@(f( £F)) . amk (1)

n—>ook 1

under the hypothesis that [@ d¥ exists in the sense of preceding definition.
1

If v(a, b, ¥(f)) < oo, then [@ d¥ exists and, as it is easy to see from (1),
f

|ff¢d9’| = [Dllc v(a, b, ¥(f)) . (2)

If at least one of the symbols [@ d¥, [¥ d® has a meaning, then both these
7 7
symbols are meaningful and the following relation is valid:

O 4 [9AD = D) F(O) — D) . H () -

Suppose now that f(a) = f(b) and that [® d¥ exists. Then also [¥ d®
7 7

exists and
JOA¥ = — [P dD. 3)
7 f

Further let be p, ¢ € E, and put
Pt=@ —p, VPl=V_—gq.2 (4)
According to (1) we have f DAY = f @ d¥! and, by symmetry, f &4y =
— fY’ldQ = — f'}”dfpl so that

if(b ¥ = qu)l ayr . (5)

By the word “interval” we always mean a closed non-degenerate interval
in E, Given an interval I, we denote by w(I) the perimeter-length of I.
. Further, let H; be a continuous mapping from (0, 1) into E, defining para-
metrically a simple description of the boundary of I (in positive sense).
Of course, H;(0) = H((1), and, as it is easy to see,

v(0, 1, H)) = u(l) . (6)

The Lebesque measure in E, will be denoted by x. The words “a. e. (almost
every, almost everywhere)”’ are always to be taken with respect to u.

1) Vide, e. g., [2], chap. X, § 7, pp. 415 —422. w
2) That means @'(3) = DP(3) — », P (3) = ¥(3) — q for every 3¢C.

258



The terms “constant, number, function” mean a finite real constant, num-
ber, function respectively.

2. Definition. Let be ¢ + K c E, and let ¥ be a mapping from K into E,.
We say that ¥ is Lipschitzian on K if there exists a constant A such that
P — Y@ = A — 9 (7)
for every pair of points 3%, 32 in K.
3. Remark. Let K be an interval and let @, ¥ be continuous mappings
from K into E,. Suppose that ¥ fulfils (7) for every pair of points 3!, 32 in KA.
Then we have for any interval I ¢ K (compare (6))

so that the symbol [® d¥ is available.
Hy

4. Notation. In the sequel we often use the following licence. For je E,,
we write 3 = [z, y] instead of [3,, §2]-

If f is a continuous mapping from <{a, b) into E, and if ¢, y are continuous
funetions on C = f({a, b)) such that ¢(x, y) = z(resp. p(x, y) = y) for every
[z, y] € O, we write [z dy (resp. [ dy) instead of [ dy. The symbols [y dy,

7 7 i i

[¢ dx, [xdy etc. have a similar meaning.
7 7

5. Definition. Let be 30 ¢ Ky, 7w = [7y, ..., n,) e E, and let U be a neighbour-
hood of the point 3° in E,. Let ¢ be a function on U and let ¥ be a mapping from
U into E,. Suppose that for § e U the following relation is true

r

?(3) — @(3°) = > m(i(3) — Pu(3”) + [P(3) — P ()] 2 (5), 9)

1
where z is a function on U such that z(3) — 0 for 5 — 3°. Then we write

7 =0, ¥V §°) .
For the special case that r = 2 and that ¥ 1is the identity mapping we write
7w = 0(p; °); the expression m(x — x°%) + 7,(y — y°) 1s then the ordinary total
differential of ¢ at 3°, so that

9p(3°) 29(3°)

o= T =

ox oy

6. Lemma. Let U be a neighbourhood of the point 3° € E, and let @, ¥ be con-
tinuous mappings from U into E,. Suppose that ¥ is Lipschitzian on U and that
the following relations are valid

b= [ . Al = AD, W ) ~(10)
V(%) . P3N | .
[T s T] = (¥ 3% (11)
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t=1,...,7). Put

\ o¥:(3°) gryli(ao)

ox ' oy
Dy = |, 0 - 0
o¥(3°) fyjk(?s )

ox oy

and denote by K g the square of center ° and of side-length 8. If we write
v(K;) = [ @adY¥ 3
H

)
then
WKy  ~ .
WKy .k_zl(”’f — ) Dix (12)
i<k
for 6 — 0.

