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Чехословацкий математический журнал т. 11 (86) 1961, Прага 

APPLICATIONS OF COMPLETE 
FAMILIES OF CONTINUOUS FUNCTIONS TO T H E THEORY 

OF Q-SPACES 

ZDENÈK FROLIK, Praha 
(Received December 9, 1959) 

In the present paper the concept of a complete family of continuous 
is introduced and applied to the theory of N( m) -spaces (intersections 
of m iV-sets in their Stone-Cech extensions) and, in particular, Q-spaces. 
JV(m)-spaces may be defined as the inverse images under continuous 
closed compact mappings to the topological product of m real lines. 
The section 3 is devoted to the problem, under what conditions on the 
mapping is the image of a N(m)-space (in particular, of a Q-space) an 
ÎV(m)-space (a Q-space, respectively). 

In [2] the concept of a complete indexed family of open coverings of a space 
has been introduced. For convenience, we recall the definition. An indexed 
family of open coverings 

(1) №a,aeA} 

is said to be complete if the following condition is satisfied: 
If {F} is a centered family of closed subsets of P such tha t for each a in A 

there exists a Va in 2Ba containing some Fa e {F}, then П{^} Ф 0-
In [2] the following theorem was proved: 
A completely regular space P is an intersection of m open sets in every 

compact extension of P if and only if there exists a complete indexed family (1) 
of open coverings of P such tha t the potency of A is m. 

In the present paper we investigate spaces possesing a complete family of 
open coverings (1) of a special sort. If / is a continuous real-valued function 
on P then the open cover consisting of sets 

{x; \f(x)\ < n) , n — 1, 2, . . . 

will be denoted by 2B(/). We shall consider coverings of the form 2B(/) only. 
We shall prove t ha t a completely regular space P possesses a family of conti
nuous functions % such tha t 
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is complete (such a family g is said to be complete) if and only if there exists 
a indexed family {Nf; f e §} of JV-sets in ßP such tha t 

If the potency of § is a t most m, then such spaces will be called N(m)-spaces. 
A space is a Q-space (for Hewitt 's definition of Q-spaces see [3]) if and only if it 
is a N(m)-space for some cardinal m. 

If / is a continuous function, then / is bounded on a set M if and only if there 
exists a set in 2B(/) containing M. Thus we obtain a definition of complete 
families of continuous functions which does not use coverings 

In section 1 we shall study complete families of continuous functions on an 
arbitrary space. For convenience we shall use a more general definition of 
a complete family. But for completely regular spaces both definitions are 
identical. 

In section 2 we shall investigate complete families on completely regular 
spaces, more precisely, we shall s tudy iV^mJ-spaces (in particular, Q-spaces) 
using the concept of a complete family of continuous functions. 

The section 3 is devoted to the question: 
Let Ф be a mapping from a iV(m)-space onto a space Q. Under what condi

tions on Ф may we assert t ha t Q is a JV^mJ-space. 
If 3 is a family of sets, then the intersection of =3 will be denoted by f)3> 

tha t is 

For convenience we shall use the following convention: If F is a property of 
sets, then a indexed family {Ma; a e A} is said to have the property F if the set of 
all Ma has the property F . If F is a property of indexed families, then a set SD? 
has the property F if the indexed family {M; M e 9JÎ} has the property F . 

A topological space (in the sequel a space, merely) P is said to be an extension 
of a space R if R is a dense subspace of P . An extension P of R is said to be 
Hausdorff, regular, completely regular, compact if P is a Hausdorff, regular, 
completely regular, compact space, respectively. The Cech-Stone extension of 
a completely regular space P will be denoted by ßP. I t is well-known tha t ßP 
is the compact extension of P uniquely determined by the property: 

every bounded real-valued continuous function on P has a continuous 
extension over /?P. 

I t is also well-known tha t if К is a compact extension of P , then there exists 
one and only one continuous mapping Ф from ßP onto К such tha t the re
striction of Ф to P is the identity mapping. This mapping will be called Cech-
Stone mapping. 

Function will always mean a real-valued function. A subset Ж of a space, is 
said to be a Z-set if there exists a continuous function / on P such tha t 

M = Z(f) = {x; f(x) - 0} . 
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A subset Ж of a space P is said to be a JV-set if P — M is a Z-set,- We shall use 
the notation 

N(f) = {x; f(x) ф 0} . 

1. COMPLETE FAMILIES OF FUNCTIONS 

1.1. Definition. Let Щ be a family of continuous functions on a space P. 
§ is said to be complete if the following conditions is satisfied: 

1.1.1. If ^ is centered family of Z-sets in P and if for each / in % there exists 
a Zf in 3 such tha t / is bounded on Zf, then П З Ф 0. 

N o t e . We have at once tha t a family of continuous functions containing 
a complete family is a complete family. 

1.2. Lemma. Let £ be a maximal centered family of Z-sets in a space P such that 
the intersection of every countable subfamily is non-void. For every continuous 
function f on P there exists a Z in% on which f is bounded. 

Proof . Let / be a continuous function on P. For every n = 1, 2, . . . denote by 
Zn the set 

(2) {x;xeP, \f(x)\ ^ n} . 

