Czechoslovak Mathematical Journal

Bohumil Cenkl

Déformation des congruences paraboliques de droites dans S_n

Czechoslovak Mathematical Journal, Vol. 11 (1961), No. 3, 413-422

Persistent URL: http://dml.cz/dmlcz/100469

Terms of use:

© Institute of Mathematics AS CR, 1961

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

DÉFORMATION DES CONGRUENCES PARABOLIQUES DE DROITES DANS S_n

BOHUMIL CENKL, Praha (Reçu le 30 avril 1960)

Dans ce Mémoire, j'étudie la déformation projective des congruences paraboliques dans S_n . Je montre, que le problème se réduit en principe à l'étude de la déformation projective des congruences paraboliques dans S_4 . Je démontre ensuite certains théorèmes analogues au cas de congruences non-paraboliques [1].

1. Dans l'espace projectif à n dimensions S_n , $n \ge 4$, soit donnée une surface (A) sur laquelle se trouve une seule couche de courbes asymptotiques (donc, l'espace osculateur de la surface est à 4 dimensions, en chacun de ses points). Les surfaces de cette espèce seront appelées paraboliques. Les tangentes à ces asymptotiques forment une congruence parabolique L, dont (A) est la surface focale. Le repère mobile $(A_0, A_1, ..., ..., A_n)$ pour lequel

$$dA_i = \sum_{k=0}^{n} \omega_{ik} A_k \quad (i = 0, 1, ..., n)$$

soit choisi de telle façon que A_0 soit un point de la surface (A), $[A_0, A_1, A_2]$ le plan tangent au point A_0 , $[A_0, A_1]$ la tangente asymptotique et $[A_0, A_1, A_2, A_3, A_4]$ l'espace osculateur de la surface (A) au point A_0 . Nous obtenons ainsi les équations (en posant $\omega_i = \omega_{0i}$ pour i = 1, ..., n)

(1)
$$\omega_i = 0 \quad (i = 3, 4, ..., n),$$

(2)
$$\omega_{1i} = \omega_{2i} = 0 \quad (i = 5, 6, ..., n).$$

Vu que $[A_0, A_1]$ est la tangente asymptotique, nous pouvons choisir

(3)
$$\omega_{13} = 0$$
, $\omega_{23} = \omega_2$, $\omega_{14} = \omega_2$, $\omega_{24} = \omega_1$,

d'où, par différentiation extérieure,

$$\begin{split} \left[\omega_{12}-\omega_{43}\omega_{2}\right]&=0\;,\\ \left[2\omega_{22}-\omega_{00}-\omega_{33}\omega_{2}\right]+\left[\omega_{12}-\omega_{43}\omega_{1}\right]&=0\;,\\ \frac{1}{2}\left[\omega_{11}+\omega_{22}-\omega_{00}-\omega_{44}\omega_{2}\right]+\left[\omega_{12}\omega_{1}\right]&=0\;,\\ \left[2\omega_{21}-\omega_{34}\omega_{2}\right]+\left[\omega_{11}+\omega_{22}-\omega_{00}-\omega_{44}\omega_{1}\right]&=0\;. \end{split}$$

En vertu du lemme de Cartan nous avons ensuite

(4)
$$\omega_{12} = \alpha \omega_1 + \beta \omega_2 \; ; \quad \frac{1}{2} (\omega_{11} + \omega_{22} - \omega_{00} - \omega_{44}) = \beta \omega_1 + \gamma \omega_2 \; ;$$
$$\omega_{21} - \frac{1}{2} \omega_{34} = \gamma \omega_1 + \zeta \omega_2 \; ; \quad \omega_{43} = \alpha \omega_1 + \lambda \omega_2 \; ;$$
$$2\omega_{22} - \omega_{00} - \omega_{33} = (\beta - \lambda) \omega_1 + \mu \omega_2 \; .$$

On voit aisément qu'il est possible de prendre $\alpha = 1$. D'une façon analogue nous obtenons à partir de (2)

(5)
$$\omega_{4i} = \alpha_i \omega_2 \; ; \; \omega_{3i} = \alpha_i \omega_1 + \beta_i \omega_2 \; (i = 5, 6, ..., n) \; .$$

