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Ч Е Х О С Л О В А Ц К И Й М А Т Е М А Т И Ч Е С К И Й ЖУРНАЛ 
Математический институт Чехословацкой Академии наук 

Т. И (86) ПРАГА 30. IX. 1961 г., N0 3 

ON PERTURBED NONLINEAR BOUNDARY VALUE PROBLEMS 

O. VEJVODA, Praha 

(Received February 5, 1960 — in revised form February 10, 1961) 

The existence of a solution of a boundary value problem (0.1) is investi
gated under the assumption that we know how to solve the shortened bound
ary value problem (0.2). 

In particular the autonomous case (i. e. f and g do not depend on t expli
citly) is studied thoroughly and a class of these autonomous boundary value 
problems which show the same "anomalies" as problems with periodic bound
ary conditions is singled out. 

In this paper I prove some theorems on the existence of a solution of a nonlinear 

boundary value problem 

(0.1) x = f(r, x) + s g(t, x, 8) , u(x(a), x(b)) + 8 v(x(a), x(b), £) = 0 

where x, f, g, u and v are n-vectors, under the assumption that the existence of a solu
tion of some other more simple ("shortened") boundary value problem 

(0.2) Y = f(t,Y), u(Y(a),Y(b)) = 0 

is guaranteed. The shortened boundary value problem is got by equating to zero 
a "small" parameter 8. Then only those solutions of the original boundary value 
problem are sought for which tend to some solution of the shortened problem as 
8 -> 0. This method has been used until now as far as I know in problems with periodic 
boundary conditions only (especially when the shortened system of differential equat
ions was linear — so called quasi-linear systems) [1], [2], [3], [4]. 

To prove the theorems the variation-of-constants method for nonlinear systems and 
implicit function theorem are used as principal tools. Necessary theorems are listed 
in sec. 2. 

In sec. 1 some theorems on linear boundary value problems which are needed later 

are listed for the reader's convenience. (Maybe only remarks 1.1 and 1.2 are original.) 

See for instance [1], [5]. 

I wish to express my gratitude to DSc J. KURZWEIL whose advices contributed con
siderably to the improvement of this paper. 
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Some n o t a t i o n s and defini t ions. In this paper all given numbers, functions, 
matrices etc. are assumed real without saying so explicitly. 

If not stated otherwise a rz-vector means always a column n-dimensional vector. 
Given a m x / i matrix C, C will denote the transposed matrix. 
The inner product of two n -vectors u and v is defined as 

n 

U • v = Z uivj = u y = YU • 
1=1 

Given two m x n matrices A = (ajk), B = (bjk), A : B denotes the m x 2n matrix 

lalt ... aln blt ... bln\ 
A:B = 

\aml ...* amn bml . . . b 

The rank of a matrix C will be denoted by x(C). 
En will denote the n x n unit matrix. If no confusion can arise the index n will be 

omitted. 
Everywhere in the sequel Jf denotes the naturally ordered set {1, 2 , . . . , n}. If 9 

is a (naturally) ordered subset of Jf, then 9 denotes the (naturally) ordered comple
ment of £f with respect to Jf. (All subsets of Jf will be supposed naturally ordered.) 
The number of elements of a set si c Jf will be denoted by v(si). 

Let C be a n x n matrix and let J5? cz Jf\ Jt <= Jf. Then let the notation be intro
duced 

C<eji = M , P e -Sf , ^ e J . 

If ^# = ,yV, we shall write shortly C^ instead of C ^ . 
Similarly, if x is a n-vector and cSf c «yV, then 

*st = (* j) > J e J2\ 

The signs -f- and — are defined by 

x = Xg -j- x ^ , Xg = x --- x ^ . 

Let £" denote a n-dimensional Euclidian space. 
A closed (finite) interval a = t <* b will be denoted by <a, b>, an open interval 

a < t < b will be denoted by (a, b), a half-open interval a < t ^ b will be denoted 
by (a, b> and analogously in other cases. 

The notation F[x | V(x)~j will be used to denote the set of all points x having the 
property F(x). 

By a neighborhood 9l(c*, <5) of a point c* e £n we shall mean the open sphere 
3](c*, S) = F[c | ||c - c*|| < <S], (5 > 0. 

Point sets 36 and ?} being given, 36 x %) will denote the Cartesian product of these 
sets. 

Let f(x, y, z) be a vector-function of vectors x, y, z defined for x e 36, y e ?), z E 3, 
where 36, ?), 3 are open sets. We say that f(x, y, z) is of class CM'r on 3E x ?) x 3 
(and write f(x, y, z) e Cp,q,r) if it has continuous partial derivatives of order p or q or r 
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with respect to all components of the vector x or y or z, respectively, for (x, y, z) e 
e 38 x %) x 3- If the highest derivatives of order p with respect to x fulfil a Lipschitz 
condition with respect to the vector x, then we write f(x, y, z) e CpL'q,r and analo
gously in other cases. 

If the vector-function f(r, x) is defined for t e X, x e 38, where X is a finite closed 
interval <a, b> e F1, then by saying that f is of class C1 in f for ( l , x ) e J x 38 we 
mean that it is of class C1 in int X and has a right-hand derivative at a and a left-hand 
derivative at b with respect to t for all x e 38. 

Let f(x) be a m-dimensional vector-function of an rc-vector x of class C1 on an open 
set 38 c F". Then 

Dx 
(x) = fx(x) = f ^ (j = 1, 2, ..., m,k = l ;2 , ..., n) 

\0V 
will denote the m x n functional matrix of f(x). 

1. LINEAR BOUNDARY VALUE PROBLEMS 

Let us consider the system 

(1.1) /(x) = x + _4(l)x = 0 fx = — 

where x is an rc-vector and A(t) is a n n x w matrix of class C° on a finite closed interval 
<a, b}. 

Let u(x(a), x(b)) be an m-vector of m boundary value forms defined by 

u(x(a), x(b)) == M x(a) + N x(fe) , 

where M and N are two m x n constant matrices (m < 2n). 
If x(M : N) = m, we say that boundary forms have the rank m. 
Then 

(1.2) u(xfl, x,) = M x(a) + N x(b) = 0 

represents m boundary conditions of rank m. (For the sake of brevity we shall 
write xa, xb instead of x(a), x(b), respectively.) 

The system 

/*(x) = - x + A\t) x = 0 

(which is evidently equivalent with the system 

(1.3) /*X*) = - xv + xx -4(t) = 0 , 

is called the adjoint system to (l.l). 

Let M and N be constant (2n — m) x n matrices. Let the matrix 

'M N\ 

,M N) 
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be of rank 2n. Then boundary conditions 

ii(xfl, xb) = M x(a) + N x(b) = 0 

are called complementary boundary conditions to (1.2) and u(xa, xb) are called com
plementary boundary forms to u(xa, xb). 

Theorem 1.1. (Green's formula.) Let u(t) and v(t) be n-vectors of class C1 on 
<a, b>. Let a S h < h = b. Then 

t2[l(u) . v - u . I*(v)-] dt = u(t2) . v(t2) - u(..) . v(tl) . 

Theorem 1.2. (Boundary-form formula.) Let boundary forms u(xa, xb) defined by 
m x n matrices M and N be of rank m and let u(xa, xb) be any complementary 
boundary forms to u(xa, xb). 

Then there exist unique boundary forms u*(xa, xb) and u*(xa, xb) of ranks m and 
2n — m, respectively, such that for arbitrary n-vectors xa, xb, yfl and y5 

(1.4) x, . Yb ~ *a • Ya = "(**> xb) . i*(ya, yb) + ii(xa, xb) . u*(ya, yb). 

(Forms ii* and u* are called adjoint to forms u and u, respectively.) 
If ut is another system of complementary forms to u, and u* and u* are corres

ponding adjoint forms, then 

(1.5) u* = Ku* , 

(1.6) i* = i* + Lu* , 

where K is a regular (2n — m) x (2n — m) matrix and L is an m x m matrix. 

The relation (1.5) is known. The relation (1.6) can easily be proved with help of 
assertion (a) of the following 

Lemma 1.1. Let f and g be k-vectors. Let F be a regular k x k matrix such that 
the first j (1 S J < k) components of the vector f = Ff are identical with the first j 
components of f. Then there exists a unique regular k x k matrix G such that if 
g = Gg then f. g = f. g and has the following properties: 

(a) the first j components of g are equal to the first j components of g to which 
linear combinations of the last k — j components are added; 

(b) the last k — j components of g are linear combinations of the last k — j 
components of g with a regular coefficient matrix. 

Remark 1.1. (2n — m) x n matrices P, Q and m x n matrices P, Q defining 
adjoint boundary forms u* and u*, respectively, may easily be determined in an 
explicit form. 

Substituting the expressions for u, ii, ii* and u* into (1.4) we see that (1.4) is ful
filled for arbitrary xa, xb, ya and yfc if and only if 

PM + p M = - £ ? QVW + Q M = 0 , 

P N + p ft = 0 , Q N + Q N = £ . 
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Solving these two systems and writing 

<M N V 1 = /R R̂  

KM N) \S SJ 

where R and S are n x m matrices and R and S are n x {in — m) matrices, we get 

P* = - R , Pv = - R , 

Q = S , Q* = S . 
In virtue of 

/MN\/R R\ _ (M N\ Í-~PУ ~pЛ _ /%. o 
\м Ñ)\Š S) ~ \м Ñ) V Qł Q V 0 E2n. 

it follows 

- MP" + NQ" Ł m ? - MPУ + NQУ = 0 , 

- MPУ + ÑQX = o, - MP* + ÑQX = E2n_n 

Let u(x_, xfc) = 0 be boundary conditions of rank m. Then boundary conditions 
u*(xfl, xb) = 0, where u*(ya, yb) are boundary forms of rank 2n — m determined as in 
Theorem 1.2 are called adjoint boundary value conditions. 

Theorem 1.3. Boundary conditions 

u*(xfl, xb) ~ P x(a) + Q x(b) = 0 

of rank 2n — m are adjoint to boundary conditions (1.2) of rank m if and on/y if 

~ MPS + NQX = 0 . 

If u(xa9 xb) is a system of m boundary forms of rank m, then the problem of finding 
on <a, b> solutions of the system 

l(x) = x + A(t) x = 0 , u(xa, x,) = 0 

is called a homogeneous boundary value problem (X) of rank m. 

The problem of finding solutions of the system 

(*(x) = 0 , u*(xfl, xfc) = 0 

on <a, b> is called the boundary value problem (A*) adjoint to (A). 

Theorem 1.4. Let 4>(t) be a fundamental matrix of solutions of (1.1). Then the 
problem (X) has exactly k (0 __ k __ n) linearly independent solutions if and only if 
the matrix M<&(a) + N<P(b) is of rank n — k. 

Theorem 1.5. If the problem (X) has exactly k linearly independent solutions, then 
the problem (A*) has exactly k + m — n linearly independent solutions. 

The problem of finding on <a, b> solutions of 

(L7) K*) = f> -(*-,x t)-y 
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where f(t) is of class C° on <a, b> and 7 is a constant m-vector (while f =|= 0 and 
y =j= 0) is called a nonhomogeneous boundary value problem associated with (X). 
(If y = 0 then the problem is called semi-homogeneous.) 

Theorem 1.6. The nonhomogeneous problem (1.7) has a solution if and only if 

(1.8) fV(t).^(t)dt = y . i . * (^ ,^ ) 

for every solution \\/(i) of the adjoint boundary value problem (A*). (For a semi-
homogeneous problem the right-hand side equals zero, of course.) 

Remark 1.2. According to relation (1.6) and to equality u*(^fl, ^b) = 0 for every 
solution \j/(t) of (A*) the condition (1.8) is evidently invariant with respect to the choice 
of the complementary boundary value conditions to u(xa, xb) = 0. 

2. AUXILIARY THEOREMS 

Theorem 2.1. (Variation-of-constants method for nonlinear systems.) Consider the 
system 

(2.1) x = f(t,x) + eg(t,x,e), 

where x, f and g are n-vectors. 
Let %be a one-dimensional closed bounded interval <a, b>. Let tj0(t) = tj(t, c0) be 

a solution of 

(2.2) y = f(u y) 

with an initial value tj(a, c0) = c0 defined on %. Let 

X = £[x I ||x - ti0(t)\\ < Q, t e %] , Q > 0 . 

Let (I be a one-dimensional interval <0, e0}, e0 > 0. 