If for some n the set Zn does not belong to =3, then there exists a Z in 3> with 
Zn n Z = 0. Then \f(x)\ <£ тг for ж in Z and hence / is bounded on Zf In the 
other case we have Zn€$ for every n = 1,2, ... By our assumption we have 

Zo = C\Zn^0. „ 
n = l 

According to (2) 
xe Z0 => \f(x)\ 2> тг •/•„.<,< 

for every w, which is impossible since / is finite-valued. 

As an immediate consequence of 1.2 we have 
1.3. Theorem. / / there exists a complete family of continuous functions on 

a space P, then the following condition is satisfied: 

1.3.1. If $ is a maximal centered family of Z-sets in P such that the intersection 
of every its countable subfamily is non-void, then f | 3 =t= 0. 

1.4. Lemma. Let % be a maximal centered family of Z-sets in P. If the inter
section of some countable subfamily of =3 is empty, then there exists a continuous 
function f on P which is bounded on no Z in %. 

Proof . Let {Zn} be a sequence in »3 such tha t 

(3) п'я« = 0. , . 
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Choose continuous functions fn on P such tha t Zn = Z(fn) and 0 ^ / n ^ 1 
00 

Consider the continuous function g = 1// where / — y — /w. Clearly: 
«= i 

1 
ж € П Zi => /(я?) ^ 5 ; , 

n 

and hence, gr(a;) ^ 2n for each x in П^г- ^ follows immediately tha t / is bounded 
on no Z in g. £==1 

As a corollary of 1.4 we have: 

1.5. Theorem. / / a space P satisfies the condition 1.3.1, then the family of all 
continuous function is complete. 

1.6. Definition. A space is said to be quasi-compact if the intersection of 
every centered family of Z-sets is non-void. A subspace R of P is said to be 
relatively quasi-compact in P if the following condition is satisfied: 

1.6.1. If 3 is a family of Z-sets in P and if J n R is a centered family, then 

ПЗ n R Ф 0. 
N o t e . Evidently every Z-set of a quasicompact space P is relatively quasi-

compact in P . Moreover, every intersection of Z-sets of a quasi-compact space P 
is relatively quasi-compact in P. For further information see [1], 200—202. 

1.7. Theorem. Let % be a family of continuous functions on a space P . % is 
complete if and only if the following two conditions 1.7.1 and 1.7.2 are satisfied: 

1.7.1. / / F is intersection of Z-sets in P and if every f e $ is bounded on F, then 
F is relatively quasi-compact in P . 

1.7.2. / / {Zf; f €%} is a centered indexed family of Z-sets and if f is bounded on 
Zfi then 

П{Я, ; /*8}*0 . 
Proof . The necessity of conditions 1.7.1 and 1.7.2 is quite obvious. To prove 

the sufficiency, suppose tha t 3 is a centered family of Z-sets in P and tha t for 
each / in § there exists a Zf in =3 on which / is bounded. By 1.7.2 the set 

F=n{Zf;fe%) 
is non-void. By 1.7.1 the set F is relatively quasi-compact in P . Consequently, 
to prove П З ф 0 it is sufficient to show tha t =3 о F is a centered family. But if 
both Zx and Z2 belong to J , there again by 1.7.2 the set 

(\{Z1 n Z 2 о Zf;./€ g} = F n Zx n Z2 

is non-void. The proof is complete. 

We shall need the following 

118 



1.8. Lemma. / / 3 is a maximal centered family of Z-sets in P and if the Z-sets 
Z1? . . . , Zk cover some Ze $, then some Zt belongs to 3,. 

Proof . Suppose on the contrary tha t no Z^ belongs to >$• According to the 
maximality of £ there exist Z\ e 3> i = 1, 2, . . . , k, such tha t Zi n Z\ = 0. Then 

к 
Z n (\Z'i belongs to $, which is impossible since 

Z n (XZ'icZ - U 2 , = 0 . 
i = i i = i 

This contradiction completes the proof. 

Now we proceed to characterize complete families in terms of mappings of 
a special sort. 

1.9. Definition. A mapping from P to Q is said to be quasi-compact if the 
inverse image of every point of Q is relatively quasicompact in P . A mapping 
from P to Q is said to be a Z-mapping if the image of every Z-set of P is closed 
in Q. 

1.10. Theorem. Let ЩЬеа family of continuous functions on a space P . Consider 
the space 

Я® = X{Ef;fe$}, 

where the Ef are real lines; and also the continuous mapping Ф : P -> E% defined 
as follows: 

Ф(аО = {/(*); / * S b 
jPAe family Щ is complete if and only if Ф is a quasi-compact Z-mapping of P 

toE®. 

Proof . First let us suppose tha t % is a complete family. To prove quasi-
compactness of Ф we shall show tha t 

1.10.1. The inverse image of every compact subspace К of E® is relatively 
quasi-compact in P . 

I t is easy to see t ha t every function / from Щ is bounded on Ф~г[К]. Indeed, 
we have we have f(x) = щ(Ф(х)) and {[Ф~г[К] = щ\К] where nf9 denotes the 
projetions of E® onto Ef. Since nf is a continuous function and К is a compact 
space, 7if[K] is a compact subspace of Eu and consequently, nf[K] is a bounded 
subspace of Ü7y> (in the usual metric). К is a compact subspace of the completely 
regular space E® and therefore К is an intersection of Z-sets in E®. Since Ф is a 
continuous mapping, it follows at once tha t /-1[./Г] is an intersection of Z-sets in 
P . By Theorem 1.7 the subspace / - 1[/Г] of P is relatively quasi-compact in P . 
Thus 1.10.1 holds a n d 0 is a quasi-compact mapping. I t remains to prove tha t 
Ф is a Z-mapping. Let Z0 be a Z-set in P . Suppose on the contrary tha t 0[ZO] = 
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s 

= F is not closed in E®. Then we may choose y =? {£//; / e §} in P — P . Consider 
the family 

3 = {Zn,f; / e g , n = = l , 2 , . . . } u (Z0) 

of Z-sets in P , where 

Zn#/ = \x; x € P , |/(ж) — yf\ S ~ | . 