Par une nouvelle différentiation extérieure nous obtenons

$$\begin{split} \left[\omega_{2} \, \mathrm{d}\alpha_{i} + \alpha_{i} (2\overline{\omega_{00} - \omega_{22}} - \omega_{11}) + \sum_{k=5}^{n} \alpha_{k} \omega_{ki}\right] + (\dots) \left[\omega_{1} \omega_{2}\right] &= 0 \,, \\ \left[\omega_{1} \, \mathrm{d}\alpha_{i} + \alpha_{i} (2\overline{\omega_{00} - \omega_{22}} - \omega_{11}) + \sum_{k=5}^{n} \alpha_{k} \omega_{ki}\right] + \\ + \left[\omega_{2} \, \mathrm{d}\beta_{i} + \beta_{i} (\omega_{00} - \omega_{22} - \omega_{33}) + \sum_{k=5}^{n} \beta_{k} \omega_{ki}\right] + \alpha_{i} \left[\omega_{34} + \omega_{21} \omega_{2}\right] + \\ + (\dots) \left[\omega_{1} \omega_{2}\right] &= 0 \\ \left(i = 5, 6, \dots, n\right). \end{split}$$

On voit aisément qu'il est possible de choisir $\alpha_6 = \alpha_7 = \dots = \alpha_n = \beta_7 = \dots = \beta_n = 0$. Au lieu de (5) nous écrivons maintenant

(6)
$$\omega_{45} = \alpha_5 \omega_2$$
; $\omega_{35} = \alpha_5 \omega_1 + \beta_5 \omega_2$; $\omega_{4i} = 0$ $(i = 6, 7, ..., n)$, $\omega_{36} = \beta_6 \omega_2$; $\omega_{3i} = 0$ $(i = 7, 8, ..., n)$.

Les équations différentielles de la surface (A_0) peuvent donc être écrite sous la forme

(7)
$$dA_0 = \omega_{00}A_0 + \omega_1A_1 + \omega_2A_2 ,$$

$$dA_1 = \omega_{10}A_0 + \omega_{11}A_1 + \omega_{12}A_2 + \omega_2A_4 ,$$

$$dA_2 = \omega_{20}A_0 + \omega_{21}A_1 + \omega_{22}A_2 + \omega_2A_3 + \omega_1A_4 ,$$

$$dA_3 = \omega_{30}A_0 + \omega_{31}A_1 + \omega_{32}A_2 + \omega_{33}A_3 + \omega_{34}A_4 +$$

$$+ (\alpha_5\omega_1 + \beta_5\omega_2)A_5 + \beta_6\omega_2A_6 ,$$

$$dA_4 = \omega_{40}A_0 + \omega_{41}A_1 + \omega_{42}A_2 + \omega_{43}A_3 + \omega_{44}A_4 + \alpha_5\omega_2A_5 ,$$

$$dA_i = \sum_{k=0}^{n} \omega_{ik}A_k \quad (i = 5, 6, ..., n) ,$$

(4) étant également valable. Dans la suite, nous supposerons $\alpha_5 \neq 0$, sauf mention explicate du contraire. Dans S_n , $n \geq 6$, nous pouvons toujours choisir $\beta_5 = 0$. Alors $\alpha_5 = \beta_6 = 0$ signifie que la surface est plongée dans S_4 . Si $\alpha_5 \neq 0$, $\beta_6 = 0$, la surface est plongée dans S_5 . Dans le cas où $\alpha_5 = 0$, $\beta_6 \neq 0$, nous obtenons une surface

¹) La droite $[A_0A_2]$ étant déjà fixée.

réglée, comme nous trouvons facilement en différentiant extérieurement $\omega_{46}=0$. En effet, on a $\left[\mathrm{d}\omega_{46}\right]=\beta_{6}\left[\omega_{43}\omega_{2}\right]=0$, d'où $\left[\omega_{43}\omega_{2}\right]=0$, c'est-à-dire $\alpha=0$. Or cela signifie que les courbes $\omega_{2}=0$ sont des droites. Si la surface se trouve dans S_{5} , alors $\alpha_{5}=0$, $\beta_{5}\neq0$ signifie de nouveau que $\omega_{2}=0$ sont des droites. $\alpha_{5}=0$, $\beta_{5}=0$ détermine une surface dans S_{4} . Si nous choisissons $\beta_{5}=0$, $\alpha_{5}\neq0$, nous fixons par cela la droite $\left[A_{0},A_{2}\right]$. Dans tout notre travail, nous supposons $\alpha\neq0$, en posant, comme nous l'avons déjà dit plus haut, $\alpha=1$.