Let f(t,x)eC0SL on % x 3c and g(t, x, e) e C°'0L'0 on % x 36 x g. Let £ = 
= £[c I ||c — c0|| < /i0], fi0 > 0, be such that every solution t\(t, c) of (2.2) with 
tj(a, c) = c e S remains in 38for t e%. 

Then there exist &1 = <0, et}, 0 < e1 <̂  e0 and (5X = £[c | ||c — c0|| < / i j , 
0 < \xl <; /i0 swch lhat every solution l;(t, c, s) of (2.1) where g G ^ with £(a, c, a) = 
= c e €x remains for t e% in 3c and is given by the formula 

(2-3) ^ M j - ^ ^ c e ) ) , 

w/iere C(r, c, e) is the solution of the integral equation 

(2.4) r(t) -= c + £ [ 9 ; i(Tj r ( x ) ) g(T> ,.(T; r(T))> e) dT _ 

The solution %(t, c, e) is of class Cl>0L>° on% x (& d 
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Proof. By the existence theorem and by the theorem on continuous dependence of 
solutions on initial conditions solutions ^(t, c) of (2.2) for t e X, c e S are of class 
C1,1L. Since 

ž(£м)-£м^£c t, c) , 
dt 

by the known formula 

det ( j £ (t, c)) = det ( j £ (a, e)) exp P ( £ %L (x, „(x, c) d t ) . 

Since det tyc(a, c)) = 1 and the integrand is for every (T, C) G X x (£ finite, 
det (fj(r, c)) + 0 and the inverse matrix ff"1^, c) exists for (t, c j e J x S . 

Hence, the right-hand side of (2.4) is for (T, F) e X x € defined and satisfies a 
Lipschitz condition in F. Therefore by the existence and uniqueness theorem and by 
the theorem on the continuous dependence of solutions on initial conditions and para
meters there exist sets (£i and S t mentioned above such that solutions C(l, c, s) of 
(2.4), where ^ e (£, exist, are uniquely determined and C(l, c, e) e (S for ?e2 ,CG Sx 

and e e ^ . Hence ff(i>, C(r, c, g)) is defined on J x ^ x (£i9 too. According to 
jy(a, c) — c and (2.4) i|(a, C(a, c, 2)) = c. 

By differentiating the function i/(t, C(t, c, e)) we find easily that it satisfies (2.1). 
Since the solution %(t, c, e) of (2.1) is by the assumptions of the theorem uniquely 
determined by initial conditions, the relation (2.3) as well as the whole assertion of the 
theorem readily follows. 

Let us recall the following two theorems: 

Theorem 2.2. (Mean value theorem.) Let f(t, x, e) be a k-vector function defined 
and of class C0 '1 '1 on the set X x 36 x £r where X = <a, b>> 36 is a convex domain 
in En, d = <0, ^0>, e0 > 0. 

Then for arbitrary t e X, x, x + h e dc and s e (J l/tere /zo/ds 

(2.5) flff,x + h,e) = f(r,x,0) + f — ( f , x + Sh, 9e) dS h + 
J o D * 

+ J - ( r , x + 5h, Se)d9e. 
J ode 

Theorem 2.3. (Implicit function theorem.) Let w(c, e) be a k-vector function defined 
and of class Cp,p (p = 1) on %l(c0, 5) x Q. where 91(c0, 8) is a neighborhood of the 
point c0 e Ek and (£ = <0, s0}, s0 > 0. Let 

(2.6) W(c0, 0) = 0 

and 

(2.7) d e t ( ^ ( e o , 0 ) ) * 0 . 
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Then there exists an interval Qt = <0, ex}9 0 < et _ fi0 such that for S E ^ there 
exists a unique solution c = c*(e) e Cp of the system 

(2.8) w(c, e) = 0 

such that c*(0) = c0. 

Theorem 2.4. Consider the equation 

(2.9) w(c, e) = u(c) + e v(c9 e) = 0 , 

where u, v and w are n-vectors and e is a scalar. 
Let the equation u(c0) = 0 have a real solution c0 = c*. Let (£0 = £[c | ||c — 

- c0|| < / / ] , ft > 0, d = <0,s0>, e0 > 0. Ler u(c)eC1Landv(c,£)GC0L '°for c e £ , 

£G(ř. Leř 

ҶsЦ*°-
T/ren there exists eu 0 < et = e0 such that there exists for each e e S x = <0, ex) 

fhe unique solution c = c*(e) of (2.9), which tends to c* as e -+ 0. 

The proof can easily be performed by help of the successive approximations 
method. 

3. GENERAL NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS 

We shall begin by considering the simple case when the shortened boundary value 
problem has a unique (isolated) solution. 

Theorem 3.1. Let the interval X = <a, b) be given. Consider the boundary value 
problem (v) 

(3.1) x = f(t, x) + eg(t, x, e) 

(3.2) w(xa9 xb9 e) = u(xa9 xb) + e v(xa9 xb9 e) = 0 , 

where x, f, g, u, v and w are n-vectors and e is a scalar "small" parameter (as before 
xa = x(a), xb = x(b)). Let the following assumptions be fulfilled. 

(I) Letty andZl be open sets in En and let g = <0, s0>, s0 > 0. Let u(p9 q) e C 1 L , 1 L 

and v(p, q, e) e C 0 L ' 0 L > 0 f o r p e f , q e& and e e £. 

(II) Let the system 

(3.3) y = f(t9 Y) 

have solutions ^(t9 c) with î (a, c) — c existing and staying in 36 for teX and for 
all c e (£, S an open set in En. 

Let the boundary value problem (v0) given by (3.3) and 

(3.4) u(Ya, yb) = 0 
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have a solution tj(t9 c*) where c* e (£ (so that c* is a solution of 

(3.5) u(n(a9 c), ,(6, c)) = 0 .) 

Let ij*(t) denote tj(t9 c*). Let 9* e$>, tj* e&. 

(III) Lef fhe variational boundary value problem (X) 

(3.6) i = fx(t,n*(t))z, 

("» I S - *> + IS- *) - ° • Lfc : ̂ ) = k w-,r): ̂  «• *). 
have lhe trivial solution only. 

(IV) Denote X = _[x I ||x - i|*(t)|| < g, f G £ ] , g > 0. Lef f(t, x) e C°>iL on 
X x 38 and g(f, x, e) e C°'0L'° on X x 36 x g. 

Then there exists for sufficiently small e > 0 a unique solution §(/, c*(e), g) (wit/i 
£(a, c*(g), s) = c*(g)) of the problem (v) which tends to the solution q*(t) of (v0) as 
e->0. 

Proof. By Theorem 2.1 there exist an open set S t _ (£ and a set Si = <0, s ^ , 
0 < gj ^ e0, such that every solution Z(t9 c, e) of (3.1) where £ E ^ with £(a, c, e) = 
= C G S J stays in 36 for * eX and that £(a, c, e) e$J), £(b, c, s) eQ, for c e (S1? e e Sx. 
By the same theorem the solution %(t9 c, e) may be written for C G ^ and 8 e Sj in the 
form (2.3) where C(t9 c, e) is the solution of (2.4) (ij(t9 c) has of course the same 
meaning as in the assumption (II)). 

Inserting (2.3) into (3.2) we get 

(3.8) u(tj(a9 c) , tj(b9 C(b9 c, a)) + B v(n(a, c) , tj(b9 C(b9 c, e)), s) = 0 . 

This is a system of n necessary and sufficient conditions for components of the initial 
vector c = c(s) such that £(f, c(s), e) be a solution of (v). 

Letting in (3.8) s -> 0 we get (denoting c(0) = c0) 

(3.9) u(n(a9c0)9 tj(b9co)) = 0. 

By the assumption (II) this equation has a real solution c0 = c^. Let us show that 
the jacobian of (3.9) is nonvanishing at the point c0 = c*. 

Indeed, tjc(t9 c*) being a fundamental matrix of solutions of (3.6), the matrix 

u(c*\ _ Du / * „*x Dn*a , Du * * Diy* 
u l c o) = — (9«, ft) -7— + — (Va'lbf-zr-

Dxa Dc Dxb Dc 
has to be (by the assumption (III) and by Theorem 1.4) of rank n, which means that 
dett/(c*) 4= 0. But det (U(c0)) is evidently the jacobian of (3.9) with respect to c0 at 
the point c = c*. 

Denote 
f*b 

ð = V/c Чт> c ( т > c>£)) s(т> v(т> c ( т > c> £)>£) <-i 
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and applying the mean value theorem write (3.8) in the form 

u(n(a, c), n(b, c) + e ( —— (n(a, c), iy(b, c + Seg). 
(3.80 LJoVDx, 

. - ? (fe, c+ 5eg) d3 g + v(i/(a, c), 9(b, c + eg, e) ] = 0 . 
Dc / 

By the assumptions (I), (II) and (IV) and by the assertion of Theorem 2.1 the 
equation (3.8') fulfils all assumptions of Theorem 2.4. Hence the assertion of Theorem 
3.1 immediately follows. 

From Theorem 3.1 we get the following corollaries for quasi-linear boundary value 
problems and for periodic boundary conditions. 

(We use the same notations as before.) 

Corollary 3.1. Let the interval X = <a, b> be given. Consider the boundary value 
problem 

(3.10) x = A(t) x + e g(t, x, e) , 

(3.11) M x(a) + N x(b) + e v(xa, xb, e) = 0 

where A(t), M and N are n x n matrices, the two latter being constant. 
Let the following assumptions be fulfilled. 

(I) Let x(M :N) = n. Let v(p, q, e) e C0L'0L'° for pety, qeD. and e e £ . Let 
Oety, OeQ. 

(II) Let the boundary value problem 

(3.120 y = A(t) Y, 

(3.122) M Y(a) + N Y(b) = 0 

have only the trivial solution. 

(III) Denote 3£0 = £[x | ||x|| < Q], Q > 0. Let A(t) e C° forteX and g(t, x, e) e 
e C°'0L '° on X x 3c0x &. 

Then there exists for sufficiently small e > 0 a unique solution %(t, c*(e), e) of 
the boundary value problem (3.10), (3.11), which tends to the trivial solution of 
the boundary value problem (3.12) as e -> 0. 

Corollary 3.2. Consider the system (3.1). Let the following assumptions be ful
filled. 

(I) Let f and g be periodic in t with period co (in the sequel briefly: co-periodic). 

(II) Let the system (3.3) have a co-periodic solution q(t, c*) = tj*(t). 

(III) Let the system (3.6) have no co-periodic solution (except the trivial one). 

(IV) Denote Zm = <0, co}. Let f(t, x) e C°'1L on %m x X and g(t, x, e) e C°'0L'° on 
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Then there exists for sufficiently small e > 0 a unique co-periodic solution §(l, 
c*(s), s) of(3.1) which tends to i/*(l) as s -> 0. 

In the book [2] an analogous theorem is proved for the system x = f(l, x, s) where 
f(t,x, e)eC0>U0 on %m x 3c x g. 

Let us now investigate the more interesting and more difficult case when the shor
tened boundary value problem has a family of solutions depending on k parameters, 
1 = k ^ n. 

Theorem 3.2. Let an interval X = <a, b> be given. Consider the boundary value 
problem (v) given by (3.1), (3.2). Let the following assumptions be fulfilled. 

(I) (a) Let u(p, q) e C 2 ' 2 and v(p, q, e) e C 1 ' 1 ' 1 for p ety, q e& and s e g, wherety 
and Si are open sets in En and S = <0, s0}, s0 > 0. 

(b) Let for pety, q eSX 

<£<*ł) :sŕ.H 
(II) (a) Denote G£ an open set in En. Let there exist solutions tj(t9 c) of (3.3) defined 

and remaining in 36 for t e X and for every c e S . 

(b) Let the equations 

(3.13) u(n(a, c), t,(b, e)) = 0 

/lave a real solution c^ = o"0(cr), ^ a J^9 v(f") = fc, 1 = fc :g n. 
(c) Denote cr = y and #0(y) = y 4- ^O(T)- Let <r0(y) e C 2 for y e @, @ an open set 

in Ek, and let © = F[c | c = Q0(y), y e ©] <= g. 
Denote tj(t) = iy(f, io0(y)). Thus ^ ) is a k-parametric solution of the boundary 

value problem (v0) given by (3.3), (3.4). 

(d) Let ii(a) ety, tj(b) eSlfor ye®. 