The point y being an accumulation point of F, the family >j is centered. Moreo
ver, each / in § is bounded on Zn%t. I t follows tha t Л 3 Ф 0« But this is impossible 
since 

and by our assumption у does not belong to F = Ф[<20], t ha t is, П З == $• This 
contradiction completes the proof of necessity. 

To prove sufficiency let us suppose tha t Ф is a quasi-compact Z-mapping. 
Let 3, be a maximal centered family of Z-sets in P and suppose tha t for each / 
in § there exists a Z r in =3 such tha t / is bounded on Zf. From quasi-compactness 
of Ф it follows at once tha t it is sufficient to prove the existence of a point у = 
z=z {У/î / € §} m ^ such tha t 3 n Ф~х[^/] is a centered family. We proceed to 
construct such a point y. 

Choose / in §. By our assumption / is bounded on Zf. Hence, there exists 
a bounded interval If of Ef such t h a t 

mi с if. 
1 

Let Kl9 . . . , Kh be a finite cover of i / by closed intervals of lenght less than —. 
Since f-^Ki] are Z-sets in P and 

it follows at once from lemma 1.8 tha t for some i = 1, . . . , к, /-1[^Гг] belongs 
to£. 

Thus, for every w = 1 ,2 , . . . and for each / in § there exists a closed interval 

KnJ in JEy of length less than — such tha t 

ZnJ = t1[Kntfle3. 

Evidently for every / in §, {Kn/, n — 1, 2, . . .} is a centered famity of compact 
sets. I t follows tha t 

00 

This intersection contains only one point, namely yf> since the lengths of Kn%f 

converge to zero with n •«->• oo. The point {«//; /e§} will be denoted by 2/. Since 
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Ф[Р] is a closed subspace of E®, у belongs to Ф[Р]. I t remains to prove tha t 
>5 n Ф"1^] is a centered family. I t is of course sufficient to show tha t 

Z € 3 => Z n Ф~г[у] Ф 0 -
Let us suppose on the contrary tha t some Z in £ does not meet Ф""1^]- The 
mapping Ф is a Z-mapping and hence F = Ф[£] is a closed subspace of E®. By 
our assumption ?/ does not belong to F. In consequence, there exists a neigh
borhood U oî y which does not meet F. Since the lengthts of Knj converge to 
zero with n ->"0, there exist Kt = Knijt (* == 1, . . . , fc) such tha t 

n/r1№]nZ = 0. 
i = l 

But this is a contradiction, since fï [K{] belong to 3- The proof is complete. 

As a corollary of 1.10 and 1.10.1 we have 

1.11. Theorem. / / Ф is a quasi-compact Z-mapping from P to the topological 
product В of a family of real lines, then the inverse image of every compact subspace 
of E is a relatively quasi-compact subspace of P. 

2. Q-SPACES AND iV(m)-SPACES 

In this section we shall study complete families of continuous functions on 
a completely regular space. 

2.1. Definition. Let m be a cardinal number. A space P is said to be an 
N(m)-space provided t h a t P is completely regular and there exists 
a complete family § of continuous functions on P such tha t the potency of $ is 
fg m. A space is said to be an exact iVr(m)-space provided tha t it is an N(m)-
space but not an IV^nJ-space for any cardinal n < m. A space is a Ç-space if it is 
an iV^îTO-space for some cardinal m. 

Thus a completely regular space is a Ç-space if and only if the set of all conti
nuous functions is complete. 

2.2. Definition. A mapping Ф of P to Q is said to be compact if the inverse 
images of points of Q are compact spaces. Ф is closed if the image of every 
closed subset of P is closed in Q. 

2.3. Lemma. A relatively quasi-compact subspace R of a completely regular 
space P is a compact space. A quasi-compact mapping from a completely regular 
space to a space is a compact mapping. A quasi-compact Z-mapping from a com
pletely regular space to a space is a compact closed mapping. 

Proof . Let R be relatively quasi-compact in a completely regular space P. 
Let {F} be a centered family of closed subsets of R. Let 3 be the family of all 
iv-sets in P such tha t for some F in {F} the inclusion FP с Z holds. Since P is 
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a completely regular space, we have Л <? = П{^}- By quasicompactness of R we 
have 

До ПЗ + 0-
Combining the above two relations we obtain Л{-^} Ф 9-

The second statement of the lemma is an immediate consequence of the first. 
To prove the third statement let us suppose tha t Ф is a quasi-compact 

Z-mapping from a completely regular space P to Q. Then Ф is a compact map
ping and it remains to show tha t Ф is a closed mapping. Let î 7 be a closed sub-
space of P. Denote by >$ the family of all Z-sets in P containing F. Since P is 
completely regular, we have (\Я, = F. Pu t JF0 = 0[F]. I t is sufficient to prove 

The inclusion JPX Э i^0 is trivial. For the other one, suppose tha t there exists 
a point у in Fx — F0. We see a t once tha t 
(4) 3 n Ф-%] 
is a centered family of closed subsets of the compact space Ф~г[у]. Thus we may 
choose a point x in the intersection of the family (4). But this is impossible 
since 

X € П З = F , Ф(Х) = у ПОП € Ф[^] . 