Soit donnée une surface (B) dans un espace projectif \overline{S}_n , $n \ge 4$, tout comme (A) a été donnée dans S_n . Formons dans \overline{S}_n la congruence parabolique L' des tangentes asymptotiques à la surface (B). Associons à la surface (B) des repères d'une manière analogue au cas de la surface (A); toutes les expressions analytiques concernant ces repères-ci seront marquées par un apostrophe. La surface (B) est donc donnée par les équations différentielles

$$\begin{split} \mathrm{d}B_0 &= \omega_{00}' B_0 + \omega_1' B_1 + \omega_2' B_2, \\ \mathrm{d}B_1 &= \omega_{10}' B_0 + \omega_{11}' B_1 + \omega_{12}' B_2 \\ \mathrm{d}B_2 &= \omega_{20}' B_0 + \omega_{21}' B_1 + \omega_{22}' B_2 + \omega_2' B_3 + \omega_1' B_4, \\ \mathrm{d}B_3 &= \omega_{30}' B_0 + \omega_{31}' B_1 + \omega_{32}' B_2 + \omega_{33}' B_3 + \omega_{34}' B_4 + \left(\alpha_5' \omega_1' + \beta_5' \omega_2'\right) B_5 + \beta_6' \omega_2' B_6, \\ \mathrm{d}B_4 &= \omega_{40}' B_0 + \omega_{41}' B_1 + \omega_{42}' B_2 + \omega_{43}' B_3 + \omega_{44}' B_4 + \alpha_5' \omega_2' B_5, \\ \mathrm{d}B_i &= \sum_{k=0}^n \omega_{ik}' B_k \quad (i=5,6,...,n), \end{split}$$

(8) $\omega'_{12} = \omega'_{1} + \beta \omega'_{2}; \quad \frac{1}{2} (\omega'_{11} + \omega'_{22} - \omega'_{00} - \omega'_{44}) = \beta' \omega'_{1} + \gamma' \omega'_{2};$ $\omega'_{21} - \frac{1}{2} \omega'_{34} = \gamma' \omega'_{1} + \zeta' \omega'_{2}; \quad \omega'_{43} = \omega'_{1} + \lambda' \omega'_{2};$

 $2\omega'_{22} - \omega'_{00} - \omega'_{33} = (\beta' - \lambda')\,\omega'_1 + \mu'\omega'_2.$

Supposons que les surfaces (A) et (B) soient en correspondance asymptotique C la plus générale

(9)
$$\omega_1 = \omega_1', \quad \omega_2 = \omega_2'.$$

En posant $\tau_{ij} = \omega_{ij} - \omega'_{ij}$, nous en obtenons par différentiation extérieure

$$[\tau_{11} - \tau_{00}\omega_1] + [\tau_{21}\omega_2] = 0; \quad [\tau_{22} - \tau_{00}\omega_2] + (\beta' - \beta)[\omega_1\omega_2] = 0,$$

d'où

(10)
$$\tau_{22} - \tau_{00} = (\beta - \beta') \omega_1 + \tau \omega_2; \quad \tau_{11} - \tau_{00} = a\omega_1 + b\omega_2;$$
$$\tau_{21} = b\omega_1 + c\omega_2.$$

2. La correspondance poctuelle C donnée entre les surfaces (A), (B) détermine une correspondance T_1 entre les droites des congruences paraboliques L, L', formées de tangentes aux asymptotiques des surfaces (A) et (B). A présent, nous allons examiner la déformation projective de deux congruences paraboliques de ce genre. Soient donc

données deux congruences paraboliques, L dans l'espace \overline{S}_n , et L' dans l'espace \overline{S}_n . Supposons que les congruences L et L' soient en correspondance T_1 ; nous demandons alors, s'il existe une homographie K_1 entre les espaces S_n et \overline{S}_n telle que l'on ait

(11)
$$K_{1}[A_{0}A_{1}] = [B_{0}B_{1}]; \quad K_{1} d[A_{0}A_{1}] = d[B_{0}B_{1}] + \vartheta[B_{0}B_{1}];$$
$$K_{1} d^{2}[A_{0}A_{1}] = d^{2}[B_{0}B_{1}] + 2\vartheta d[B_{0}B_{1}] + (...)[B_{0}B_{1}].$$