(III) Let the variational boundary value problem (X) 

(3-14) i = fx(r,i}(0)*, 4 

(3.15) J ^ z ( f l ) + I^_z(fc) = o, 
Dxa Dx„ 

w/iere 
Du D u \ / D u ,~ ~ , Du ,~ 

Dxa Dxb) \Dx 
(łв» łь) : 7 — (ђa> Чь)) 

have exactly k linearly independent solutions for y e ® . 
We shall show that there exist a set 6^ cz Jf ^ v(S?) = k, a set @0, @0 a domain 

in © and a k x (n — k) matrix T(y) such that 

(3.16) ^ - T ( 7 ) ! ^ = 0 
V ' Dc K" Dc 
for y e © 0 . 
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Further, we shall show that there exist a set ®t, &t a domain in @0, a k x n 
matrix W(t,y) whose rows are formed by solutions of a boundary value problem 
(A*) (adjoint to (X)) 

(3.17) w^ = -w" fx(t, %t)) , 

(3.18) w\a) P\y) + w\b) Q\y) = 0 

where n x n matrices P(y) and Q(y) satisfy conditions 

(3.19) - ^ - P\y) + J^- Q\y) = 0 , X(P(y) : Q(y)) = n , 
Dx0 Dx6 

for y e © [ and which fulfils the condition 

(3.20) ^ , r ) = ^ - T ( , ) ^ . 
DX„ DX„ 

(IV) (a) Let the system 

(3.21) I W(s, y0) g(s, ti(s, Q0(y0)), 0) ds + voy - T(y0) v0^ = 0 

where v0 = v(j/(a, (?0(y0)), l(b, (?o(7o)> 0) rtat;e a rea^ solution y0 = y*. 

(b) Let y*0 e ©.. 

(c) Lel the jacobian of (3.21) with respect to y0 be nonvanishing at the point 

7o = ?*• 
(V) Denote 36 = £[x | ||x - n(t, c*)|| < Q, teZ], Q > 0, where cj = (?0(y*)- L ^ 

f(t, x) e C0 '2 and g(t, x, e) e C0 '1 '1 for t e Z, x e 36, e e g. 

Then there exists for sufficiently small s > 0 a unique solution %(t, c*(e), e) of the 
problem (v) with t;(a, c*(e), e) = c*(e) e C1, which tends to the solution t](t, c0) of the 
problem (v0) as e -> 0. . 

Proof. Differentiating the identity 

n{t, c) = f(u n{U c)) 

with respect to c and then putting c = £0(y) we find easily that jyc(t, t20(y)) is ^ funda
mental matrix of solutions of (3.14) for ye®. Hence by (III), (lb), (lid) and Theorem 
1.4 

<-> •© 
Dù D^a Dü D ţ м m 

!£ -j 11 \ = n — fc for y Є @ . 

Dxл Dc Dxь Dc 
Thus there exist sets y <^ Jf, -Tx<=. Jf, v(ST) = v(V,} = fc and @0, ©0 a domain 
in @ such that 

(3.22') detf—^ 4=0. 
VDc/W, 

Let us show that "T = ir

1 may be put. In fact, differentiating the identity 

"y(n(a, Q0(y% n(b, Qo(y))) = o 
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with respect to y, we get 

(3.23) (*\ P j _ o + ( ^ \ s 0 - . 

Let us suppose that 

X\ — ) __ n — k — 1 for some y e @0 . 
\ D c j W 

Then there exist an index jeSf and a 1 x (n — k — 1) matrix M such that (denoting </ 
the complement of j with respect to «_") 

Du\ M / D i . \ 
M ( — j = o for y = y 

Then by (3.23) 

But then evidently 

Dcjjý- \Dcjfr 

^ ) - M ( ^ ) = 0 for 7-_f . 
Dc/j,r \OeJ,r 

y l — ì < n — k — 1 for y = y 
X V D C ^ -

which contradicts (3.22'). 

According to (3.22) and (3.22') there exists a fc x (n — k) matrix T(y) such that 

which in particular yields 

\ D c / ^ \Dc)pf 

and 

(3.24") ( P ^ . - T ( y ) ^ P ^ = - (^ - T(y)^)°^ . 
\Dxa

 w D x f l / D c \Dxb DxJ Dc 

Let us now show that there exists the matrix W(t, y) defined in (III) and namely 
that 

(3.25) W(t,y) = L(t,y) 

where 

«3,6) ^r) = (^n y )£j^ ( 0 
In fact we may find a system of complementary boundary conditions 

M(y) z(a) + N(y) z(b) = 0 
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with n x n matrices M(y)9 N(y) e C1 for 7 e © such that 

for 7 = © l9 ©! a domain in @0. Then by Remark 1.1 and Theorem 1.3 there exist 
n x n matrices P(y), Q(7) e C1 for 7 e ®± such that relations (3.19) are fulfilled. Thus 
the boundary value problem (A*) is defined for 7 e @x and by Theorems 1.3 and 1.5 it 
has exactly k linearly independent solutions for 7 e @x. Since iyc"

1(l? Qo(y)) represents 
a fundamental matrix of solutions of (3.17), rows of the matrix L(t9 7) form k solu
tions of these equations. Further the matrix L(t9 7) obviously fulfils the condition 
(3.20). Finally substituting L(t9 7) into (3.18) and making use of (3.24") and (3.19) 
we get 

-(«, 7) P\y) + HP, y) Q\y) = 
= (Ny(y) - T(y) Nrfy)) ijc(b) ^(a) P\y) + 

+ (Ny(y) - T(y) Np{y)) . t,c(b) t,;\b) Q'(y) = 

= - (My(y) - T(y) Mp(y)) ,e( f l) ^\a) P\y) + (Ny(y) - T(y) Ny(y)) Q\y) = 0 

which completes the proof of (3.25). (From (lb), (lid) and (3.24") it follows readily 
that the rows of W(t9 y) are linearly independent.) 

The matrices T(y) and W(t9 y) having been determined, the equations (3.21) are 
completely defined and their solution 70 = 7* with properties (IVb, c) may be 
found. 

Now by (V), Theorem 2.1 and the theorem on continuous dependence of solutions 
on initial values and parameters there exists a neighborhood Ox(c*9 dt)9 c0 = £0(70) 
and an interval dt = <0, ex>, 0 < et S e0 such that (1) every solution %(t9 c, e) of 
(3.1), where eedl9 with £(a, c9 e) = c stays in 36 for t e X and it may be written in the 
form 

(3.280 £(*> c> £) = *('> C(f> c> e)) 

where C(t, c, e) is the solution of equations 

(3.282) Г(t) = c + є ţ- 1(s,Г(s))*(s,ţ(s,Г(s)),8)dS 

and (2) according to (3.22') where ft = "T, 

(3.29) d e t ^ ^ ^ e ) ) + 0 . 
\ DC Jcpy 

A solution %(t9 c, e) of (3.1) is a solution of the boundary value problem (v) if and 

only if 

(3.30) w(£fl, (b9 e) = 0 . 

This is a system of n equations for n components of the initial vector c. Putting 
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e = 0 in (3.30) we get a system of n necessary conditions 
u(n(a, c0), if(b, c0)) = 0 

which n components of the vector c0 = c(0) have to fulfil. This system is identical 
(with the exception of notation) with the system (3.4) about which we know that it has 
not a uniquely determined solution. Thus the system (3.30) is not suitable in this form 
to investigate the existence of its solution by means of the implicit function theorem. 
Therefore we shall modify it in the following way. 

Leaving equations (3.30) with indices from Sf unchanged, we have 

(3.31) wfrfc, &, e) = 0 . 

By (3.29) and the implicit function theorem there exist a neigborhood 912(y*, S2) c @1? 

0 < S2 <£ S1 and an interval @2 = <0, e2>, 0 < e2 ^ &t such that for cr e ^ ( y * , <52) 
and e e @2 there exists a solution 

(3.32) c.y = a(cr, e) 

of (3.30) such that (denoting again cr = y, Q(y, e) = y + c(y, e)) 

<x(y, e) e C2'1, <x(y, 0) = a0(y) and <y(y, e) e O^cJJ, O\) . 

Inserting (3.32) into (3.31), denoting 

(3.33) g(y, e) = ^c
_1(s, C(s, #(y, e), e)) g(s, iy(s, C(s, <j(y, e)), ej ds 

and making use of the mean value theorem we get the identity 

da' 

(3.34) 

M l a, lb, S) = U^(Íja, ijb) + £ ( -^ ) d£ + 

+ є 
pu^Dí/f, 
Dx, Dc 

d9 g( ľ, є) + є vÿ(|в, fь, є) = 0 , 

w, 

where |(r) = £(<>, #(y, e), e) and the meaning of the index 9 may easily be found in 
each case. 

Inserting (3.32) into equations (3.30) with indices from Sf we get 

(335) w<fia9 (b9 e) = 0 

or making use again of the mean value theorem 

" \ da" 

( }
 + £ f T D ^ ^ l 

JoLD xfc D c l 
By (3.34) the system of equations (3.35') may be replaced for e + 0 by an equivalent 

system of equations 

(3.36) w(y, s)^1- wy(la, lb, s) - T(y) wPQa, f6, e)l = 0 . 

'(Ł, lъ, e) = uĄІja, îjb) + є í —- dð + 

dð ð ( ľ , є) + є vy(la, f ъ, є) = 0 
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Now letting e -> 0 in (3.36) and taking into account (lib), (3.24), (3.24'), (3.25) and 
(3.26) we get the system 

(3.37) m0(y0) = f W(s, y0) g(s, ij(s), 0) ds + voy - T(y0) v0-? = 0 , 

where v0 = v(ija9 ijb, 0), which is identical with the system (3.21). By assumptions (1), 
(II), (IV) and previous considerations m(y, e) e C1 '1 for y e 512(y0, <52) and e e (0,e2). 
Putting m(y, 0) = m0(y) we may verify easily that lim (w(y, e) - m(y))/e exists; thus 

m(y, e) e C1 '1 on 9t2(y0, 82) x (52. Hence by (iVa, b, c) equations (3.36) satisfy all 
assumptions of the implicit function theorem and by it we may conclude that there 
exists a unique solution y = y*(e) e C1 of (3.36) for sufficiently small e > 0 with 
y*(0) = y*. Then c^ = <r(y*(e), e) is a unique solution of (3.31) with cr(y*(0), 0) = 
= <T0(y0) and c = #(y*(e), e) is a unique solution of (3.30) with to(y*(0), 0) = c* which 
completes the proof of Theorem 3.2. 

Corollary 3.3. Let an interval X = <a, b} be given. Consider the boundary value 
problem (K) given by (3.10), (3.11). Let the following assumptions be fulfilled. 

(I) Let %(M :N) = n. Let v(p, q, e) e C1 '1 '1 for p ety, q e G, e e g where ty and £ 
are open sets in En and e e £ = <0, e0>, e0 > 0. 

(II) Let the shortened boundary value problem (K0) given by (3.12) have 
exactly k linearly independent solutions. Denote^(t) a n x k matrix whose columns 
are formed by these solutions. 

(III) There exist a set Sf a Jf^ v(Sf) = k and a constant k x (n — k) matrix T 
such that for any fundamental matrix <&(t) of solutions of(3.12t) it holds 

(M$(a) + N$(b))r = T(M$(a) + N$(b))? . 

Further there exists a k x n matrix W(t) whose rows are formed by solutions of 
the boundary value problem (K0) (adjoint to the shortened boundary value problem 

M 
w' = - w* .4(f) , w\a) P' + w\b) 0 / = 0 , 

where — MPS + NQ" = 0, y(P '• Q) — n, and which fulfils the condition 
W(b) = Ny-TNy. 

(a) Let equations 
Cb 

(3.38) W(s) g(s, 4>(s) y0, 0) ds + voy - Tv^ = 0 , 
J a 

where y is a k-vector and v0 = v(<t>(a) y0, i>(b) y0, 0), have a real solution y0 = y*. 
(b) Let *(a) y*ey9$(b)y*eQ. 

(c) Let the jacobian of the system (3.38) with respect toy0 be nonvanishing at the 
point y0 = y0. 
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(IV) Denote dc = E[x | ||x -, $ ( 0 7*11 < Q, t e X], o > 0. Let A(t) e C°,g(t9 x, s) e 
eC0'1*1 fort eX,xe 3c, zed. 

Then thqre exists for sufficiently small s > 0 a unique solution £(?, c*(s), s) of the 
problem (K) with £(a, c*(e), s) = c*(e) e C1 which tends to the solution <p(l) 7* of the 
shortened boundary value problem (K0) as e -> 0. 