Proof. Put p = @(3°), ¢ = ¥(3°) and define the mappings @, ¥ by (4).
Further define the mapping A = [4,, ..., 4,] by means of the relations

Ai:@:~;1w£W%, =1 r. (13)

(Clearly, A is a continuous mapping from U into E,.) According to definition
5 (see (9), where we put ¢ = @,, 7, = 7}, z = z;), we have by (10)

A(3) = [P'(3)| z(3) , where z,(3) >0 for §—> 3. (14)

Fix now a d§, > 0 such that K; c U. We restrict the range of the variable

0 to 0 << 0 < 6y. The mapping ¥* being Lipschitzian, it follows from (14) that,
for ye K,

[A(3)] = 88:(8), 840) =0 for §->0.
Writing H, = Hy, we have for a suitable constant 4 (compare (8))
v(0, 1, YY(H;)) = 2u(Ky) = 420 .
Hence we o’btain (see (2))

|4, AP = 426%,(9)
Hp

so that
[A;d¥} =o(?),4) i=1,...,r.
Hg

3) According to remark 3, this symbol is available for every sufficient small ¢ > 0.
4) If @(d) is a function of the variable 6 on (0, §,) we write, as usual, g(d) = o(?) to

express the fact that 612 @(d) — 0 for 6 — 0.
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We have thus by (5)
[P — [G1apr =5 [G1aV! = (see (13) = 5 S i 1A+
Hg Hy

i=1Hg i=1k=1

-

T

+ > [A;dV; = 3 7 [P A¥] + o) .
i-1 Hg ik 1 Hp
From the relations (compare (3))

[Ped¥} = — [P} dy;
Hg Hy

we obtain [} d¥} = 0, and
Hg

[@AVY = > (af — 7f) [P} dP; + o(5?) . (15)
Hg ik kl Hg
Fix now the indices ¢, k. Using similar arguments it is easy to obtain from (11)
(40 SYS (40
flpg ay: — %’L).fx aw, - ﬂ”—)fy A%, + o(e?) . (16)
ox oy
Hs Hj Hg

Further we have

fmdlpk:—fw,cdx:—f-‘a’gg‘?fxdx_

Hy Hg Hjpy

aylk(sﬂ) f 1A 2\ __ 811]70(30) o
Ty ]V dz + 0(*) = oy (K 5) + 0(6?) . (17)

Hy
In a similar way
oV, (3°

f yd¥, — — f vy = — TE LK) o). (18)
Hp Hy

It follows from (16)—(18)
[ll’zl dll’l% = Dik:“‘(KB) + 0(6%) .
Hs

Hence we derive at once with help of (15) the relation (12).

7. Notation. In the sequel (sections 8—10) the following notation will be
kept. K is a fixed interval and @, ¥ are continuous mappings from K into Z,.
The mapping ¥ is assumed to be Lipschitzian on K.

8. Lemma. Let v be an additive function of an interval on K.5) Suppose that
there exists a constant § such that

(0| < Bu(l) (19)
for every interval I c K. Then there exists a signed measure v* 8) defined on Borel
subsets in K such that the following relations are valid:

" 5) Cf. [4], chap. I11, § 4, p. 61.
%) Cf. [1], chap. VT, § 2.
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L. v¥*(I) = v(I) for every interval I c K,

2. [v¥(B)| = Bu(B) for every Borel set B c K.

Proof. This lemma is an easy consequence of well-known theorems on
measure theory. Vide, e. g., [4], chap. IIT, §§ 4, 5 and chap. II, theorem (7.4).

9. Lemma. Put for any interval I ¢ K

w(l) = [&d¥ 7
H,

Then v is an additive function of an interval on K. If the mapping @ is also
Lipschitzian on K, then there exists a constant f such that the relation (19) s
valid for every interval I c K.

Proof. The first part of this lemma is left to be proved by the reader.
Suppose now that @ is Lipschitzian on A and choose a constant A such that,
for every pair 3!, 3 of points in K, A|3* — 32| is a common upper bound for the
numbers |D(3!) — P(8?)|, |P(3") — P(3?)|. Let I be an arbitrary interval
(I c K), fix a 3*el and put p = D(3°), ¢ = P(3°). If we define the map-
pings @', ¥' by means of (4), we have ||@Y; = JAu(/) and (compare (8))
v(0, 1, YY(H,)) = Au(l), so that we obtain by means of (5), (2)

p(I)| = |[@* d¥| = F(Au(]))? .
Hy
Inparticular, if I is a square, then the relation (19) holds for g = 822 If I is not

a square then, to any ¢ > 0, we can find non-overlapping intervals I,, ..., I,
such that

n+1

U Ik =1 ) u(ln+1) < 4e >
k=1
every I, with £ =< n being a square. Hence it follows
D= 3 (90| + L) £ 3 820(1,) + 8222 < 82(u(]) + &) .
k=1 k-1
Since ¢ was an arbitrary positive number, it is sufficient to put f = 84* again
to satisfy (19).
10. Theorem. Suppose that the mapping @ s Lipschitzian on K and that
w(3) = [71(3), - Wl(§)] = 8(D, ¥ 3) (20)

(t=1,...,7) for a. e. §e K° Put (as far as the symbols involved are meaning-

ful)

al}"i(i) V(%)

ox ay .
Dald) = aw)  awo) |” .
. ox oy
() = 2 (@) = m(3) Daly) - (22)
oy .