L'homographie K_1 la plus générale existant entre les espaces S_n , \overline{S}_n a la forme

$$K_1 A_i = \sum_{k=0}^n a_{ik} B_k \quad (i = 0, 1, ..., n).$$

Il résulte de (11)

(12)
$$a_{00}a_{11} - a_{01}a_{10} = 1; \quad a_{1i} = a_{0i} = 0 \quad (i = 3, 4, ..., n).$$

Nous avons

$$d[A_0A_1] = (\omega_{00} + \omega_{11})[A_0A_1] + (\omega_1 + \beta\omega_2)[A_0A_2] + \omega_2[A_0A_4] - \omega_2[A_1A_2],$$
 et d'une manière analogue $d[B_0B_1] = \dots$ En substituant cela dans (11₂) nous obtenons de nouvelles conditions pour les a_{ik} :

(13)
$$a_{01} = a_{43} = 0 , \quad a_{2i} = 0 \quad (i = 3, 4, ..., n),$$

$$a_{4i} = 0 \quad (i = 5, 6, ..., n), \quad a_{00}a_{22} = a_{00}a_{44} = a_{11}a_{22} = a_{00}a_{11} = 1,$$

$$\beta' = \beta + a_{00}a_{42} - a_{10}a_{22},$$

$$\vartheta = \tau_{00} + \tau_{11} + (\omega_1 + \beta\omega_2) a_{00}a_{21} + \omega_2(a_{00}a_{41} - a_{10}a_{21} + a_{11}a_{20}).$$

L'homographie tangente la plus générale de la correspondance T_1 est donc (si nous prenons $a_{00} = 1$ ce qui est possible, car de (13) découle $a_{00}^2 = 1$)

(14)
$$K_1A_0 = B_0$$
,
 $K_1A_1 = a_{10}B_0 + B_1$,
 $K_1A_2 = a_{20}B_0 + a_{21}B_1 + B_2$,
 $K_1A_3 = a_{30}B_0 + a_{31}B_1 + a_{32}B_2 + a_{33}B_3 + a_{34}B_4 + \dots + a_{3n}B_n$,
 $K_1A_4 = a_{40}B_0 + a_{41}B_1 + (\beta' - \beta + a_{10})B_2 + B_4$,
 $K_1A_i = \sum_{k=5}^{n} a_{ik}B_k$ $(i = 5, 6, ..., n)$.

A l'aide de l'expression

$$\begin{split} \mathrm{d}^2 \big[A_0 A_1 \big] &= \left\{ \mathrm{d} \big(\omega_{00} + \omega_{11} \big) + \big(\omega_{00} + \omega_{11} \big)^2 + \omega_{12} \omega_{21} + \omega_2 \omega_{41} + \omega_2 \omega_{20} \right\}. \\ \cdot \big[A_0 A_1 \big] &+ \left\{ \mathrm{d} \omega_{12} + \omega_{12} \big(2\omega_{00} + \omega_{11} + \omega_{44} \big) + \omega_2 \omega_{42} - \omega_2 \omega_{10} \right\} \big[A_0 A_2 \big] + \\ &+ \omega_2 \big(\omega_{12} + \omega_{43} \big) \big[A_0 A_3 \big] + \left\{ \mathrm{d} \omega_2 + \omega_2 \big(2\omega_{00} + \omega_{11} + \omega_{44} \big) + \omega_1 \omega_{12} \right\}. \\ \cdot \big[A_0 A_4 \big] &+ \alpha_5 \omega_2^2 \big[A_0 A_5 \big] - \left\{ \mathrm{d} \omega_2 + \omega_2 \big(\omega_{00} + 2\omega_{11} + \omega_{22} \big) - \omega_1 \omega_{12} \right\}. \\ \cdot \big[A_1 A_2 \big] &- \omega_2^2 \big[A_1 A_3 \big] + 2\omega_2^2 \big[A_2 A_4 \big] \end{split}$$

et de l'expression analogue de $d^2[B_0B_1]$, nous obtenons à partir de (11_3) des conditions pour que l'homographie K_1 soit l'homographie osculatrice de la correspondance T_1 :