Corollary 3.4. Consider the differential system (3.1). Let the following assumptions 

be fulfilled. 

(i) Let f(l, x) and g(l, x, 2) be co-periodic in t. 

(II) (a) (b) (c) The same as in Theorem 3.2 with the exception that a = 0, b = co 
and that u(tf0, tiw) has the particular form u(q0, tj^) = tj0 — J|w. 

(III) Let the system 

* = fx{t, n(t)) * 

have exactly k linearly independent co-periodic solutions for ye®. 
Then the adjoint differential system 

w^-w*fx(t,m 
has also exactly k linearly independent solutions for y e @. Denote W(t, y) a k x n 
matrix whose rows are formed by them. 

(IV) (a) Let the system 

(3.39) W(s,yo)g(s,n(s),0)ds = 0 

have a real solution y0 = 7* G ©• 

(b) Let the jacobian of the system (3.39) with respect to y0 be nonvanishing at the 
point 70 = 7o-

(V) The same as in Theorem 3.2 with the exception that X = X& = <0, co>. 
Then there exists for sufficiently small s > 0 a unique co-periodic solution 

£(l, c*(e), s) of (3.1) with £(a, c*(2), s) = c*(s) e C1 which tends to the co-periodic 
solution t](t, (0o(?o)) of (3.3) as s —v 0. 

Remark 3.1. Clearly we may choose instead of the vector c some other parameters 
by which the solution of (3.1) is uniquelly determined. (We have made use of this fact 
in Corollary 3.3.) 

Remark 3.2. It may happen that it is convenient or necessary to suppose that the 
length of the interval on which we consider the perturbed boundary value problem (v) 
is also a function of s. Let us put b(s) = b + T(S) where b is the right-hand endpoint 
of the interval <a, b> on which the shortened problem (v0) is considered and T(S) e C1 

for s E @ with T(0) = 0. It is obvious from proofs of Theorems 3.1 and 3.2 that in both 
cases the existence of a solution of the problem (v) may be proved when we substitute 
Xe = <a, b + T^)> instead of X and leave the other assumptions unchanged. 
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Remark 3.3. The solution of the boundary value problem (v) (be it under the as
sumptions of Theorem 3.1 or Theorem 3.2) may be found by means of the method of 
successive approximations. (See [6].) 

If the functions f(t, x) and g(t, x,e) are analytic in x and e and the functions u(p, q) 
and v(p, q, e) are analytic in p, q and e on sets given in Theorems 3.1 or 3.2, it may be 
shown that the found solution is analytic in e (for sufficiently small e > 0) and it may 
be obtained by solving recursively a sequence of boundary value problems (from which 
only one is nonlinear). 

Remark 3.4. A system of necessary conditions (equivalent with (3.21)), which the 
vector y has to fulfil, may be found by a somewhat different consideration than that 
presented in the main text. 

Under the assumptions of Theorem 3.2 every solution £(*, c + e d(s), e) with 
£(a, c + ed(e), e) = c + e d(e) of the system (3.1) may be written in the form 
i(t, c + ecf, e) = n(t, c) + e C(l, c, d, e) where n(t, c) e C1*2, £(*, c, d, e) e C1'1'1'1 and 
n(a, c) = c, £(a, c, d, e) = d. If £(l, c + ecf, e) has to be a solution of the boundary 
value problem (v) then the functions n(t, c) and £(r, c, d, e) have to fulfil boundary 
value problems 

(3.40) n = f(t, n), u(n(a), # ) ) = 0 , 

and 

(3.41) C = f — (', n + U) dSC + g(t, n + eC, e) , 
n DX 

лi Du 
— {цa + ЭeÇa, r,b + Ыь) dð C(я) + 

o-Ч 

Du 

oDxь 
(Va + SeCa, t,„ + $sQ dK(b) + 

+ vfo, (b, e) = 0 
respectively. 

The boundary value problem (3.40) has the k-parametric solution ij(t) = iy(l, Q0(y)). 
Letting e -> 0 in (3.41) and then substituting ri(t) for n, we get the boundary value 
problem 

Co = fx(t, v(t) Co + &> n(t), o), 
(3.42J QU „ Pu „ ^ 

•3— (-»fl> **) Cow + ^ - w«, it) Co(ft) + n ^ ' %, o) = o . 
Dxfl Dxfe 

The homogeneous boundary value problem associated to this problem is evidently 
the problem (X) given by (3.14), (3.15). Now by Theorem 1.5 the problem (3.42) has 
a solution if and only if 

(3.43) f W0(t, y) g(t, i,(t), 0) dt + (W0(a, y) P\y) + W0(b, y) Q\y)) v(ija, ~t,b, 0) = 0 

where rows of the k x n matrix W0(t, y) are formed by some k linearly independent 
solutions of the problem (X*) (given by (3.17), (3.18)) and the n x In matrix (P(y) : 
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: Q(y)) defines the complementary adjoint boundary conditions to boundary condi
tions (3.15) for y e © ! . 

It may be easily verified that, if W0(t, y) satisfies the condition (3.20) (so that 
W0(t, y) = W(t, y)), the condition (3.43) reduces to (3.21). 

Indeed, by (3.25), (3.26) and (3.24") 

(3.44) W0(a, y) P\y) + W0(b, y) Q\y) = 

--(*H'@>M£-^K 
Since by Remark 1.1 

so that 

DU ~, ч Dü ~ 

^ř'(т)ł^Q'W = E„ - Џ ř ' ( r ) + ^ Q ' ( Г ) = i?, 
Dxл Dxa Dxh Dxh 

vb **Jkb 

the equality (3.44) yields 

W0(a, y) P\y) + W0(b, y) Q\y) = Ey - T(y) E? 

whence our assertion readily follows. 

4. NONLINEAR BOUNDARY VALUE PROBLEMS FOR AUTONOMOUS 
DIFFERENTIAL SYSTEMS 

In this section we shall consider the boundary value problem (a) given by 

(4.1) x = f(x) + sg(x,s), 

(4.2) w(xa, xb, ^) = u(xa, xb) + s v(xa, xb, s) = 0 . 

It is known that this problem with periodic boundary conditions (i. e. w(xa, xb, s) = 
= xa — xb = 0) has some characteristic features by which it differs fundamentally 
from a similar problem with a nonautonomous differential system. Above all it is the 
fact that one component of the initial vector c*(s) of a solution £(l, c*(s), s) may be 
chosen arbitrarily (in a certain range) and that the length l(s) = b(s) — a of the inter
val on which the solution exists, depends on s and has to be taken as a new unknown. 
Another such fact (closely related to the previous one) is that the length of the interval 
on which a solution from a /c-parametric family if(t, c(y)) of solutions of the shortened 
boundary value problem (a0) 

(4.3) y = f(y), 

(4.4) u(Ya, yb) = 0 

exists also depends on the parameters y (we usually choose as these parameters some 
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components of the initial vector c). We shall see later that these features appear in 
a wider class of boundary value problems with autonomous differential systems 
(among which however the problems with periodic boundary conditions occupy an 
outstanding position). That is why we shall suppose from the beginning that the right 
endpoint b of the interval <a, b} on which a solution of the shortened boundary va
lue problem exists is a function of the initial vector c (or of other equivalent para
meters) of this solution and that the right endpoint of the interval on which a solution 
of the given problem (a) exists is a function of the parameter s. 

Let us now investigate the problem (a) in more detail. In the sequel we shall suppose 
that the following conditions (^) are fulfilled. 

Let 36 be a domain in En
9 let g = <0, s0>, fi0 > 0, and let Z0 = (A9 B)9 A < 0 < B. 

Let f(x) e C2, g(x, s) e C1,0 for x e 36,-s e Q. Let $ and Q, be domains in 36 and let 
u(p9q)e C2'2, v(p9q9s)eC1,li0 f o r p e $ , q e £ , s e g. Let 6 be a domain in 36 and 
let every solution £(t, c, s) of (4.1) with £(a, c, s) = c be defined and stay in 36 for 
t e Z09 c e S, s e G. Let 6(e) G C° and X = <a, 6(e)> c £ 0 for e e (5. Let £(a, c, s) ety9 

i(b(e)9 c, g) eQ, and further let 

/ D w , . Dw A 

VDxfl Dx6 y 

for pety9 qe£i, e G @. 

When the dependence on 8 in (a) does not take place at all or when the parameter s 
is fixed, we shall write briefly 

(4.3') x = h(x) , 

(4.4') z(x(a), x(b)) = 0 

and denote it as a problem (a). In this case we shall suppose that the following con
ditions (cif) are fulfilled. 

Let h(x) e C2 for x e 36. Let z(p9 q) e C2 '2 for p e% q eQ,. If the problem (a') has 
a solution <p(t9 c*) on the interval <a, b*>, then let us determine (if possible) functions 
Cf = a(cr) and b = b(cr) (y cz Jf 9 v(f^) = k) defined and of class C2 for c r e (£y, 
(LV a domain in Ek

9 such that 

(a) € 0 = F[c | c = c^ + <x(cr), cr e € r ] cz € , 

(b) u(<p(a9 c), <p(6(cr), c)) = 0 for ce&0 , 

(c) c* G 6 0 , % * ) = b* . 

If we choose other parameters y = (yi9 yl9 ..., yk) from a domain © in £* for expres
sing c G <S0, let c = c(y) G C1 and g0 = E\c \ c = c(y)9 ye%~\ (then x(s60) = fc f o r 

y e ©, i. e. the parameters 7 are essential). The other conditions (#) have to be modi
fied in the obvious way. 

Lemma 4.1. Let the conditions {^') be fulfilled. 

(l) Let the problem (a') have a solution (p(t9 c*) = (p*(t). 
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Then, denoting <p*(a) = <p*9 <p*(b) = <p*9 <p*(0) = <p*09 z(<p*9 <p*) = z* and simi
larly for other expressions, there holds the equality 

(4.5) 
Dx 6 dř _ L_D X« á t + 

Dz* Dę* Dz* Dęb 

Dx a Dc Dx ь Dc dí 
0 . 

(2) Let the problem (a') have a k-parametric solution <p(t) = <p(t9 c(y)) on the 
interval <a, b(y)} for y e @, @ a domain in Ek. 

Then there holds the equality (denoting z (or z(y)) = z(<pa9 <pb) and so on) 

(4.6) 
DŽ Dęa ^ DÍ Dęb-

Dxa Dc Dx ь Dc 

Dc Dí dęb Db 
1_ Ч. = 0 for y є (§ . 

Dy Dx f t dř Dy 

Proof of the assertion (1). If <p(t9 c*) is a solution of problem (a'), then the function 
<p(t — 59 <p(S9 c*)) represents according to the group property of dynamical systems 
the same solution for all real numbers 3 such that <p(59 c*) e (5. Thus 

(4.7) z(<p(a - d9 <p(S9 c*))9 <p(b - d9 <p(S9 c*))) = 0 . 

Differentiating (4.7) with respect to S and then putting S = 0 we get (4.5). 

Proof of the assertion (2). By assumption 

(4.8) z(<p(a9 c(y)), <p(b(y)9 c(y))) = 0 for ye®. 

Differentiating (4.8) with respect to y9 we get (4.6). 

Lemma 4.2. Let the assumptions (%?') be fulfilled. A solution <p(t9 c*) of the equat
ion (4.37) is constant if and only if 

d<p 

àt 
(t09 c*) = 0 for some t0 e € 0 

The proof is evident. 

Corollary 4.1. Let the assumption of the assertion (2) in Lemma 4.1 be fulfilled. 
Then there hold the inequalities 

(4.9) 

(4.10) 

where 

and ye®. 

Proof. When 

Db 
X(0(y)) = n - k if — (y) = 0 or if <p(t9 c(y)) = const, 

Dy 

X(Û(y)) йn-k + í 

û(y) = £ i Џt + Dz °*> 
Dx л Dc Dx ь Dc 

Db 

Dy 
0 or <p(t9 c(y)) = const, then by (1.6) the equation 

0(y)^ = 0 
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Since 

and 

has, according to (4.6) and x(c
Y(y)) = k, at least k linearly independent solutions 

whence by the known theorem of linear algebra the inequality (4.9) follows imme
diately. 

Dr> 
When — + 0 and <p(t, c(y)) + const, then evidently 

Dy 

z(%m<M%®)-i-

Then there clearly exists a f c x ( f c - l ) matrix K(y) of rank k - 1 such that 

Dxb dt Dy 

U(f)Pi(y)K(y) = 0 
Dy 

the inequality follows by the same argument as above. 

