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Чехословацкий математический журнал, т. 9 (84) 1959, Прага 

ON Ot-SPACES 
(Preliminary Communication) 

Z D E N Ë K F R O L I K , Praha 

(Received November 10, 1958) 

1. A topological space R is called an extension of a space P с R if P is dense 
in R; if, moreover, R is compact, then it is called a compactification of P . 
We shall call a Hausdorff topological space P a G^-space if P is a Gs-set in 
every Hausdorff extension of P . In the present article, an " internal" characte
rization of GVspaces is given, us well as of "Baire spaces", to be defined in the 
sequel. Proofs are omitted and will be published elsewhere. 

The terminology of J . K E L L E Y , General Topology, is used throughout. The 
letters P , R always denote a topological space; ßP denotes the Cech-Stone 
compactification of a (completely regular) P . 

2. Let us recall tha t , by a well known theorem, a metrizable Cr^-space is 
characterized "internal ly" (i. e. without reference to imbedding in larger 
spaces) as a space homeomorphic with a complete metric space. 

Definition. We shall say t h a t an open base В of P has the property (V) 
(or, shortly, is a F-base) if there exist open bases Bn с В, n = 1, 2, . . . , such 
t ha t 

(i) ВгэВ2э . . . , 
(ii) if G is a family of open sets, G has the finite intersection property, and 

G n Bn ф 0 , n = 1, 2, . . . , then (\{G;GeG} + 0. 

3. Theorem. / / P is regular and has a V-base, then every Gô-subset P has a 
V-base. If R is a Hausdorff extension of P , and P has a V-base, then P is a G8-set 
in R. 

4. Theorem.*) / / P is completely regular, then the following conditions are 
equivalent: 

(i) P is a Gs~space; 
(ii) P has a V-base; 

(iii) P is a G8-set in ßP; 

*) The equivalence of the conditions (i), (iii) and (iv) was proved by E. ÖECH in his 
paper On bicompact spaces, Annals of Math., Vol 38 (1937), 823—844. 



(iv) P is a Gfi-sèt in some compactification of P. 

This follows a t once from 3, since every open base of a compact space is 
evidently a F-base. 

5. I t is quite easy to extend the preceding results in each of the following 
ways: 

(i) we may consider, instead of Onsets, intersectilos of m open sets, m being 
a fixed infinite cardinal; 

(ii) instead of completely regular spaces we may consider regular ones 
taking Alexandroff's extensions instead of compactifications. 

6. Consider a topological property W of subsets of topological spaces (i. е., 
for every P a family W(P) of subsets of P is given, and if / is a homeomorphism 
of P± onto P 2 , then / transforms \¥(Рг) onto W(P2)). We define: a Hausdorff 
space P has property W (or, belongs to the class W, writ ten P e W), if, for any 
Hausdorff extension R of P , P belongs to W(R). For instance, in 4 an "inter
na l " characterization is given of spaces belonging to the class W n A where 
W is property of being a 0s-subset, A is the class of completely regular spaces; 
if IF denotes the proper ty of being closed, then Wis class of all Я-closed spaces. 

Now, for any P , let M e W(P) if and only if M satisfies the Baire condition 
(is a Baire set), i. e. if there is a meager set N с P such t h a t (M — N) и 
и (N — M) is open in P . If P € W, we shall say t h a t P satisfies the absolute 
Baire condition or, simply, t ha t P is a Baire space. We give now an internal 
characterization of Baire spaces. 

7. Theorem. The following properties of a completely regular P are equivalent: 
(i) P is a Baire set in ßP; 

(ii) P is a Baire set in some compactification of P ; 
(iii) P is a Baire set in every compactification of P ; 
(iv) P is a Baire set in every completely regular extension R of P ; 
(v) P is a union of a meager subset and a subset which is a Gs-space. 

8. Problem. To give an internal characterization of spaces P e W, W denoting 
the property of being a Borel set. » 
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Резюме 

О QrUРОСТРAHGTBАХ 
(Предварительное сообщение) 

З Д Е Н Е К ФРОЛИК (Zdenëk Frolik), Прага 

(Поступило в редакцию 10/XI. 1958 г.) 

Мы называем пространство Хаусдорфа P G ̂ -пространством, если Р яв
ляется 6г£-множеством в любом пространстве Хаусдорфа В, в котором 
Р содержится как плотное подмножество, пространством Бэра, если Р имеет 
в любом таком R свойство Бэра (т. е. отличается от некоторого открытого 
в R множества только на множество первой категории). В статье дается 
„внутренняя" характеризация О ̂ -пространств и пространств Бэра. До
казательства будут опубликованы отдельно. 
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