(15)
$$a_{00} = a_{11} = a_{22} = a_{33} = a_{44} = 1$$
, $a_{0i} = a_{1i} = 0$ $(i = 2, 3, ..., n)$, $\beta' - \beta = a_{42} - a_{10}$, $a_{43} = a_{01} = 0$, $a_{3i} = a_{4i} = 0$ $(i = 5, 6, ..., n)$, $a_{2i} = 0$ $(i = 3, 4, ..., n)$, $a_{5i} = 0$ $(i = 6, 7, ..., n)$, $a_{34} = a_{21} = 0$, $\alpha_5 a_{55} = \alpha'_5$, $\beta + \lambda - \beta' - \lambda' = a_{10} - \alpha_5 a_{53}$, $\tau = 2a_{20} - a_{32}$, $\tau - 2\gamma + 2\gamma' + \alpha_5 a_{54} - 2a_{41} = 0$, $2\varrho a_{10} = a$, $a_{20} - a_{41} = b$, $2\lambda a_{20} - 2a_{40} - 2\beta' a_{41} + \alpha_5 a_{52} - k - \tau(\beta + \lambda) - 2\gamma(\beta' - \beta) - \gamma a + \frac{1}{2}a\tau = 0$,

k étant déterminé par la relation

$$d(\beta' - \beta) + \tau_{10} - \tau_{42} = \{\alpha(b - \tau) + \beta(\beta - \beta')\} \omega_1 + k\omega_2$$

que l'on obtient en différentiant extérieurement l'équation $\tau_{12} = (\beta' - \beta) \omega_2$ et en y appliquant le lemme de Cartan. Nous voyons qu'il est toujours possible de choisir a_{ik} de telle façon que les équations (15) soient vérifiées, c'est-à-dire que pour toutes deux congruences paraboliques L, L' en correspondance T_1 il existe une homographie K_1 satisfaisant à (11). Donc, toute correspondance développable (de deux surfaces développables) entre deux congruences paraboliques dans S_n , $n \ge 5$, est une déformation projective. Si nous choisissons les deux congruences L, L', la correspondance T_1 dépendera d'une fonction de deux variables et il existe $\infty^{(n+1)(n-5)+6}$ d'homographies osculatrices de la correspondance T_1 .

3. Si nous supposons que $\alpha_5 = \alpha_5' = \beta_6 = \beta_6' = 0$, c'est-à-dire que les congruences paraboliques L, L' soient dans les espaces S_4 , \bar{S}_4 à quatre dimensions, nous obtenons au lieu de (15) la condition nécessaire et suffisante pour la déformation projective des congruences paraboliques L, L', exprimée par les équations

(16)
$$a_{00} = a_{11} = a_{22} = a_{33} = a_{44} = 1, \quad \beta' - \beta = a_{42} - a_{10},$$

$$a_{01} = a_{02} = a_{03} = a_{04} = a_{12} = a_{13} = a_{14} = a_{43} = a_{21} = a_{23} = a_{24} = a_{34} = 0,$$

$$\tau = 2a_{20} - a_{32}, \quad \tau - 2\gamma + 2\gamma' = 2a_{41}, \quad 2a_{10} = a, \quad b - a_{20} + a_{41} = 0,$$

$$2\lambda a_{20} - 2a_{40} - 2\beta' a_{41} - k - \tau(\alpha + \lambda) - 2\gamma(\beta' - \beta) - \gamma a + \frac{1}{2}a\tau = 0,$$

et par l'équation

(17)
$$a = 2(\beta + \lambda - \beta' - \lambda').$$

Nous voyons qu'il existe des a_{ik} tels que (16) soit vérifié. L'équation (17) exprime donc la condition nécessaire et suffisante pour qu'une paire de congruences paraboliques L, L' dans S_4, \overline{S}_4 soit en déformation projective. Si (17) est vérifié, il existe ∞^2 d'homographies K_1 de la correspondance T_1 qui jouissent de la propriété (11).