Let us now introduce a very important notion. We shall say that a boundary value 
problem (a') has the property (&) if there holds: If the problem (a') has a solution 
<p(t, c*) on a fixed interval <a, b*> then <p(t, c*) is as well a solution of the problem 

(4.11) x = h(x), z(x(a + 8), x(b* + S)) - 0 

for every 5 such that <p(a + 8, c*) e (L 

It is obvious that we may interpret this circumstance in two different ways: 

(1) <p(t, c), being a solution of the problem (a') on a fixed interval <a, b*>, is also 
a solution on every displaced interval <a + 8, b* + <5> (on which the function 
<p(t, c) is defined); 

(2) <p(t, c) being a solution of the problem (a') on a fixed interval <a, b*},<p(t + 8,c*) 
is a solution of the same problem on the same interval (for all 8, for which <p(t + 8, c*) 
is defined). 

Lemma 4.3. Let the assumptions (<T) be fulfilled. <p(t, c*) being any solution of the 
problem (a') (on a fixed interval <a, 6 * ^ fhe problem (j) has the property (0>) if and 
only if 

- ° ^ («>?+*, V*+«) fe-? +
 D z /„* _* ^ d^+^ _ 0 

Dx° dt _ 7 / ^ + a ' n + ^ " _ i r = 

for every <5 such t/ia^ <p(a + 8, c*) 6 ($-

The proof is easy. 
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Corollary 4.2. If<p*(t) is a solution of a problem (a) which has the property 
then there holds the equality 

(4.12) p z ! d ^ + Dz !d5K = 0 

Dxa At Dxb dt 

Lemma 4.4. Let the assumptions (<$') be fulfilled. Let a problem (a') have the 
property (3P). Let this problem have a non-constant solution (p(t, c*) = <p*(t) on an 
interval <a, b*}. 

Then the given problem (a') has on the interval <a, b*/ (at least) a one-parametric 
family of solutions (p(t, <p(a + <5, c*))for all d such that (p(a + <5, c*) e (£. 

Proof follows readily from the second interpretation of the property (#) and from 
the group property of solutions of a dynamical system. 

Corollary 4.3. Let the assumptions of Lemma 4.4 be fulfilled. Then the jacobian 
of the system 

(4.13) z(<p(a, c), <p(b*, c)) = 0 

with respect to c is vanishing at the point c = c*. 
This is an immediate consequence of the fact that the system (4.13) has (at least 

a one-parametric family of solutions c = (p(a + 8, c*). (One may show it also by means 
of (4.5), (4.12) and Lemma (4.2.) 

Corollary 4.4. For proving the existence of a solution of a problem (a) with the 
property (0)for all se & Theorems 3.1 or 3.2 cannot be used. 

This is clear from the fact that by these theorems the existence of an isolated solution 
is proved, which contradicts Lemma 4.4. 

(On the other hand when the problem (a) has not the property (3P) we have no 
reason to expect non-validity of Theorems 3.1 or 3.2.) 

Let a problem (a) with the property (3P) be given. Let us suppose that this problem 
has a non-constant solution (p(t, c*(s), e) on the interval <a, b*(s)} for s e @. Then 
<p*(t) = (p(t, c*(0), 0) is a solution of the shortened problem (a0). Let us suppose that 
this solution also is non-constant and say that in particular the component <?*,*(*) is 
non-constant. Then there exists obviously £ 0 G & such that $0,1^0) + 0. Denote 
X = <p*tl(t0) and let d0 = q>*0(t0) e (£, <p*0(t0 + t) a % for t e X. By the property (^), 
(p*(t, d0) is also a solution of the problem (a0). According to the continuous depend
ence of a solution on a parameter, there exists for sufficiently small e also a solution 
(p(t, d*(s), s) of the problem (a) such that cpt(a, d*(e), s) = X. Thus, by fixing from the 
beginning cl = X, we fix only one solution from (at least) a one-parametric family of 
solutions of the problem (a). Instead of the component cx of the initial vector we 
must then choose as a new variable the variation x*(s) = b*(s) — b*(0) of the in
terval <a, b*(0)>. 
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Let us now clarify the position of boundary valpe problems with periodic boundary 
conditions among other boundary value problems with the property (0). 

Lemma 4.5. Let z(xa9 xb) be given. Let a boundary value problem (a') have the 
property (0) for an arbitrary function h(x)for which the boundary value problem 
(a') fulfils the conditions (^') with the same sets (£, 36, 2,^0 andQ,. Then 

z(xa9 xb) = 0 => xa - xb = 0 . 

Proof. Let us suppose that there exist two points x1? x2 (not necessarily differing 
from each other) such that xx ê !>, x2 e& and z(xl9 x2) = 0. Now, let us suppose that 
xx #= x2. Choose constant vectors hl9 h2e En such that 

(4.14) - ^ (x l9 x2) hx + ^ (xl9 x2) h2 * 0 . 
Dxfl Dxb 

Join the points xl9 x2 by a simple arc x = %(t) of class C2 for t e X so that %(a) = xl9 

%(b) = x2, — (a) = hl9 — (b) = h2 and %(i) e 36 for t e X. Vectors hl9 h2 and the 
dt dt 

arc £(i) with prescribed properties evidently exist. 

Denote X = E[x | x = £(t)9 t eX~}. To each point x0 = £(t0) e X co-ordinate the 

vector — (t0) = h(x0). The function h(x) being defined and of class C2 on the com

pact set X9 may be continued onto the whole set 36. Thus a function h(x) is defined on 

36 such that the boundary value problem (a'), defined by functions h and z, fulfils the 

conditions (#') and has a solution q>*(t) = %(t) such that 

<p*(a) = xt , <p*(b) = x2 , y*(a) = h(xt) = ht , <p*(b) = h(x2) = h2 . 

But by Corollary 4.2 in virtue of (4.14) the defined boundary value problem cannot 
have the property (0). Thus, it has to be xt = x2. 

It would be very interesting to know under what conditions a boundary value pro
blem (a) has the property (0>) for all e e 2. It can be shown that this also happens for 
other than periodic boundary conditions, e. g. it may easily be verified that the boun
dary value problem 

(4.15) x = Ax + eBx , M x(a) + N x(b) = 0 

where %(M : N) = n and matrices A and B commute with matrices M and N, has the 
property (0) for all e. 

We shall see that in the main theorems our method fails when the solution of the 
shortened boundary value problem is constant. It is natural to seek then a solution of 
the same character (i. e. a constant one) of the perturbed system. This problem is 
solved by the following 

Lemma 4.6. Let the conditions (c€) be fulfilled. The boundary value problem (a) 
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has a constant solution <p(t9 c*(e), e) = c*(e) if and only if the system of In equations 

(4.16) f(c) + e g(c9 e) = 0 , w(c9 c, e) = u(c, c) + e v(c9 c, e) = 0 

has a real solution c = c*(e). 
The proof is evident. 

In the sequel we have to distinguish the case when the shortened boundary value 
problem (a0) associated to the given boundary value problem (a) has a k-parametric 
family of solutions <p(t9 c(y))9 y e @ on the interval <a, b> of constant length and the 
case when such a family exists on the interval <a, b(y)} whose length depends on the 
parameters y. The reason is the following: In Theorems 4.1 and 4.3 the number of 
linearly independent solutions of the variational boundary value problem (/J) 

z = fxOKO) z > 9(t) = 9(t, c(y)) , 
(4.17) D" / x Oil / IN „ ~ ,~ ~ , 

— - z(a) + — - z(b) = 0 , u = u(Vfl, <pfe), 
Dxa Dx, 

is of great importance. By Theorem 1.4 this number equals n — #(0), where 

(4.1.) 0 ( 7 ) = ̂ ^ + J^5p. 
Dxa Dc Dxd Dc 

By Corollary 4.1 in the first case (b = const) x(0(y)) ^ n — k whereas in the second 
case (b(y) 4- const) x(U(y)) ^ n — k + 1 for 7 e @. We shall suppose that the ranks 
of the matrices in question attain their maximal values. Hence in the first case the 
problem (fi) has exactly k linearly independent solutions, whereas in the second case it 
has exactly k — 1 linearly independent solutions only. 

Theorem 4.1. Let an interval X = <a, b0> be given. Consider the boundary value 
problem (a) 

(4.1) x = f(x) + eg(x ,e) , 

(4.2) w(x(a)9 x(b(e))9 e) = u(xa9 xb) + e v(xa9 xb9 e) = 0 

where the function b(s) with b(0) = b0 has to be determined suitably. Let the follow
ing assumptions be fulfilled. 

(I) Let the problem (a) have the property (SP)for all e e £ = <0, e0>, e0 > 0. 

(II) The same as (I) in Theorem 3.2. 

(III) (a) Denote S an open set in En. Let solutions tj(t9 c) of 

(4-3) y = f(y) 

with ti(a, c) = c exist and remain in $ for te%0 = (A, B) => <a, b0} and for all 
ce (L 

(b) Let equations 

(4.4') u(tf(a, c), t,(b, e)) = 0 
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(where we consider b as an unknown) have a real solution b = b0, cr = <r0(cr)(that 
means that the number k cannot be increased by equating b to some nonconstant 
function of cr), *T c Jf, v(rT) = k, 2 ^ k ^ n. 

(c) Denote cr = y and g0(y) = y 4- a0(y). Let a0(y) e C2 for y e @, @ an open set 
in Ek such that T) = E[c | c = g0(y), y e @] cz <£. Denote ij(t) = n(t, Q0(y)) so that 
tj(t) is a k-parametric solution of the boundary value problem (a0) given by (4.3) and 
(4.4) on the interval <a, b0>. 

(d) Let ij(a) ety, q(b) eQ for ye®. 

(e) Let le-T.Put cx = Xe E[cl \ cx = fjt(a), y e ©]. 

Denote a = y - A, £0(a) = <r0(a + A), g0(a) = g0(<x + A), ij(t) = tj(t, g0(<x)). (Thus, 
ij(t) is a (k — \)-parametric solution of the problem (a0) with cx = A.) 

(IV) Let the variational boundary value problem (fi) 

(4.19) z = fx(i}(l))z, 

(4.20) ^ ^ ) + | ^ ^ ) = 0 
Dxa Dxb 

where 
Du DD\ (DU r ~ Dh r ~ \ 

* a D * 5 / \ D X a D * 6 / 

have exactly k linearly independent solutions for ye®. 

(V) We shall show that there exist a set 2I0, %0 a domain in Ek~1 such that 
E\y | y = a + A, a e 2(0] cz @, a set ^ cz ,yV, v(£f) = k arid a k x (n — k) matrix 
T(a) swch that 

/ . ^ A JDil\ , n D < ^ f ^ D ^ A / D " D U / A A A 
(4.21) det — 4=0, _ i ! - T ( a ) — i - = 0 — = — (,fl, ,ft) 

\DcJ?f> Dc Dc \Dc Dc / 
for a e 2J0. 

Further we shall show that there exists a set %t, S^ a domain in %0 and a k x n 
matrix W(t, a) whose rows are formed by k solutions of the boundary value problem 
($*) (adjoint to boundary value problem (JJL) in which ct = A is put) 

(4.22) . W ' = - w ' f x ( ^ ) ) , 

(4.23) w\a) P'(«) + w'(fe0) Q'(«) = 0 

where n x n matrices P(a), Q(«) satisfy conditions 

(4.24) - ^ - P'(«) + p - Q\«) = 0 , x(P(«) : Q(«)) = ,. 
Dxa Dx6 

/or « e 2IX and which fulfils the condition 

(4.25) ^ , « ) = ^ - T ( « ) ^ . 
Dx6 Dx„ 
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(a) Let the system 

(4.26) v0 W(b0, a0) n(b0, £0(a0)) + 

+ W(s, a0) gfo(s, tfo(*o)), 0) ds + v0^ - T(a0) v0^ = 0 

where v0 = v(-/(a, £0(
ao))> *l(bo> (?o(«o))> 0) have a rea/ solution v0 = v0, a0 == a*. 

(b) Let %%s%v 

(c) Le* ^(a , &0(*o)) * °-
(d) Lef the jacobian of the system (4.26) with respect to v0, a0 be nonvanishing at 

the point v0 = v0, a0 = a0. 

(VI) Denote dc = E[x \ \\x - n(t9 £0(a*)|| <Q9te <a, b0 + <5>], Q > 0, <5 > 0. 
Let f(x) G C2, g(x, e) e C u for x e 38, e G g. 