7) Cf. remark 3.
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Then the function y is defined a. e. on K and the relation
[®dY = [y du (23)
Hy K
13 true.
Proof. Since the functions ¥, are Lipschitzian on K, there is

O 26N .
[ ox oy ]*(/(gj/, %) (24)

(i =1,...,r)fora.e. ye K° (Cf.[3], theorem 1, p. 347.) Let us denote by K(3, 0)
the square of center § and of side-length 6. If the symbol » has the same
meaning as in lemma 9, we obtain by (20), (22) and by lemma 6 that

. v(K(3,9))

a0 11(K(3,9))
for a. e. y ¢ K° Applying lemma 8 we extend » to a signed Borel measure »*

= 7(3) (25)

. . . dy*
(note that »* is absolutely continuous with respect to x) and put é = y*.8)
(This derivative is to be taken in the sense of measure theory, so that y™* is

a Borel function on K such that
v¥(B) = [y*du
B

for every Borel set B c K.) By theorem (6.3) from [4], chap. III, p. 118 there

is
(3 0) )

— 6

im - KGoey ® (26)

for a. e. 3¢ K. Since »*(K(3, 0)) = »(K(}, 0)), it follows from (25), (26) that

y =y* a. e. on K so that, in particular, »(K) = »*(K) = [y*du = [y du.

K K

11. Definition. Let be 6 + V c E,, w® = [ul, ..., ull eV, = [my, ..., 7, ] € B,
and let (;Ao be a function on V. The expression

T

>, — ) (27).

k=1

18 termed the differential of (9) at u® with respect to V, if the relation
9 () — ut) = > mlw, — uf) + u — u?] wlu) (28)
k-1

ts valid, where w(u®) = 0, w(u) — 0 for u — u®, ueV.

12. Theorem. Let ¥ be a Lipschitzian mapping from the interval K into E,.
Put V =Y (K) and suppose that I' = [I1, ..., I',] is a Lipschitzian mapping
from V into E,. Further suppose that there exists a set M c V with the following
properties:

®) Cf. [1], chap. VI, §§ 32, 31.
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1. u(P-1(M)) = o.
2. At every point u® eV — M, the expression Y Ti(u®)(u, — uy) is the diffe-
k=1
rential of I'; with respect toV (v = 1, ..., 7).

We define the functions D, by means of the relation (21) and put (as far as
the symbols involved are meaningful)

73) = 3 @E) — i) Duls) - (29)
i<k

Then the function y is defined a. e. on K and, for @ = I'(¥), the relation (23) is

valid.
Proof. Note first that the mapping @ is Lipschitzian on K. Fix the index
7 and put (?3: ', @ = @;. Let §° be any point of K9 — ¥Y-YIM) and put
u® = ¥(3%), m, = 1(u°) (k =1, ..., r). Then the expression (27) is the differen-
tial of z;) at u® with respect to V. If‘ we put u = P(3), w(¥(3) = 2(3) in
the relation (28), we obtain the relation (9) (note that the mapping ¥ is con-
tinuous and that i}E(‘P(z,)) = ¢(3)), so that

[T (), - TP ()] = 8(Py, ¥ 5°) -

Since 3° was an arbitrary point of the set K° — Y=1(J]), we see that all the
assumptions from theorem 10 (where we write zi(3) = [ti(¥(3)), ---, T{(F(3))])
are fulfilled and, consequently, the relation (23) is true.
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Pezwome

OB OTOBPAYKREHUAX TJIOCKOCTH B EBRJIMNOOBLI
I[MTPOCTPAHCTBA, YIOBJETBOPAIOMNX YCJIOBUIO
JIMTIIINIIA

NOCE® HPAJI (Josef Kral), Ilpara
(Iocryumio B pegaxuuio 14/XI 1957 r.)

[lycts E, — r-mepHOe eBRINAOBO NpocTpaHeTBo. Eciu p — Touka npocrpan-
crBa B,, To p; obosnavaer ¢-Tyio Koopunary touxu p. Ecmn @ — orobpaenne
muoskeerBa M + @ B npocrparerso K., 10 @; — rtakag yHKIMA Ha MHOKCCTBE
M, gro pasencrBo Dy(3) = (P(3)); pumosmuseres st BeeX e M (1 =1,...,7).
Hua p, g € E, nonaraem

+q=1[m +q-p +¢1, :V_lef-

Iyers Tenepn f — HenpepuiBHOe oTobpaskenne orpeska {a, by B TIOCKOCTD
u nyers @, ¥ — nenpepsiBabic 0ToGpaskenus Muoskecrsa f({a, b)) B upocrpan-
ctBo F,. Toria Mbl 11071055UM

f(.b Ay = ? qu ) A%,(f(t)

7= la
B OPEIOoJIOKeBnr, 9T0 CYIICCTBYIOT ITHTETPaJibl CruibTheca B HpaBOfI qacTtm
9TOTO paBeHCTBA.