From 1.7 and 2.3 we have 

2.4. Theorem. Suppose that % is a family of continuous functions on a comple
tely regular space P. $ is complete if and only if the following two conditions are 
satisfied: 

2.4.1. / / К is closed in P and if each f from % is bounded on K, then К is 
a compact space. 

2.4.2. / / {Zf; f €%} is a centered indexed family of Z-sets in P such that f is 
bounded on Zf, then 

n{3, ; /«8}*0. 
Definition, m being a cardinal number, denote by Em the topological product 

of tn real lines. 

As an immediate consequence of 1.10 and 2.2 we have 

2.5. Theorem. Let %bea family of continuous functions on a completely regular 
space P. Define É® and Ф as in 1.10. 

% is complete if and only if Ф is a closed compact mapping. 

2.6. Theorem. A space P is an N(m)-space if and only if P is completely regular 
and there exists a continuous closed compact mapping Ф from P to Em. 

Proof . First suppose tha t P is an iV(m)-space. Hence P is completely regular 
and there exists a complete family g of continuous function on P such tha t the 
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potency of Щ at most m. Without loss of generality we may assume tha t the 
potency of $ is m. Define E® and Ф as in 1.10. By 2.5 Ф is closed and compact. 

Evidently Ф is continuous and E® = Em. 
Conversely, let Ф be a continuous closed compact mapping from a completely 

regular space P to 
Em = X{Ea; a e A] 

where the potency of the index set A is m and the Ea are real lines. For each a 
in A denote by na the projection of Em onto Ea. Denote by fa the function 
ла(Ф). Every fa is continuous as the superposition of two continuous mappings. 
Evidently for each x in P , 

Ф(х) = {fa(x);aeA}. 

Applying 2.5 we obtain tha t the family of all fa is complete. 
If Ф is a closed compact mapping from P to Q and if F is a closed subset of P , 

then the restriction of Ф to F is a closed compact mapping. From this fact and 
from 2.5 and 2.6 we have at once 

2.7. Theorem. If $ is a complete family of continuous functions on a completely 
regular space P and if F is a closed subspace of P, then the family of the restrictions 
(to F) of all f еЩ is a complete family on F. Closed subspaces of N(m)-spaces are 
N(m)-spaces. 

Now we proceed to characterize N(m)-spaces as intersections of m N-sets in their 
Öech-Stone extensions. 

2.8. Proposition. Let ^ be a family of continuous functions on a completely 
regular space P such tha t / ^ 1 for each / in $. For each / in Щ denote by /* the 
continuous extension of 1// over ßP (1 / / is bounded). 

Then Щ is complete if and only if 

2.8.1. n W * ) ; / . g } = P . 
P roof . First let us suppose tha t 2.8.1 holds. Let =3 be a centered system of 

Z-sets in P such tha t for each / in Щ there exists a Zf in ^ on which / is bounded. 
ßP being a compact space, the set 

F0=(\{ZßP;Z€$} 
is non-void. I t is sufficient to show tha t F с P. According to 2.8.1 it is sufficient 
to show tha t 

(5) Zf с N{f*) 
for each / in $. / is bounded on Zf, 

xeZf=> \f{x)\ ^M 
say, and hence (/* is continuous) 

xeZf => |/*(»)| ^ i f - 1 

which implies (5). 
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To prove necessity, let us suppose tha t there exists a point x in 

Le t J be the family of all Z-sets in ßP containing x in their interior. Evi-

d e n t e 1 ^ n{Z;Z.® = WcßP-P. 

Thus J n P is a centered family of Z-sets in P with empty intersection. To 
prove tha t Щ is not complete, it is sufficient to show tha t for each / in Щ there 
exists a Zf in >? such t ha t / is bounded on Zf. Fix / e g Since /*(#) ф 0, there 
exist a Z r in 3 and an e > 0 with 

2 / € £ / = > | / * ( y ) | ^ e . 

If follows tha t y e Z n P => |/(2/)| ^ 1/e. The proof is complete. 

As an immediate consequence of 2.8 we have: 

2.9. Theorem. A completely regular space P is an N(m)-space if and only if 
there exists a set 9t of N-sets in ßP such that the potency of ïït is at most m and 
n{N;Ne$l} = P. 

Now we shall proceed to give the usual characterisation of Är(m)-spaces. 
First we prove the following crucial property of continuous closed compact 
mappings. 

2.10. Theorem. Let Ф be a continuous closed compact mapping from a regular 
space P to a space Q. There exists no proper regular extension E of P on which Ф 
may be continuously extended: 

Proof . Let us suppose, on the contrary, t ha t there exists a proper regular 
extension R of P and a continuous mapping Ф* from В to Q such tha t Ф is the 
restriction of Ф*. Choose x in R — P. Since Ф[Р] is a closed subset of Q (Ф is 
closed) and since by continuity of Ф* 

Ф*[В] с Ф[Р] 

we have at once tha t Ф*[Р] = Ф[Р]. Hence, there exists а у in Ф[Р] such tha t 
Ф*(х) = у. Denote by К the inverse image under Ф of у (that is, the set Ф[у]). 
Ф is a compact mapping, and consequently, К is a compact space. I t follows 
t ha t 

x non e KR = К . 