Nous allons établir maintenant le degré de généralité des congruences paraboliques qui sont en déformation projective du second ordre avec une congruence parabolique donnée. Choisissons dons dans \overline{S}_4 une congruence parabolique L', ou bien, ce qui est la même chose, une surface dans S_4 sur laquelle il y a une seule couche d'asymptotiques. La congruence parabolique L dans S_4 qui est en déformation projective avec L' est donnée par le système (3), (4), (9), $\omega_3 = \omega_4 = 0$. Nous allons prolonger ce système. En différentiant extérieurement (9), nous obtenons d'une manière bien connue les équations (10). Considérons maintenant le système (3), (4), (10), $\omega_3 = \omega_4 = 0$. Nous obtenons les équations du second degré

$$\begin{split} \left[\omega_2\,\mathrm{d}\beta + \beta(\omega_{00} - \omega_{11}) - \omega_{21} + \omega_{42} - \omega_{10}\right] + \left(\ldots\right) \left[\omega_1\omega_2\right] &= 0\,,\\ 2\left[\omega_1\,\mathrm{d}\beta + \beta(\omega_{00} - \omega_{11}) - \omega_{21} + \omega_{42} - \omega_{10}\right] +\\ + \left[\omega_2\,\mathrm{2d}\gamma + 2\gamma(\omega_{00} - \omega_{22}) - 2\omega_{20} + 2\omega_{41} - \lambda\omega_{34} + \omega_{32} - 2\beta\omega_{21}\right] +\\ + \left(\ldots\right) \left[\omega_1\omega_2\right] &= 0\,,\\ \left[\omega_1\,2\mathrm{d}\gamma + 2\gamma(\omega_{00} - \omega_{22}) - 2\omega_{20} + 2\omega_{41} - \lambda\omega_{34} + \omega_{32} - 2\beta\omega_{21}\right] +\\ + \left[\omega_2\,2\mathrm{d}\zeta + 2\zeta(\omega_{00} + \omega_{11} - 2\omega_{22}) + (\mu + 2\gamma)\,\omega_{34} + 3\omega_{31} - 2\gamma\omega_{21}\right] &= 0\,,\\ \left[\omega_2\,\mathrm{d}\lambda + \lambda(\omega_{00} - \omega_{11}) - \omega_{21} - \omega_{42}\right] + \left(\ldots\right) \left[\omega_1\omega_2\right] &= 0\,,\\ \left[\omega_1\,\mathrm{d}(\beta - \lambda) + (\beta - \lambda)(\omega_{00} - \omega_{11}) + 2\omega_{42} - \omega_{10}\right] +\\ + \left[\omega_2\,\mathrm{d}\mu + \mu(\omega_{00} - \omega_{22}) - 2\beta\omega_{21} + 2\omega_{32} - \omega_{20} + \omega_{32} + \lambda\omega_{34} + (\lambda - \beta)\,\omega_{21}\right] +\\ + \left(\ldots\right) \left[\omega_1\omega_2\right] &= 0\,,\\ \left[\mathrm{d}\beta + \beta(\omega_{00} - \omega_{11}) - \omega_{21} + \omega_{42} - \omega_{10}\right] +\\ + \left[\omega_2\,\mathrm{d}\tau + \tau(\omega_{00} - \omega_{22}) - 2\tau_{20} - \beta\omega_{21} - \beta'\omega'_{21} - \tau_{32}\right] + \left(\ldots\right) \left[\omega_1\omega_2\right] &= 0\,,\\ \left[\omega_2\,\mathrm{d}b + b(\omega_{00} - \omega_{11}) - \tau_{20} + \tau_{41}\right] +\\ \left[\omega_2\,\mathrm{d}c + c(\omega_{00} - \omega_{22}) + \tau_{31} - b\omega_{21}\right] + \left(\ldots\right) \left[\omega_1\omega_2\right] &= 0\,. \end{split}$$

Le système fermé envisagé est en involution. Le déterminant de la matrice caractéristique est égal à $4\omega_2^8$. La congruence L' étant donnée, la congruence L qui est en déformation projective avec L' dépend de huit fonctions d'une variable.

4. Cherchons maintenant les caractéristiques géométriques de la déformation projective de congruences paraboliques dans un espace à quatre dimensions. Considérons deux congruences L, L', en correspondance développable. Nous savons que la partie principale de l'homographie tangente la plus générale K_1 de la correspondance T_1 est

(18)
$$K_1 A_0 = B_0$$
, $K_1 A_1 = a_{10} B_0 + B_1$, $K_1 A_2 = a_{20} B_0 + a_{21} B_1 + B_2$.