CioBoM ,,I]HTepBa.TI“ pasymeeTcsa B HaHLHOﬁLﬂeM nBymepHHﬁ ISHMKHyTLIfI
IICBLIpOH(,’IOHHHﬁ WHTCDBAJ. Eemn I — UHTEepBaJ, TO 0003HAYNM CHMBOJIOM
HI HeIIpepbIBHOE OTO6p3)HeHHe OTpe3ra <0, 1> B IIJIOCKOCTH, OIIpeJesdioiiee
IIpocToe ONuHCaHme T'pPaHUIBl WHTEepBaJa I B monomurelbHOM HalpaBJICHMM.

C](IMBOJIOM Y MBI o0o3HaYaeM JIB6GI‘OBG]\'}'IO Mepy Ha IJIOCKOCTH.

Bseném em@ caenyomee

Onpepexenne. Ilycmy 3° — moura na naockocmu, &7 = [ay, ..., T,| — Mouka
us npocmpancmea E,. Ilpednoroyncum, wmo ¢ neomopoti okpecmuocmu U mouku
3% onpedeaenvt gymnryus ¢ u omobpamcenue ¥, omobpancaruee MHOMICECMEO
U ¢ npocmpancmeo E,. Ecau das 3 € U soinoansemes pagencmeo

?(3) — ¢(3°) = Z: W(Fi(3) — Pel3") + [P(5) — P(59)] 2

2de 2(3) — makas Pynryua na muomcecmse U, umo z(§) — 0 das § — 3°, mo
MbL RUULEM
7= 0dp, ¥ .

B srux o6osnauenusax CIpaBeJimBa cleayronasa
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Teopema. I[Tycmv K — unmepsan u nycmv @, ¥ — omobpancenus unmep-
sana K ¢ npocmpancmeo E,, yoosaemeopsiowue na K ycaosuio Jlunwuya.
ITycmyv, Epome mo2o, coomHoOWeHUS

7i(3) = [71(3), - ()] = AP, Wi 3) (E=1,...,7)

cnpagedaugsl 0an nowmu ecex y € K. Onpedeaum gynryuu D, coommuowerntem
(21) u gyrryuio vy pasencmsom (22) (koav ckopo umelom cmuica ynompebasemole
CUMBOADL).

Toz20a Ppynryus y onpedenena noumu ectody na K, u umeem mecmo paserncmeso
(23).

Onpegeaenne. [Tycmv V — wnenycmoe nodmmomcecmso npocmpancmea E,,
7=y o w e By ouu® = [l ..., ul] e V. IIycmy, daaee, ¢ — Pynryus
Ha mroncecmee V. Mol ckamcem, umo supasicenue (27) asasemes noansim ouggpe-
peiuarom PyHEYuL (;Ao 6 mouke u® no omHoOWeHUI K mHoxcecmey V, ecau

T

P) — Pu) — > mxlue— uf)

k=1

1

| — u®| =0

Oast w = [Uy, ..., U] = u ueV, u— ul

W3 npuBenénnoii Bhlmie TeopeMbl BHITEKaeT eImé cfieflyoliee ciiecTBHe:

Teopema. IIycmv ¥ — omobpaxcenue unmepsasa K ¢ npocmpancmeo E,,
ydosaemsopsioyee na K ycaosuw JAunwuya. ITycmo, danee, I' = [I7y, ..., I',] —
omobpancenue muoncecmea W(K) = V 6 npocmpancmeo E,., ydoesemeopsiowee
ycaosuro Jlunwuya na V. Ilpednosoncum, wmo cywecmsyem mnoncecmeo M c V,
obaadarowee caedyouwumMu ceolicmeamu:

1. w(P-Y(M)) = 0.

r .
2. B rkancdoii mouke u® e V — M, eupancenue > ti(u)(u;, — ug) aeagemes
E-1

no.nvim dupepenyuarom gynryuu I'; no omrnowenuio k mroxncecmey V.
Onpedeaum gynryuu D, pasencmeom (21) u gymuryuio y pasencmsom (29),
" KOdb CKOPO UMEIOM CMUICA Yynompebasemvie CUMEOAVL.

Tozda ¢ynkyusa y onpedeaena noumu ecwdy wa K, u das omobpancenus
@ = I'(V) sunoansemes coomrnowenue (23).
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