Since R is a regular space, we may choose a closed (in R) neighborhood F of x 
with F n К = 0. Consider the set F n P. Ф being a closed mapping, Ф[Р n P ] 
is a closed subset of Q. Since F n if = 0, it follows tha t 

2/ non e Ф[Р n P] . = Ф*[Р n P ] . 

But this is impossible, since Ф* is continuous, xe F n P and Ф*(#) = £/. This 
contradiction establishes the theorem. 
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2.11. Definition. Suppose tha t P and Q are completely regular spaces. 
A continuons mapping Ф from P to Q is said to be non-extensible if for any 
proper completely regular extension R of P and any continuous mapping Ф* 
from R to Q, the restriction of Ф* to P is different from Ф. 

Combining 2.6 and 2.10 we obtain a t once: 

2.12. Proposition. / / P is an N(m)-space then there exists a continuous non-
extensible mapping from P to Em. 

In the converse direction we shall prove: 

2.13. Proposition. Let us suppose that there exists a continuous non-extensible 
mapping Ф from a completely regular space P to Em. Then P is an N(m)-space. 

Proof . Introduce the same notation as in the proof of 2.6: 

E™ = X{Ea; аеЛ}, Ф(х) = {fa(x); aeA}. 

I t is sufficient to show tha t {/a; a e A} is a complete family. Suppose, on the 
contrary, t ha t {fa\ a e A} is not complete. Thus, there exists a maximal centered 
family 3 of Z-sets in P such tha t 

n{Z;Ze$} = 0 
and for each a in A there is a Za in >? such tha t fa is bounded on Za. ßP being 
compact and £ being a maximal centred family of Z-seis, the intersection of the 
family {ZßP; Z e >$} contains exactly one point, namely x. Since Ф is a non-
extensible continuous mapping, there exists a fa which is non-extensible over 
Pu (x), and clearly, since every bounded continuous function of P is extensible 
over ßP, there must be 

lim fa(z) = ± со . 
zeP 

But, x is contained in the closure of every Z in ^, and consequently, we have 

Z e ß => lim fa(z) = -J- oo . 
zeZ 
z->x 

Particulary, /0 is not bounded on Za. This contradiction establishes the Theo
rem. 

Combining 2.12 a 2.13 we obtain: 

2.14. Theorem. A completely regular space P is an N(m)-space if and only if 
there exists a continuous non-extensible mapping from P to Em. 

We shall need the following p r o p o s i t i o n (see [4] and [3]). 

2.15. A space is a Q-space if and only if it is homeomorphic with some closed 
subspace of Em for some m. 

P roof . Let % be the set of all continuous functions on P . Define E® and Ф as 
in 1.10 I t is well known tha t Ф is a homeomorphic mapping if and only if P is 
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a completely regular space. Now the statement follows from the note preceding 
1.2 and 2.5. 

Now we are prepared to prove the following theorem. 

2.16. Theorem. Let Ф be a continuous mapping from a completely regular 
space P to a Q-space Q. The following two conditions on Ф are equivalent: 

2.15.1. Ф is closed and compact. 

2.15.2. Ф is non-extensible. 

Proof . By 2.10 the assertion 2.15.1 implies 2.15.2. Conversely, suppose tha t 
Ф is non-extensible. By 2.15 there exists a homeomorphic mapping W of Q onto 
a closed subspace of Em for some cardinal m. We see at once tha t the super
position ХР(Ф) of W and Ф is a non-extensible mapping from P to Em. By 2.13 
ХР(Ф) is a closed compact mapping, and consequently, W being homeomorphic, 
Ф is a closed compact mapping. 

2.17. Theorem. Let P , Q and R be completely regular spaces. If Ф is a continuous 
closed compact mapping from P to Q and if W is a continuous closed compact 
mapping from Q to R, then the superposition of W and Ф is a continuous closed 
compact mapping. 

2.18. If Ф is a continuous closed compact mapping of a space P onto a compact 
space Q, then P is a compact space. (It may be noticed that if Ф is a continuous 
mapping fromP onto a compact space Q, then P is compact if and only if Ф is closed 
and compact.) 

The p r o o f of 2.18 is quite routine and may be left to the reader. 

As an immediate consequence of 2.17 we have: 

2.19. Theorem. A completely regular space P is an N(m)-space if and only if 
there exists a continuous closed compact mapping from P to an N(m)-space. 

2.20. Theorem. Let {Pa; a e A} be an indexed family such that Pa is an N(ma)-
space. Then the topological product P = X{Pa; ae A} is an N(tn)-space, where 
m = E{ma\ ae A}. 

To p r o v e 2.20 it is sufficient to show tha t : 

2.21. Theorem. Let {Pa; ae A} and {Qa; ae A} be indexed families of comple
tely regular spaces. For each a in A let Фа be a continuous closed compact mapping 
from Pa to Qa. 

Consider the product spaces P = X{Pa; ae A} and Q = X{Qa; ae A} and the 
mapping Ф = {Фа; а е A} defined as follows: 

Ф(х) = {Фа{ха);аеА}. 