Then there exists for sufficiently small s > 0 a unique function b*(e) = b0 + 
+ s v*(g), v*(e) e C1 such lha£ Jhere exlsls a unique solution %(t, c*(e), s) of *he 
problem (a) wllh £(a, c*(g), g) = c*(e) G C1, c*(g) = A on rhe interval <a, b*(e)> 
which tends to the solution t](t, #0(a0)) of the problem (a0) as e -*• 0. 

Proof. We shall explain in more detail those parts of the proof only in which the 
proof of this theorem differs from the proof of Theorem 3.2. 

Clearly ijc(t, Q0(y)) is a fundamental matrix of solutions of (4.19). By (IV), (lib), 
(illc) and Theorem 1.4 

/A^\ / D " \ / D " DVa D " DtfA 
(4.27) ^Hurr7+rTTrH-L 

\DcJ \Dxa Dc Dxb DcJ 
In particular there exist sets Sf c Jf9 ir

1 c Jf, v(£f) = v ( f \ ) = k, such that 

(4.28) detf—^ # 0 . 

Analogously as in Theorem 3.2 it may be shown that ir
1 = ir may be supposed 

without loss of generality. 
Obviously putting cl = XeE[cl\cl = ij,(a, Q0(y))9 y e @] in (4.27) and (4.28) it 

holds for a, a + A e @, 

(«7') « ( s ) " " - * ' 

<4M'» d e , ( ^ L + o -
Thus there exists a k x (n - k) matrix T(a) such that 

(4.29) *ksT(*)™Z V ; Dc W Dc 
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whence it follows in particular 

(4.290 ( £ ) -ïïa; 
XDcJyӯ \DcJӯv 

(4.29") (DÛ- - T(«) DÛЎ) ° ^ = -
V ' \Dxa

 w D x в / D c 
/Díł> , DÙЛ Díjь 

DxJ Dc 

Putting cx = X into (4.19) and (4.20) we get the boundary value problem (ft) which 
again has clearly exactly k linearly independent solutions for a e 5l0. As in Theorem 
3.2 the existence of the matrix W(t9 a) defined in (IV) for a e %l9 %t some domain in %09 

may be proved and namely that for a e %x 

(4,0) ^ . ) - ( ^ _ n . ) ^ ) ^ ^ ( ( ) ) - 1 . . 

Now the equations (4.26) are completely defined for a e %t and we may find their 
solution v0 = v0, a 0 = a* which fulfils the assumptions (Vb, c, d). 

If there exists a solution %(t9 c(0)(e), e) of the problem (a) which tends to the solution 
n*(t) = tj(t9 Q0(a* + X)) of the problem (a0) fulfilling the condition (Vc)) as e ~> 0, 
then we know by previous considerations that there definitely exists in virtue of (I) and 
of the continuity a solution %(t9 c*(e), e) of (a) which tends also to iy*(l) and which 
satisfies the condition cf (e) = X. Hence let us require 

(4.31) {fa c*(e), e) = c*(s) = X . 

Remark . In practice, it may sometimes be difficult to find at the begining a nume
rical value c{ = X such that the assumptions (Va, b, c, d) would be fulfilled (if it is 
possible at all). Thus it may be more appropriate to keep X as a parameter and not to 
choose its value until the equations (4.26) are determined and then to try to choose its 
value in such a way that the assumptions (Va, b, c, d) would be satisfied. 

Now by (VI), Theorem 2.1 and the theorem of continuous dependence on initial 
values and parameters there exist a neighborhood £)i(c0, dt)9 c0 = £0(a*) and inter
vals 

Gi = <0, ex> , 0 < ex ^ e0 , 35x = <b0 - nl9 b0 + n,} , nt > 0 

such that (1) every solution £(t9 c, e) of (4.1) where sedl9 with £(a9 c, e) = c e 
G Ox(c*9 5t) remains in 36 for t e X0 and it may be written in the form 

(4.32) {(a, c, e) = n(t9 C(t9 c, e)) , 

where C(t9 c, e) is a solution of 

(4.33) r(t) = c + e j V v , r(s)) g(n(s9 r(s))9 e) dS , 
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and (2) according to (4.28') 

(4.34) det í^ ( f в , { ь , e ) ) + 0 
Sřií 

for C G S ^ C * , $i)> feeSSi and e e ^ . 

A solution %(t, c, e) of (4.1) is a solution of the boundary value problem (a) if and 
only if 

(4.35) w(íв, Çb, є) = 0 . 

Inserting c* = X into (4.35) we get (denoting ££ the complement of the index / with 
respect to ir) 

(4.35') w($(a, cf + c^ + 2, e), §(b, c r + c^ + A, e), e) = 0 . 

Leaving equations from (4.35') with indices from S? unchanged we have 

(4.36) w>(£(a, cf + c^ + A, e), •{(&, c r + c^ + 2, e), e) = 0 . 

By (4.34) and the implicit function theorem there exist a neighborhood 9t2(a0, (52), 
0 < b2 = bl9 and sets 232 = <b0 - nl9 b0 + 7i2>, 0 < n2 = ni9 d2 = <0, e2>, 
0 < e2 = st such that for c%> e 9v2(a0, 82)9 b e 232 and e e S2 there exists a solution 

(4.37) , cw = a(c<?, b9 e) 

of (4.36) such that (denoting again c^ = a, g(a, b, e) = a + A + a(<x, b, e)), <x(a, b,e)e 

e C2 '2 '1 , d(a, 60, 0) = £0(a0) and c(a, 6, e) e ^ ( c * , 5X). 

Inserting (4.37) into (4.36), denoting 

T = b — bn 

(4.38) 
' 0 > 

g(a, Ь, є) = tjc Қs9 C(s9 Q(Л9 b9 є), є)) g(ç(s, C(s9 ff(a,.Ь, e)), є) ds 

and making use of the mean value theorem we get the identity 

(4.39) wfá, í6, e) = Uý(íj(a), íj(b0)) + x 

+ є 
DUČ? дa~ 

0 | _ D c ^ <5є 
dS + т 

» J o 

Duў àtjb 

Dxb át 
dӘ + є 

o LDcr dbJz 

Du> Dtjb 

л л 
Dxь D c j 9 

dS + 

dS g(«, Ь, є) + 

+ e ¥>(£,, §ь, e) = 0 

where %(t) = £(l, C(t9 Q((X9 b9 e), e), e) and the meaning of the index # may easily be 
found. 

Inserting (4.37) into equations (4.35') with indices from £f we get 

(4.40) w^(t t e) = 0 
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or, making use of the mean value theorem 

(4.40') w, '(!«> Ł e) = uĄîj(a), îj(b0)) + т 
îř õb 

+ e 
o L 

Duy da 

Dej? de 
dЭ + т 

9 J 0 L D X 6 d f 

Du^. фjt 
dð + є 

Ґ Г -
Г Г D Ü ^ DÍŢ, 

J 0 [ D X Ò DC 

dS + 

dS в(«, Ь, є) + 

+ e ^ ( | f l , &, e) = 0 . 

By (4.39) the system (4.40') may be replaced for e + 0 by an equivalent system 

(4.41) w(«, b0 + T, e) = - [wr$a9 \h9 e) - T(a) wF(t;a, £b9 e)] = 0 . 
e 

Letting e -> 0 and taking into account (Hie), (4.29), (4.29') and (4.30) the system 
(4.41) implies 

T 

W0(
ao> bo) = l i m ~ W(bo, ao) # o > £o(ao)) + 

e-*o e 

W(s> ao) *(?(*, £o(ao))> 0) ds + v0^ ~ T(ao) *o^ = 0 

where v0 = v(y(a, £0(a0)), # o > £o(ao))> 0) -

In the first place let us prove the existence of lim x/e. The existence of this limit will 

(4.42) 

+ 

e-+0 
be deduced if we show that the system (4.26) has a real solution v0 = v0, a0 = a* and 
that *F(b0, a*) *l(b0, £o(ao)) + 0. But the first fact is assured by the assumption (IVa) 
and the second by the assumption (IVc) since the column in the jacobian of this 
system corresponding to partial derivatives with respect to v0 would otherwise be zero 
at the point v0 = v0, a0 = a*. Hence we may write T(e) = e v(e), where v(e) is con
tinuous at the point e = 0. 

Now substitute ev instead of x into (4.41) and v0 = v(0) instead of lim x/s into 
«-»o 

(4.42). Thus the latter system becomes precisely (4.26). Defining tt>(a, b, 0) = tt>0(a, b) 
the system (4.41) satisfies all assumptions of the implicit function theorem. Applying 
this theorem we deduce that there exists a unique solution v = v*(e), a0 = a*(e) of 
(4.41) for sufficiently small e > 0 such that a*(e) e 9l2(a0, S2) and b*(e) = b0 +e v*(e) e 
e 252. The existence of a unique solution c*(e) = #(a*(e), b*(e), e) e C1 of (4.35') 
then follows readily and this completes the proof of Theorem 4.1. 

Corollary 4.5. Let an interval X(0) = <a, b0> be given. Consider the boundary 
value problem (K) 

(4.43) x = Ax + e g(x, e) , M x(a) + N x(b) + e v(x(a), x(b), e) = 0 

where the function b with b(0) = b0 has to be determined suitably. Let the following 
assumptions be fulfilled. 
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(I) The same as (I) in Theorem 4.1. 

(II) The same as (I) in Corollary 3.3. 

(III) (a) Let the shortened boundary value problem (K0) 

(4.44) y = _4y, M y(a) + N y(b) = 0 

have exactly k linearly independent solutions. Denote <t(t) a n x k matrix whose 
columns are formed by these solutions. 

(b) Let #(a) y e^P, <P(b0) y e£lfor 7 e @, @ an open set in Ek. 

(c) Putyt = X(i an index from {1, 2, ..., k}). Denoted = y — L Let% = F[a|a + 
+ A 6 © ] . 

(IV) It may be shown that there exist a set £f <= Jf, v(Sf) = k, and a k x n 
constant matrix T such that for any fundamental matrix <P(t) of solutions of (4.44) 
it holds 

(M®(a) + N$(b))r = T(M®(a) + N&(b))P. 

Further it may be shown that there exists a k x n matrix *P(l) whose rows are 
formed by k solutions of the boundary value problem (K0) 

w" = - wsA , w\a) Ps + w\b0) QK = 0 

where n x n matrices P and Q satisfy conditions 

- MP" + NQ = 0 , x(P:Q) = n 

and which fulfils the condition 

W(b) = N^-TNy. 

(a) Lei> the system 

(4.45) v0 W(b0) t,(b0,&(b0)(x0 + A)) + f °W(s) g(t,(s, 0(sX«o + A)), 0) + 
J a 

+ v0^ - Tv0-p = 0 

where v0 = v(<i>(a)(a0 + A), <&(b)(a0 + A), 0) have a reaZ solution v0 = v*, a0 = a*. 

(b) Let <P(a)(a* + A) e ©. 

(c) Lel#,(a)(a*, + X) + 0. 

(d) Ler lhe jacobian of the system (4.45) be nonvanishing at the point v0 = v*, 

«o = **• 
(V) Denote 3c = E[x\ ||x - $(*)(«* + ^)ll < f t ^ ^ ] , e > 0 . Le* g(x, e) e C1 '1 

for x e dc, s e 2. 
Then inhere exisls for sufficiently small s > 0 a unique function b*(e) = b0 + 

+ e v*(e), v*(e) e C1 such £ha£ Jhere exists a unique solution %(t, c*(e), e) of lhe 
problem (K) on the interval <a, b*(e)> with §(a, c*(e), e) = c*(e) e C1 , cf(e) = 
= ^z(a)(a* + A) which tends lo lhe solution <P(t)(a* + 1) of the problem (K0) as e -> 0. 
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Corollary 4.6. Consider the differential system (4.1). Let the following assumpt
ions be fulfilled. 

(i) The same as (III) (a) (b) (c) (e) in Theorem 4.1 with the exception that a = 0, 
b = co and that u has the particular form (representing periodic boundary con
ditions) 

(4.46) u(t,(0), t,(a>)) = ,(0) - ,(«,) . 

(II) Let the variational system 

2 = f*(*))z 
have exactly k linearly independent co-periodic solutions for ye®. 

Then the adjoint system wx = — wK f±(i](t)) has also exactly k linearly independent 
solutions for a 4- ^ e ©. Denote W(t, a) the k x n matrix whose rows are formed by 
them. 

