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Чехословацкий математический журнал, т . 10 (85) I960, Прага 

AN EXAMPLE CONCERNING COUNTABLY COMPACT SPACES 

ZDBNÈK FROLÎK, Praha 

(Received May 23, 1959.) 

In the present note a Hausdorff topological space P is constructed 
such that P is not countably compact and every open point-finite 
covering of P contains a finite subcovering. 

A topological space is said to be countably compact if it contains no infinite 
discrete closed subset. In [2] and [3] the following theorem is proved: 

Theorem 1. Every point-finite open covering of a countably compact space 
contains a finite subcovering. If a space P is regular and if every point-finite open 
covering of P contains a finite subcovering, then P is countably compact. 

The following simple example is known of a Tx - space P such tha t P is 
not countably compact and every point-finite open covering of P is finite. 
For an uncountable set P a topology is defined such tha t closed sets are precisely 
P, Ф and all countable sets. In [2] an example is given of a Hausdorff space R 
possessing the following two properties: 

(a) R contains a discrete closed subset of potency 22*0, 
(b) / / {U} is an open covering of R and if the family {U} is point-finite, 

then the covering {U} contains a finite subcovering. 
In the present note an example is given solving a problem raised in [2] 

and [3]. 

Example. There exists a Hausdorff space P such that 
(1) P contains an infinite closed discrete subset (i. е., Р is not countably compact). 
(2) Every point-finite open covering of P contains a finite subcovering. 

C o n s t r u c t i o n . Let J be the interval {x; 0 ^ x < 1} of real numbers. 
Denoting by T the set of all countable ordinals, we order the set 8 = T x J 
lexicographically, i. e. (y, x) > (ô, y) if and only if either y > ö or y = ô and 
x > y. The ordered set 8 with the order topology is a topological space which 
will also be denoted by 8. Let N be the set of all positive integers. We define 
a topology for the set P = 8 и N in the following manner. The space S is an 
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open subspace of P . I t is sufficient to define local bases at points of N. Let 
Kn{n e N) be the set of all real numbers of the form i/2n, where i is odd integer 
and 1 ^ i <̂  2n. For n e N, y e T and an open subset G of the open interval 
(0, 1) such tha t Kn с G, we define 

Un(G, y) = (n) и U {((3) x f f ; ^ T J > y } . 

The family {Un(G, y)}c,y is by definition a local base at the point w. I t is 
easy to show tha t the topological space P is a Hausdorff space. 

Now we shall prove tha t the space P satisfies the conditions (1) and (2). 
The subspace N is discrete and closed in P and therefore the condition (1) 
is satisfied. First we state two lemmas. 

Lemma 1. Let {Gn} be a sequence of open subsets of the open interval (0, 1) 
such that for each n e N there is а к e N with Kk с Gn. Then the sequence {Gn} 
is not point-finite, i. е., there exists a x e (0,1) such that the set 

{n; n € N , x e Gn} 
is infinite. 

Lemma 2. The space S is countably compact. 
The p r o o f of lemma 1 is quite elementary and may be left to the reader. 

Now we shall prove lemma 2. Assume tha t R is an infinite subset of S. Put t ing 

J(y) = {x; xeS, (y,0)<x^ (y + 1, 0)} 

for y e T9 we see tha t J(y) and the closed interval <0, 1> of real numbers are 
homeomorphic to each other. I t follows tha t if for some y e T the set R n J(y) 
is infinite, then R has an accumulation point in J(y). If for each y e T the 
set R n J(y) is finite, then there exists an infinite set T' с Т such tha t 

уеТ'=> J {y) n R * Ф . 
I t is well-known tha t the space T is countably compact. I t follows tha t there 
exists an accumulation point ô of the set T' in the space T. Clearly the point 
(ô, 0) is an accumulation point of the set R. This completes the proof. 

P r o o f of c o n d i t i o n (2). Let % be an open point-finite covering of the 
space P. By lemma 2, the space 8 is countably compact and therefore accord­
ing to theorem 1, there is a finite family 21' с 31 such tha t 

Sc\){A\Ae %'} . 

Consequently, to prove the condition (2), it is sufficient to show tha t the set 
Ш1 = {А;АеШ, A n N * Ф} Ч 

is finite. Suppose the contrary, tha t Шг is infinite. Arranging a countably 
infinite subset of %г in a sequence {An; n e N} we choose a hn с An n N. 
The sets An are open and therefore we can choose points yn e T and sets-Gn 

open in the open interval (0, 1) such tha t Gn э Кк and 
Un = UK(Gn, yn) с Ап . 
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There exists a y e T such tha t yn < у for n € N. From lemma 1 we conclude 
tha t the sequence {Un n J(y)} is not point-finite. I t follows tha t the sequence 
{An} is not point-finite and consequently, the family 31 is not point-finite. 
But this is a contradiction. The proof of the condition (2) is complete. 
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Р е з ю м е 

ПРИМЕР, КАСАЮЩИЙСЯ СЧЕТНО-КОМПАКТНЫХ ПРОСТРАНСТВ 

ЗДЕНЕК ФРОЛИК (Zdenëk Frolik), Прага 

В статье построено пространство Хаусдорфа Р, имеющее следующие 
свойства: 

(1) Р не является счетно компактным, т. е., Р содержит бесконечное 
замкнутое дискретное множество. 

(2) Всякое точечно-конечное открытое покрытие пространства Р содер­
жит конечное покрытие. 
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