The mapping Ф is continuous, closed and compact. 
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Proof . The proof of continuity is quite routine and may be left to the reader. 
Denote by na the projection of Q onto Qa. Let y be an element of Q. Clearly 

The spaces Ф~г[ла(у)] being compact, the space Ф~*[у] is compact by Tycho-
noff's theorem. Thus Ф is a compact mapping. I t remains to prove tha t Ф is 
a closed mapping. First, let F be a closed subset of P of the form 

(6) X{Fa;aeA} 

where Fa is a closed subset of Pa. Clearly 

0[F] = X{0a[Fa];aeA}. 

Фа being closed, the set Фа[Ра] is closed in Qa, and consequently, Ф[Р] is 
closed in Q. Now, let F be an arbitrary closed subset of P. Let SD? be the family 
of all closed subsets of P of the form (6), and containing F. Ф[М] being closed 
in Q, the set 

is closed in Q, and consequently, it is sufficient to show tha t F0 = 0[F]. Clearly 
F0 D 0[F]. Suppose tha t there exists а у in F0 — Ф[Р]. Thus Ф~%] = К is 
a compact subspace of P disjoint with F. Since 

n{M;MeW} = F , 

there exists a M in 9J? with Ж n if = 0. Ф[Ж] being closed, we have at once 
tha t y non € Ф[Ж] э FQ. This contradiction completes the proof of 2.21. 

Now we give another proof of 2.20 using 2.9 and Stone-Cech theorem (and 
also Tychonoff's theorem). By 2.9, for each a in A there exists a family 9ta of 
iV-sets in ßPa such tha t the potency of 9la is at most rna and 

Consider the space К = X{ßPa; ae A). Denote by na the projection of К onto 
ßPa. Let 91* be the family of all T P ; 1 ^ ] where N e 9*a. Denote by 91* the union 
of the indexed family {91*; a e A}. Evidently 91* is a family of iV-sets in К and 

n{N;NeW*} = P . 

Since the potency of 91* is a t most m, the space P is the intersection of m i^-sets 
in K. Let Ф be the Cech-Stone mapping from ßP onto К. Evidently 

П{Ф-ЧЖ1; ̂ 9 1 * } = P 
and Ф~г[Щ are JV-sets in ßP.-Ъу 2.9, the space P is an iV(m)-space. The second 
proof of 2.20 is complete. 

In conclusion we give a summary of definitions of N(m)-spaces: 

2.22. Theorem. The following condition on a completely regular space P are 
equivalent: 
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, (1) There exists a complete family % of continuous functions on P such that the 
potency of % is ^ nx. 

(2) There exists a continuous closed compact mapping from P to Em. 
(3) There exists a continuous non-extensible mapping from P to Em. 
(4) There exists a continuous closed compact mapping from P to an N(m)~ 

space. 
(5) There exists a continuous non-extensible mapping from P to an N(m)-

space. 
(6) P is an intersection of m N-sets in some compactification of P. 
(7) P is an intersection of m N-sets in ßP. 

3. IMAGES OF Q-SPACES 

All spaces are assumed to be completely regular. Let Ф be a continuous 
mapping from a Q-space P onto Q. Under what conditions on Ф may we assert 
t ha t Q is a Q-space? 

We recall tha t a subspace P' of P is said to be relatively pseudocompact in P, 
if for every sequence {Zn} of Z-sets in P such tha t {Zn n P '} is centered, the 

00 

intersection F n f l Zn ^s non-void. Equivalently, P' is relatively pseudo-

compact if and only if every continuous function on P is bounded on P't 

3.1. Theorem. Let Ф be a continuous mapping from P onto Q such that 
3.1.1. The images of Z-sets are Z-sets, that is, if Z is a Z-set in P, then 0[Z] is 

a Z-set in Q. 
3.1.2. The inverses of points under Ф are relatively pseudocompact, that is, for 

* each y in Q the subspace Ф~г[у] of P is relatively pseudocompact in P . 
Then if P is a Q-space, Q is also a Q-space. 
Proof . Let us suppose tha t >? is a maximal centered family of Z-sets in Q 

such tha t the intersection of every countable subfamily of ^ is non-void. Let %' 
be the family of all ф - 1 ^ ] where Z e £. Evidently, >?' is a centered family of 
Z-sets in P . Let =3" be a maximal centered family of Z-seto in P containing $'. 
We shall prove tha t the intersection of every countable subfamily of >$" is 
non-void. Indeed, let {Z'n} be a sequence of Z-sets in >}". By 3.1.1 the sets Zn == 

00 

= Ф№'п] are Z-sets in Q, and clearly Zn e *$. Choose a point у in П Zn. By 3.1.2 

we have , ,_ _ * „ , . _. 

P being a Q-space, the set (\{Z'\ Z' e %"} is non-void. Choose a point x in this 
intersection. Evidently 

0{y)eC\{Z;Ze%}. 
The theorem is proved. 
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We proceed to quotient mappings: 

3.2. The image of a Q-space under an open continuous mapping may fail to be 
a Q-space. 

Proof . Let us suppose tha t Q is not a Q-space and let 

Q = U{Ka;aeA}, 

where Ka are compact subspaces of Q. Finally, suppose the indexed set A 
endo we with the discrete topology is a Q-space. Under these assumptions we 
shall construct a Q-space P and a continuous open mapping Ф from P onto Q. 
Consider the product space R = Q X A and the subspace 

P = \J{Ka X a;aeA} 

of R. By 2.19 the space P is a Q-space. Indeed, the mapping x e Ka X a ~> a 
is a closed compact continuous mapping of P onto A. Denote by Ф the pro
jection map of P onto Q, i. е. Ф is the restriction of the projection of R onto Q. 
I t is easy to show tha t the mapping Ф is open and continuous. The proofs of 
existence of Q, Ka and A may be left to the reader. 