(IV) (a) Let the system 

(4.47) v0 W(w, «09(a), $0(«0))) + ^ ( s , «0) g(V(s, £0(a0)), 0) ds = 0 

have a real solution v0 = v0, a0 = a*. 

(b) Let ^(0, Q0(4)) * 0. 

(c) Let the jacobian of the system (4.49) with respect to v0, a0 be nonvanishing at 
the point v0 = v*, a0 = a*. 

(V) The same as (VI) in Theorem 4.1. 
Then there exists a unique function a)*(e) = co + s v*(s), v*(s) e C1 such that the 

system (4.1) has a unique oo*(s)-periodic solution <f(l, c*(2), e) with £(0, c*(s), s) = 
= c*(s) § C1 which tends to the co-periodic solution tj(t, Q0(a*)) of the system (4.3) 
as s -» 0. 

Remark 4.1. Let us prove that 

(4.48) W(t, a) ti(t, Q0(X)) = const for a e 3It . 

Indeed, differentiating (4.48) with respect to l, we get 

- W(t, a) fx(U <i(t)) kt) + W^ «) U*. W» fc) = 0 . 

Thus, we may write W(a, a0) ij(a, Q0(<X0)) instead of *F(b0, a0) i/(b0, &0(
ao)) in (4.26) 

and W(09 a0) y(0, £0(a0)) instead of W(co, a0) ti(co, £0(a0))
 i n (4-47)-

Now let us state the following theorem which corresponds to Theorem 3.1. 

Theorem 4.2. Let an interval %{0) = <a, b0> be given. Consider the boundary 

value problem (a) given by (4.1), (4.2). Let the following assumptions be fulfilled. 

(I), (II) The same as in Theorem 4.1. 

(III) The same as in Theorem 4.1 w/fft the exception that now v(f') — k = 1 and 
with the the addition that tfir(a, Q0(X)) =t= 0. 

354 



(IV) The same as in Theorem 4.L 

(V) It may be shown that there exist an index £f cr Jf and a constant matrix T 
such that 

DÍV 
Dc 

тPІ?^o. 
Dc 

Let 

Dxft DxJ dl 

(VI) The same as in Theorem 4.1. 
Then there exists for sufficiently small e > 0 a unique function t*(e) e C1 with 

T*(0) = 0 such £ha.> lhere exisfs a unique solution %(t9 c*(e), e) of lhe problem (a) 
wllh £(a, c*(e), e) = c*(e) e C1, c*(e) = /I on the interval <a, b0 + i*(e)> which 
tends to the solution tj(t, Q0(X)) of the problem (a0) with f/y(a, Q0(X)) = ^ on the inter
val <a, b0> as e -> 0. 

The proof may be omitted since it is very similar to the proof of Theorem 4.1. 
(Notice that besides n — 1 equations 

wF(cJ(a, c r + A, e), f(60 + T, c r + 2, e), e) = 0 

for c^ with the solution c^ = <x(t, s)e C2'1 we have the equation 

(4.49) C1\(D_y_ Ou_ 
Dx, 

_Чь 
dř 

+ є 
Dc, 

- T. 
Dc, ðe 

dӘ + 

dð + 

•p^_ т pa- f \çҘ î - l d a | 

Dcr Dc^/ðтJ9 j + 

i г 

Dxľ 
T^P^ldS. 

D x J DcJ9 

j 

Vc1^* C(5> #(T> s)> g)) g(*l(s> c(s> Q(?> e)> £))> e) ds + 

+ V<?(ta> L> S) ~ T v?(t«> L £) > = 0 

for T, which fulfils all assumptions of the implicit function theorem.) 
A similar theorem for periodic boundary conditions was proved in [4] (Chap. 14, 

Th. 2.1) under less restrictive assumptions. 

Theorem 4.3. Let an interval X(0) = <a, b(0)> be given. Consider the boundary 
value problem (a) 

(4.1) k = f(x) + eg(x ,e) , 

(4.2) w(x(a), x(b(e)), e) = u(xfl, xft) + e v(xa, xft, e) = 0 

where the function b(s) (fulfilling a condition with respect to fe(0), see (Illb)) has to 
be determined suitably. Let the following assumptions be fulfilled. 
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(I), (II), (Ilia) and (VI) the same as in Theorem 4.1. 

(III) (b) Let equations uty(a, c), ^(b, c)) = 0 have a real solution Cf = <r0(cr), 
b = p0(cr), T cz JV9 V ( ^ ) - fc, 2 5̂  fc = n. 

(c) Denote c r = 7, g0(y) = 7 + *o(y)- Let a0(y) e C2, /?0(y) e C2 for 7 e @, © an 
open sel in £fc such rhal © = £[c | c = ^0(y), 7 e @] cz €. 

Lcl b(0) = j80(y), ye®,® being the closure of @ in Ek. Denote t[(t) = q{t9 Q0(y)) so 
that ti(t) is a k-parametric solution of the problem (a0) given by (4.3), (4.4) on the 
interval <a, P0(y)}. 

(d) Let ii(a) e% ij(/]0(y)) e £ for 7 e @. 
(e) Let le-T. Put ct = Ae E\cl \ ct = yl9 7 e ©]. 

Denolc a = 7 - A, <x0(a) = <x0(a + A), £o(a) = £o(a + >0> v(0 == ?(*> $o(a))- (-Tfcws, 
if(l) 15 a (fc — l)-parametric solution of the problem (a0) wl£h c, = A. 

(IV) Let the variational boundary value problem (p) 

where 

røO)*> ^ * ( « ) + ^-*0>) = 0 
Dx„ Dxh 

~ ^ ) = (^ (*«). í 0o(7)) : | í - (*(4 itfoW) ) , Dx„ Dxh/ \Dx„ Dxh 

have exactly (fc — 1) linearly independent solutions on the interval <a, fi0(y)y for 
ye®. 

(V) We shall show that there exist a set 2t0, %0 a domain in F*"1 such that 
E [a + A I a e 2t0] c @, a ser _^ <z yV, v(^) = fc - 1 and a (fc - 1) x (n - fc + 1) 
matrix T(a) such lhal 

(4.50) _ ^ _ T ( « ) — - ? _ 0 , det — # 0 , 
Dc Dc \DcJp^ 

where 
Du Du A . A A 

Dc = Dc ^ ' * ^ ° " 
for a e 2I0. 

Further we shall show that there exists a (k — i) x n matrix W(t, a) whose rows 
are formed by fc — 1 solutions of the boundary value problem ($*) (adjoint to (p) in 
which cl = X is put) 

^ = - w' Ufa)) > w\a) PX«) + w\b) QX«) = 0 
A 

on £hc interval <a, /?0(a)> where n x n matrices P(a) and Q(a) satisfy conditions 

- £ - PX«) + £ - Q'(«) = 0 , X(P(«) : Q(«)) = n 
Dxa Dxft 

/or a e 2Ij, ^ a domain in 2I0, ««d which fulfils the condition 

(4.51) _ ^ o ( « ) , « ) _ ^ _ _ T ( « ) D f t * 
Dxь Dx„ 
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(a) Let the system 

rPo(«o) 
(4.52) W(s, «o) g(i,(s, Q0(*0)), 0) ds + voy - T(«0) voW = 0 

J a 

where v0 = v(i/(a, £0(a0)), f/(j80(
ao)> t00(a0)), 0) have a reaZ solution a0 = a*. 

(b) Lel a* eStti. 

(c) Let rit(a9 c0) #= 0, where c* = #0(ao)-

(d) Let the jacobian of the system (4.52) with respect to a0 be nonvanishing at the 
point a0 = a*. 

Then there exists for sufficiently small e > 0 a unique function b*(e)e C such 
that there exists a unique solution %(t9 c*(g), e) of the problem (a) with £(a, c*(s), e) = 
= c*(e)eC1, cf(fi) = A on the interval <a, b*(s)> whlch tends to the solution 
i/(l, c0) of lhe problem (a0) On lhe interval <a, /?0(a0)> as £ -> 0. 

Proof. By the same argument as in Theorem 4.1 we find that 

n — fc + 1 for y e @ . (4.53) 
V D c 

Let us show that 

(4.54) 1 
Du du\ 

; J = - n _ fc + 1 # 
Dc dby 

111 fact, the rank of the matrix in question obviously cannot be less than n — k + 1. 
On the other hand writing the identity 

(4.55) u(i,(a, Qo(y% n(fi0(yl Qo(y))) = 0 

and differentiating it with respect to y we get 

(4.56) ^ ^ o + ^ ^ £ = 0 
Dc Dy db D7 

or in a somewhat different form 

(4.56') (- • - ) ^ ^ = 0 • 
VDc d V °y 

Since evidently 

x f°Qo, Po) 
Dy 

by the known theorem of algebra 

/Du du\ , 
y — : — < n - k + 1 

\ D c db ' 

whence (4.54) follows readily. 
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Hence there exist sets Sf cr Jf, Vx c Jf, v(<f) = k - 1, v('T1) = fc and ©0, @0 

a domain in ($, such that for y e @0 

<4-57> *(5* :^)-"-* + 1-
VDcy. db / 

Let us now show that in particular 
(4.58) det V(y) = det ( ° ^ : ̂ l) + 0 . 

VDĉ - db J 
In fact, taking into account that 

->Mfl» Co(y)), *i(Po(y), Qo{y))) = o 

for y e @ and differentiating this identity, we get 

Du_.du^ D(<-0, p0) _ Q ^ 

v Dc r db/V Dy 

Clearly if for some point y e @0 

X(V(y)) Sn-k 

then there would exist an index j eS? and a 1 x (n — k) matrix M(?) such that 
(denoting f the complement of j with respect to Sf) 

(4.59) Vj(y)-M(y)Vf(y) = 0. 

Then by (4.56) 

^-M(y)—^ = 0 for y = $ 

which together with (4.59) contradicts (4.57). 

The relations (4.53), (4.54) and (4.58) evidently continue hold if we put cl = k e 
e £[cj | cz = .7-(a, Q0(y)), y e © ] . Thus there exists a (k — 1) x (n — fc + 1) matrix 
T(a) such that 

(4.60) fP«?A].T(,)f?5A)3o 
V ; V D c dfe/ V D c dfej 

for a e 2t0 = £[a ] a + A. e @0], whence it follows in particular 

(4.60') ™*-ty)™Zso, ^ - ^ ^ = 0, 
v ' Dc7 Dcw db db 
and 

(4.60") (!-*£ - T(«) ° ^ | ^ = - (™* - T(«) ° " ^ ° ^ 
Dxa Dxa/ Dc VDx* DxbJ Dc 

Quite analogously as in previous cases we may prove that the adjoint boundary 
value problem (ju*) is defined and has exactly k — 1 linearly independent solutions for 
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a e %l9 2li a domain in 2l0, and that there exists the matrix W(t9 a) with properties 
listed in (V) and namely that 

<-) ^«)-(^-^)^<w)-' 
(to prove it we make use of (4.60")). 

Now equations (4.52) are completely defined for a e ^ and their solution a0 = a* 
with properties (Vb, c, d) may be found. 

As in Theorem 4.1 we may require that the solution %(t9 c*(e), e) of the problem (a) 
fulfils the condition 

(4.62) cf(e) = X . 

By the same argument as in Theorem 4.1 there exists a neighborhood ^(cJ^OY^c* = 
= £0(a*) and sets 93, = <b0 - nl9 b% + nt\ b% = J80(«*), ©, = <0, ex>, 0 < ex ^ 

= e0 such that (l) every solution £(*, c, e) of (4.1) where e e ^ starting on Qt stays 
in 96 for t e X0 and $(b9 c, e) e Q, for b e 251? c e £51? e e @.l5 (2) it may be written in the 
form (4.37) where C(t9 c, e) is a solution of (4.38) and finally (3) by (4.58) 

(4.63) det (^ (ft,, ft, a) : ^ &, f,, s ) U 0 . 
\Dcy= db / 

for behl9ce£t and 8 6 ^ . 

A solution g(t9 c, e) of (4.1) is a solution of the problem (a) if and only if 

(4.64) w($(a9 c, e), £(&, c, e), e) = 0 . 

Inserting (4.62) into (4.64) we get the system of equations (denoting S£ the comple
ment of / with respect to if) 

(4.65) w(i(a9 cf + c^ + X9 e), £(b9 Cf + c^ + A, e), e) = 0 

for w unknowns c^9 c^ and 6. 
Leaving equations (4.65) with indices from ~P unchanged we have 

(4.66) wP(%(a9 Cf + Cc? + A, e), $(b9 c # + c^ 4- A, e), e) = 0 . 

