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AN EXAMPLE CONCERNING COUNTABLY COMPACT SPACES

ZpENEK FroLik, Praha

(Received May 23, 1959.)

In the present note a Hausdorff topological space P is constructed
such that P is not countably compact and every open point-finite
covering of P contains a finite subcovering.

A topological space is said to be countably compact if it contains no infinite
discrete closed subset. In [2] and [3] the following theorem is proved:

Theorem 1. Every point-finite open covering of a countably compact space
contarns a finite subcovering. If a space P is reqular and if every point-finite open
covering of P contains a finite subcovering, then P is countably compact.

The following simple example is known of a 7', - space P such that P is
not countably compact and every point-finite open covering of P is finite.
For an uncountable set P a topology is defined such that closed sets are precisely
P, @ and all countable sets. In [2] an example is given of a Hausdorff space R
possessing the following two properties:

(a) R contains a discrete closed subset of potency 22V,

(b) If {U} is an open covering of R and if the family {U} is point-finite,

then the covering {U} contains a finite subcovering.

In the present note an example is given solving a problem raised in [2]
and [3].

Example. There exists a Hausdorff space P such that
(1) P contains an infinite closed discrete subset (1. e., P is not countably compact).
(2) Every point-finite open covering of P contains a finite subcovering.

Construction. Let J be the interval {x; 0 < x << 1} of real numbers.
Denoting by T' the set of all countable ordinals, we order the set S =T X J
lexicographically, i. e. (y, ) > (9, y) if and only if either y > 6 or y = 6 and
x > y. The ordered set S with the order topology is a topological space which
will also be denoted by S.Let N be the set of all positive integers. We define
a topology for the set P = § u N in the following manner. The space § is an
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open subspace of P. It is sufficient to define local bases at points of N. Let
K,(n e N) be the set of all real numbers of the form ¢/2”, where ¢ is odd integer
and 1 =<4 <27 For ne N, yeT and an open subset ¢ of the open interval
(0, 1) such that K, c G, we define

U G, y) = (n) v U{6) x G;0eT, d>y}.

The family {U,(G, y)}¢,, is by definition a local base at the point n. It is
easy to show that the topological space P is a Hausdorff space.

Now we shall prove that the space P satisfies the conditions (1) and (2).
The subspace N is discrete and closed in P and therefore the condition (1)
is satisfied. First we state two lemmas.

Lemma 1. Let {G,} be a sequence of open subsets of the open interval (0, 1)
such that for each n e N there ts a ke N with K, c G,. Then the sequence {G,}
s not pornt- fzmte 1. e., there exists a x € (0,1) such that the set

{n;meN, xel,}
18 infinite.

Lemma 2. The space S is countably compact.

The proof of lemma 1 is quite elementary and may be left to the reader.
Now we shall prove lemma 2. Assume that R is an infinite subset of S. Putting

’V :{x;xes’ (7: )§x§(7+ 1’0)}
for y € 7', we see that J(y) and the closed interval (0, 1> of real numbers are
homeomorphic to each other. It follows that if for some y € T' the set B n J(y)
is infinite, then R has an accumulation point in J(y). If for each y €T the
set B n J(p) is finite, then there exists an infinite set 7" c T such that
yel"=Jy)n R + @.
It is well-known that the space 7' is countably compact. It follows that there
exists an accumulation point ¢ of the set 7" in the space 7. Clearly the point
(9, 0) is an accumulation point of the set R. This completes the proof.

Proof of condition (2). Let % be an open point-finite covering of the
space P. By lemma 2, the space S is ¢ountably compact and therefore accord-
ing to theorem 1, there is a finite family %’ c U such that

ScU{4; 4%} .
Consequently, to prove the condition (2), it is sufficient to show that the set
W —={4;4¢%, AnN+ad} °
is finite. Suppose the contrary, that A, is infinite. Arranging a countably
infinite subset of 2, in a sequence {4,;n e N} we choose a k,eAd, n N.

The sets 4, are open and therefore we can choose peints y, € T and sets G,
open in the open interval (0, 1) such that &, > K;_ and

Un = Uk,L(Gm Vn) c A’n .
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There exists a y e T' such that y, <y for n ¢ N. From lemma 1 we conclude
that the sequence {U, n J(y)} is not point-finite. It follows that the sequence
{4,} is not point-finite and consequently, the family 9 is not point-finite.
But this is a contradiction. The proof of the condition (2) is complete.
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Peswome

HPUMEP, KACAIOIUNCS CHETHO-KOMITAKTHBRIX MPOCTPAHCTB

3HEHER ®POJINK (Zdensk Frolik), ITpara

B crarbe mocrpoeno npocrpancrso Xaycpopga P, umelolee cieyomme
cBolicTBa:

(1) P He siBisiercst CUYCTHO KOMIIAKTHBIM, T. €., P comepskur Geckomeunoe
3aMKHYTOC JUICKPCTHOC MHOKCCTBO.

(2) Besxoe ToueuHo-KOHEUHOE OTKPBITOE TOKPHTHE TpocrpaHcrBa P cojep-
FKAT KOHCYHOC ITOKPHITHE.
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