Modifying the construction in 3.2 (to consider the disjoint union) we obtain 
at once: 

3.3. The image of a Q-space under a compact open continuous mapping 
may fail to be a Q-space. 

N o t e . If the topological product P X Q is a Q-space (iV(m)-space), then both 
P and Q are Q-spaces (N(m)-spaces, respectively). 

We shall need the following assertion: 

3.4. Lemma. Let Ф be an open, closed and continuous mapping from P onto Q. 
Let fbea continuous function on P. For each y inQ put 

F(y) = sup {f(x); Ф(х) = у} . 

/ / F (y) is a real number for each у in Q, then F is a continuous function on Q. 

P roof . Let yQ be an element of Q and let e be a positive real number. For 
each x in X = Ф~г[у0] choose an open neighborhood U(x) of x on which / varies 
less than e. Denote by U the union of all U(x), xe X. Pu t 

V = и { Ф ~ % ] ; Ф-Ъ] с Щ. 

Ф being closed, V is an open subset of P . Evidently 

у€0[V] =>F(y) ^F(y0) + e. 

Ф being an open mapping, Ф[7] is an open neighborhood of y0. Thus F is an 
upper semi-continuous function. I t remains to prove tha t F is lower semi-
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s 
continuous. Choose a point XQ in X such that /(^o) > FiVo) "" "ö". C ĥoose an 
open neighborhood W of XQ such that 

s 
xeW^ f(x) > HXQ) — 2" • 

Ф being open, W = Ф[1^] is an open neighborhood of y^. We have at once 

yeW => F(y)> F(i/,)-~s. 

This estabKshes lower semi-continuity of F and completes the proof of 3.4. 

3.5. Proposition. Let us suppose that Ф is a closed open and continuous 
mapping from P onto Q. Let § be a complete family of continuous non-negative 
functions on P. Suppose that for each / in § the function F defined as in 3.4 is 
real-valued, that is, F is finite. Denote by Щ' the family of all F where f €%, 

Then §' is a complete family of continuous functions on Q. 
Proof. By 3.4 the functions F еЩ' are continuous. To prove completaess of 

%\ let 3 be a centered family of closed subsets of Q such that for each F in g' 
there exists аь Zp in '^ with F bounded on Zp. Denote by 3' the family of all 
0-^[Z] where Z e^. Evidently, 3 ' is a centered family of closed subsets of P. 
Moreover, for each / in § there exists a Z/ in J ' such that / is bounded on Zf. 
Indeed, if JF is a function corresponding to /, we may put Zf = 0~'^[Zp]. ^ being 
a complete family, we have 

F,==n{Z;Ze3^}^0. 

Clearly 0 [ J P J С П { ^ ; ^ ^ 3}. Thus §' is complete. 

As an immediate consequence of 3.5 we have: 

3.6. Theorem. Let Ф be a closed, open and continuous mapping from P onto Q. 
Suppose that the tranches of Ф {that is, the sets of the form Ф'~^[у], У ^ Q) are rela
tively pseudocompact spaces. If P is an N(m)-space, then Q is an N{m)-space. In 
particular, if P is a Q-space, then Q is a Q-space. 

4. iV^(l)-SPACES AND iS^(i^o)-SPACES 

4.1. Theorem. Let m ^ 1. J. discrete space M is an N(m)space if and only if it 
is homeomorphic with some closed subspace (discrete, of course) of B^, 

Proof. The theorem is obvious for finite m. Suppose ш ^ Щ. We shall use 
2.22, condition 2.22.2. To prove necessity let us suppose that Ф is a continuous, 
closed and compact mapping from M to E'^, The tranches of Ф being compact 
and discrete, they are finite. Thus M and Ф[Ж] has the same potency. The ima
ge under closed mappings of a discrete space is a discrete space. The discrete 
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spaces M and Ф[М] have the same potency, and consequently, they are 
homeomorphic. The sufficiency is obvious. 

As a corollary of 4.1 and of the fact t ha t E*° is a metrizable and separable 
space we have 

4.2. Theorem. The following conditions on a discrete space are equivalent: 

4.2.1. M is a N(l)-8pace. 
4.2.2. M is a N(X0)-space. 
4.2.3. The potency of M is at most K0. 

4.3. Theorem. The following conditions on a space P are equivalent 

4.3.1. P is a N(l)-space. 

4.3.2. There exists a continuous function f on P such that every closed sub-
space К of P is compact if and only if the function f is bounded on K. 