By (4.63) and by the implicit function theorem there exist a neighborhood 9t2(
ao> <52)

 a n d 
a set @2 = <0, e2>, 0 < e2 ̂  e3 such that for c^ e 9l2(

ao> <52) and e e €2 there exists 
a unique solution 

(4.67) Cf = <x(c ,̂ e) , b = p(c<?9 e) 

of (4.66) such that (denoting again c^ = a, Q(<X9 e) = <r(a, e) + a + X)9 <r(a, e) e C2,1, 
/?(a, e) e C2 '1, <x(a, 0) = £0(a), /?(a, 0) = J80(«) and <?(a, e) e £)-.(«*, (5,), /?(a, e) e 33,. 
Inserting the solution (4.67) into (4.66) we get the identity 

(4.68) wy,(l(a)9 {(/»(«, e)), e) = 0 
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where £(/) = £(/, g(a, e), e) or making use of the mean value theorem and denoting 

(4.69) 

we have 

(4.68') 

'/»(«.«) 
g(a, є) = цc

 г(sђ C(s9 Q(*9 Є), Є)) g(ţ(s, C(s, ff(a, є), є), є)) ds 

+ є 

W (Ç(а)9 Ç(ß(я9 є)), є) = U (tj(а), tj(ß0)) + 
1 г D u > Dtj ï 

J o 

1 r D u ^ da 

+ є 

DCŢ дє 
л l г du> Ć>Д 

db ć>e 

dð + e 
Dxfc Dc 

dð g(a, г) + 

d8 + £ ^ ( a ) , Š 0 ? ( a , £ ) ) , e ) = O 

where the meaning of the index 3 may easily be found in each case. 

Inserting the solution (4.67) into equations (4.65) with indices from 5^ we get 

(4.70) W Җa), ţ(ß(a, e)), e) = 0 
or again making use of the mean value theorem 

(4.70') w^{a), Z(0(*, e)), e) = uffla), 0O(*))) + 

+ є 
11 YDuy da~\ 

0[pc? dejz 
dЭ + є 

1 r D u ^ Di,,," 

Dxb Dc 
dS д(a, є) + 

+ є 
i г " d u ^ <3/? 

dS + є ^ ( ф ) , ą / ? ( a , e ) ) , є ) = 0. 
db 3e_|d 

By (4.68) the system (4.70') may be replaced for e + 0 by the equivalent system 

(4.71) tt>(a, e) = i [w^(a)9 %(p), e) - T(a) w^(a)9 £(p)9 e)] = 0. 
e 

Letting e -» 0 and taking into account (Hid), (4.60') and (4.61) we get the system 

^( s , a0) g(n(s9 <?0(*o))> 0) ds + v0<? - T(a0) v0^ = 0 

where v0 = v(ij(a, Q0(*0))9 ti(fi0(tx0)9 Q0(a0))> 0), which is identical with the system 
(4.52). Putting tt>(a, 0) = tt)0(a) it may be easily verified that by (II), (ill) and (VI) 
tt>(a, e) G C1 '1 on %2(

ao> ^2) x 22 . Hence taking further into account (Vb, c, d) all 
assumptions of the implicit function theorem are fulfilled. Applying this theorem we 
deduce the existence of a unique solution a = a*(e) e C1 of (4.70) such that a*(0) = 
= a*, a*(e) e 9l2(a*, 82) for sufficiently small e > 0 and that o(a*(e)9 e) e C1, b*(e) = 
= J?(a*(e), e) e C1 is a solution of (4.64) such that c*(e) = g(a*(e), e) e ^ ( c * , 5j), 
b*(e) e 95t. Thus by the above considerations %(t, c*(e), e) is a solution of the problem 
(a) on the interval <a, b*(e)>, which completes the proof of Theorem 4.3. 

Corollary 4.7. Consider the system 4.1. Let the following assumptions be fulfilled. 

(I) The same as (Ilia, b, c, e) in Theorem 4.3 with the exception that a = 0, 
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b(0) = a)(°\ a) = co0(y) and the function u (representing the periodic boundary 
condition) has the particular form 

u(t,(0), ti(a>)) = 17(0) - t,(co) . 

(II) Let the variational differential system 

-=f*(v(0)* 
have exactly fe — 1 linearly independent co0(y)-periodic solutions for ye®. 

(III) It may be shown that there exists a (fe — 1) x n matrix W(t, a) whose rows 
are formed by fe — 1 linearly independent cb0(a)-periodic solutions of the adjoint 
differential system 

iy=-"xfM)) 
where a e 21 = F[a | a -f- ^ e ©]. 

(a) Let the system 
(*w0(a0) 

W(s, a0) g(ti(s, $o(«o)), 0) ds = 0 

/zave a rea/ solution a0 = a0. 

(b) Lel a* e 21. 

(c) Lel i^(0, £0(a*)) * 0. 

(d) Let the jacobian of the system (4) with respect to a0 be nonvanishing at the 
point a0 = a*. 

(IV) The same as (VI) in Theorem 4.2. 
Then there exists for sufficiently small e > 0 a unique co*(s)-periodic solution 

${t9 c*(e), e) of (4.1) with £(0, c*(e), e) = c*(e) e C1, Of(e) = A, co*(e) e C1, wft/cA tends 
to the a)0(a*)-periodic solution tj(t, e20(a*)) o/(4.3) as e -> 0. 

Remark 4.2. In Theorem 4.3 and Corollary 4.5 we may restrict ourselves to the 
case that 2 = fe = n. In fact, if fe = 1 then the unique parameter must evidently be 
equivalent to the parameter S which may be added to the variable t. This implies that 
the whole one-parameter family exists on the same interval <a, b0>. 

R e m a r k 4,3. Remarks analogous to Remarks 3.1, 3.3 and 3.4 with respect to 
Theorems 4.1, 4.2 and 4.3 might be stated. 
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Р е з ю м е 

ВОЗМУЩЕННЫЕ НЕЛИНЕЙНЫЕ КРАЕВЫЕ ЗАДАЧИ 

ОТТО ВЕЙВОДА (ОПо Vе̂ Vоо!а), Прага 

В первом параграфе приведены те теоремы из теории линейных краевых 

задач, которые используются в дальнейшем. 

Во втором параграфе приводятся теоремы о методе вариации постоянных 

и о неявных функциях. Эти две теоремы являются основными средствами для 

изучения следующих вопросов. 

В третьем параграфе рассматривается краевая задача (У): 

(3.1) х = {((9х) + е*(*,х,е), 

(3.2) иг(хв, хЬ9 е) = и(ха9 хъ) + еу(ха, хЬ9 е) = 0 , 

где (9 #, и9V9V^ — «-мерные векторы. 

Предполагается, что решения укороченной („предельной") краевой задачи (У0) 

(з.з) у = т, у), 

(3-4) и(уа, уь) = 0 

известны, и отыскиваются только те решения задачи (У), которые стремятся 

для 8 - > 0 к некоторому решению задачи (у0). 

Важную роль в дальнейшем играет краевая задача „в вариациях" (X): 

(3.5) 2 = - ^ (г, $(.•))-., 
О х 

(3.6) — - (ца9 Пъ) *(а) + ™ &> Пъ) *(Ъ) = ° > 
Оха Охь 

где ц({) = ц(г9 д0(у))9 общее решение краевой задачи (У 0), причем ц(г9 с), общее 

решение системы (3.3) с начальным значением ц(а, с) = с и (?о(у)> решение систе

мы (3.4), зависящее от к параметров у = (уиУ2, • • •>?&)• К а к известно, если 

X (—-(па> Пъ) - —(Ча>Чь)) = п - к (х(М) обозначает ранг матрицы М) для 
\Ох а Охъ

х ) 
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у е®, ® область в Ек, то краевая задача (X) имеет для у е® точно к линейно 
независимых решений (и наоборот). Тогда также сопряженная краевая зада
ча (Я*) 

^ = _ у,Р1 ^ Щ у ^(й) р(у) + иф) д. ( у ) _ 0 
Ох 

(ч обозначает транспонирование), где п х п матрицы Р(у), <$(у) для у е @ 
удовлетворяют соотношениям 

- ^ (Па> Пь) Р\У) + ^ (Ча, Пь) Я\У) - 0, Х(Р(У) : <?(?)) = п, 

имеет точно к линейно независимых решений. 

Можно доказать следующие две теоремы: 

Теорема 3.1. Пусть краевая задача (у0) имеет изолированное решение ц{1, с*) 
и пусть краевая задача (X) для ц(1) = ц(1, с*) имеет только тривиальное решение. 
Если имеют место еще некоторые дальнейшие предположения (например, 
гладкости), то краевая задача (у) для достаточно малых г имеет одно одно
значно определенное решение ^(1, с*(г), г) с начальным значением %(а, с*(е), е) = 
= с*(г) такое, что {(*, с*(0), 0) = ц(г, с*), с*(0) = с*. 

Теорема 3.2. Пусть задача (у0) имеет к-параметрическое семейство решений 
П(и #О(У)Х У е @, @ — открытое множество в Ек. Пусть задача (к) имеет для 
у е @1? @! —открытое множество в @, точно к линейно независимых решений. 
Из этого вытекает, что 

D (Чa, Чb)) = П ~ Һ. 

Пусть, в частности, 

- ^ (?«, ?ь) ~ Т ( ? ) 1 ^ (?«, *ь) = 0 > 
Ос Ос 

где Т(у) — матрица типа к х (п — к), 9 — упорядоченная система к индексов из 
{1,2, ..., п} = .уГ, _^ — дополнение 9* относительно Ж. 

Можно показать, что существует матрица Ч?(1, у) типа к х п такая, что ее 
строки являются решениями сопряженной задачи (А*) и что она удовлетворяет 
краевому условию 

ЩЬ, У) = ^ (ц„ ЩЬ) - Цу) °^ (щ„ щ) . 

Пусть система уравнений 

(3.21) Г Щз, у0) &, ?(-•, во(Уо)) , 0) 4з + УОУ - Т(Уо) *<& = 0 
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(где V0 = у(*К#, ^0(Уо))^ чФ> @о(Уо))> Щ имеет действительное решение у0 = 

= 7 * ^ . 

Пусть якобиян системы (3.21) относительно у0 в точке у0 = у0 отличен от 

нуля. 

Тогда при некоторых предположениях гладкости (и некоторых дальнейших 

менее существенных) для достаточно малых & существует одно однозначно 

определенное решение ^(1, с*(е), е), %(а, с*(е), г) = с*(е) задачи (у) такое, что 

Ш, ^о(.у^), о) = Ф, а<Ш, с*(о) = ео(г*). 
Наконец, в четвертом параграфе исследуются краевые задачи, для которых 

система дифференциальных уравнений автономна, т. е. 

(4.1) х = ((х) + ф,8). 

Краевую задачу (4.1), (3.2) обозначим через (а) и соответствующую укорочен

ную задачу через (а0). 

Вводится следующее основное понятие: Скажем, что краевая задача (а) 
имеет свойство (0>), если имеет место: Если (р*(() — решение краевой задачи (а) 
на определенном интервале <а, Ь>, то также 

п(<р*(а + 8), (р*(Ь + 5), е) = 0 

лдя любого 5, для которого функция (р*(1 + д) имеет значение. 

Легко видеть, что для краевых задач со свойством (&) нельзя пользоваться 
теоремами третьего параграфа, так как решения этих задач образуют по мень
шей мере однопараметрические системы. Поэтому мы должны одну из компо
нент начального вектора искомого решения фиксировать, и показывается 
необходимым вместо этой переменной выбрать длину интервала <а, Ь(е)>, 
на котором ищется решение,как новую неизвестную. 

(Очевидно, что краевые задачи с периодическими краевыми условиями имеют 
свойство (0*). Эти задачи занимают знаменательное положение среди краевых 
задач со свойством (^).) 

В теоремах существования у краевых задач со свойством (0) надо различать 
случай, когда укороченная краевая задача (а0) имеет /с-параметрическое семей
ство решений на интервале <а, Ь> постоянной длины (теоремы 4.1 и 4.2), и слу
чай, когда задача (а0) имеет семейство решений, зависящее от /с параметров 
У = (у 19 Уп •••> Ун) и существующее на интервале <а, Ь(у)}. 

В обоих случаях получим теорему, аналогичную теоремам 3.2 и 3.1. 
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