4.3.3. There exists a sequence {Kn} of compact subspaces of P such that Kn с 
00 

с int Kn+1 and U Kn = P-

4.3.4. P is locally compact and a-compact. 

Proof . By 2.4 the conditions 4.3.1 and 4.3.2 are equivalent. If / is the func
tion from 3.1.2 and if we p u t 

Kn = {*; \f(x)\ g n} , 

we obtain a sequence {Kn} satisfying 3.1.3. Thus 3.1.2 implies 3.1.3. Suppose 
3.1.3. Choose continuous functions fn, n = 3, 4, . . . , such tha t 

, п for x non e Кп_г , 
fn(X) = \ 

X 0 for X € i fи_2 
00 

and 0 fg fn(x) fg n for every x. P u t / = ]£/ n . Evidently, / is bounded on a set M 
i»=3 n 

if and only if the set M is contained is some finite union U K^ I t follows a t 

once tha t / satisfies 3.1.2, Thus 3.1.3 implies 3.1.2. The proof of equivalence of 
3.1.3 and 3.1.4 is quite routine and may be left to the reader. 

4.4. Theorem. A metrizable space is an N(l)-space if and only if it is separable 
and locally compact. 

Proo f . First suppose tha t P is a metrizable iV(l)-space. Evidently P is 
locally compact. By 4.2 and 2.7 the space P contains no uncountable discrete 
closed subset. Thus P is separable. Conversely, P being a separable and metri
zable space, P has a compact metrizable extension К. Р being locally compact,. 
P is open in K. An open subset of a metrizable space is an JV-set. Thus P is an 
jV-set of a compact space K. I t follows tha t P is an iV(l)-space. 
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Recall that a space P is said to be a G^-space if it is a G^-set in every extension. 
I t is well-known that a metrizable space is a G^-space if and only if there exists 
a metric <p for P such that (P, <p) is a complete metric space (for further infor
mations see [2]). By [2], theorem 2.8, a completely regular space P is a (r^-space 
if and only if it is a G^-subset of some compact space. Thus every iV(tf0)-space 
is a G^-space. 

4,5. Theorem. The following two conditions on a metrizable space P are equi
valent: 

4.5.1. P is an N(X0)-space. 
4.5.2. P is a separable Gd-space. 
Proof. As we note above, an iV^N^-space is a G^-space. Thus, to prove that 

4.5.1 implies 4.5.2, it is sufficient to show that every metrizable i№(80)-space is 
separable. By 4.2 and 2.7 the space P contains no uncountable discrete closed 
subspace. It follows that P is separable. Conversely, suppose 4.5.2. P being 
separable, there exists a compact metrizable extension К of P . P being a G8-
space, P is a G^-subset of K, and consequently, P is an N($0)-set in K. Thus P 
is an .ДГ(Я0)-8расе. 
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Резюме 

ПРИЛОЖЕНИЯ ПОЛНЫХ СЕМЕЙСТВ ФУНКЦИЙ В ТЕОРИИ 
ФУНКЦИОНАЛЬНО ЗАМКНУТЫХ ПРОСТРАНСТВ 

ЗДЕНЕК ФРОЛИК, (Zdenëk Frolik), Прага 

Подмножество N пространства Р называют iV-множеством, если сущест
вует непрерывная функция / на Р так, что 

N = N(f) = {х; х € P, f(x) + 0} . 

Если N является .^-множеством, то Р — N называют Z-множеством. 
Пространство Р называется функционально замкнутым (или Q-простран-
ством, см. [3]) если выполнено следующие условие: всякая максимальная 
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счетно центрированная система Z-множеств (т. е. максимальная система 
^-множеств такая, что любая счетная подсистема имеет непустое пересече
ние) имеет непустое пересечение. В статье дается определение ^-пространств 
при помощи полных семейств непрерывных функций. Семейство Щ непре
рывных функций называется полным, если выполнено следующее условие: 

Если 3 — такая центрированная система Z-множеств, что всякая функ
ция из § ограничена на некотором множестве из £, то пересечение системы 
3 не пусто. 

Оказывается, что вполне регулярное пространство является Q-простран-
ством тогда и только тогда, если семейство всех непрерывных функций 
полно. 

В статье определены т. наз. ^(ш)-пространства (m — некоторое карди
нальное число). Р называется ^(т)-пространством если существует пол
ное семейство {/е; е А} непрерывных функций на Р такое, что мощность 
множества А равна т . Итак, вполне регулярное пространство является 
Ç-пространством тогда и только тогда, если оно является ^(ш)-простран-
ством для некоторого т. Пусть Ф — отображение пространства Р в про
странство Q] Ф называется бикомпактным, если прообразы точек биком
пактны, замкнутым, если образы замкнутых множеств замкнуты; наконец, 
непрерывное Ф называется нерасширимым, если, какого бы ни было про
странство В, В > Р, В — Р, В Ф Р, отображение Ф нельзя расширить до 
непрерывного отображения пространства В в Q. Доказана следующая 

Теорема. Следующие свойства вполне регулярного пространства Р экви
валентны (m — кардинальное число): 

(1) Р является N(m)-пространством. 
(2) Существует бикомпактное. замкнутое и непрерывное отображение 

пространства Р в топологическое произведение tn прямых. 
(3) Существует непрерывное нерасширимое отображение пространства 

Р в топологическое произведение m прямых. 
(4) Р является пересечением m N-множеств в некотором своем биком

пактном расширении. 
(5) Р является пересечением m N-множеств с своем чеховском бикомпакт

ном расширении. 

В последней части рассматривается вопрос, при каких условиях не
прерывный образ ^(гп)-пространства является ^(т)-пространством. Ука
зывается, что достаточно предполагать, что отображение замкнуто, от
крыто, и полные прообразы точек относительно псевдокомпактны. 
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