Par la partie principale de l'homographie K_1 nous entendons ici une telle homographie \bar{K}_1 existant entre les plans tangents aux surfaces (A), (B) aux points A_0 , B_0 , qui est une partie de l'homographie K_1 . Nous dirons que une correspondance T_2 est le

prolongement ponctuel de la correspondance T_1 , lorsqu'une projectivité π est choisie entre les droites en correspondance par T_1 de telle manière que $\pi A_0 = B_0$; $\pi A_1 = a_{10}B_0 + B_1$. T_2 est donc la correspondance ponctuelle

$$T_2(x_1A_0 + x_2A_1) = x_1B_0 + x_2(a_{10}B_0 + B_1)$$

pour tous x_1 , x_2 réels. Choisissons sur la surface (A) une courbe c différente de la courbe asymptotique passant par le point A_0 , d'ailleurs quelconque. Supposons qu'elle soit donnée par l'équation $\kappa\omega_2=\omega_1$, où κ est une fonction des paramètres principaux de la surface. La correspondance C associe à la courbe c une autre courbe c' située sur la surface (B), également non-asymptotique. Les tangentes asymptotiques le long de c et c' sur (A) et (B) forment deux surfaces réglées R, R'. La surface R a, au point $x_1A_0+x_2A_1$, le plan tangent

$$[A_0, A_1, x_1 dA_0 + x_2 dA_1] = [A_0, A_1, (x_1\omega_2 + x_2\omega_{12}) A_2 + x_2\omega_2 A_4],$$

et, d'une façon analogue, R' a au point $x_1B_0 + x_1(a_{10}B_0 + B_1)$ le plan tangent

$$\begin{split} \left[B_0, \, B_1, \, x_1 \, \mathrm{d}B_0 \, + \, x_2 \, \mathrm{d}(a_{10}B_0 \, + \, B_1) \right] = \\ = \left[B_0 B_1 \{ \omega_2(x_1 \, + \, x_2 a_{10}) \, + \, x_2 \omega_{12}^{\prime} \} \, B_2 \, + \, x_2 \omega_2 B_4 \right]. \end{split}$$

La correspondance ponctuelle T_2 entre les droites $[A_0A_1]$, $[B_0B_1]$ détermine une correspondance T_3 entre les plans tangents aux surfaces réglées R, R'. Supposons que nous ayons une homographie K_3 entre les espaces S_4 , \overline{S}_4 . Nous cherchons les conditions que doit vérifier l'homographie K_3 pour qu'elle soit une homographie tangente de la correspondance T_1 et en même temps une homographie tangente de la correspondance T_3 . Pour que l'homographie K_3 soit une homographie tangente de la correspondance T_1 , il faut qu'elle soit de la forme (18). Nous demandons donc que nous ayons de plus

$$\begin{split} K_{3} \big[A_{0} A_{1} \big(x_{1} \omega_{2} + x_{2} \omega_{12} \big) \, A_{2} + x_{2} \omega_{2} A_{4} \big] &= \\ &= \big[B_{0} B_{1} \big\{ \omega_{2} \big(x_{1} + x_{2} a_{10} \big) + x_{2} \omega_{12}^{\prime} \big\} \, B_{2} + x_{2} \omega_{2} B_{4} \big] \,, \\ K_{3} \, \mathrm{d} \big[A_{0} A_{1} \big(x_{1} \omega_{2} + x_{2} \omega_{12} \big) \, A_{2} + x_{2} \omega_{2} A_{4} \big] &= \\ &= \mathrm{d} \big[B_{0} B_{1} \big\{ \omega_{2} \big(x_{1} + x_{2} a_{10} \big) + x_{2} \omega_{12}^{\prime} \big\} \, B_{2} + x_{2} \omega_{2} B_{4} \big] \,+ \\ &+ A \big[B_{0} B_{1} \big\{ \omega_{2} \big(x_{1} + x_{2} a_{10} \big) + x_{2} \omega_{12}^{\prime} \big\} \, B_{2} + x_{2} \omega_{2} B_{4} \big] \,. \end{split}$$

Un calcul ordinaire nous conduit aux conditions auxquelles doivent satisfaire les coefficients a_{ik} pour que K_3 jouisse des propriétés en question. Parmi ces conditions, il y a l'équation

$$a_{10} = \beta + \lambda - \beta' - \lambda'.$$

La partie principale de l'homographie K_3 nous détermine donc une projectivité π_1 , existant entre les droites qui se correspondent par T_1 , et qui ne dépend pas du choix de la courbe c sur la surface (A). La même projectivité entre les droites $[A_0A_1]$, $[B_0B_1]$ sera déterminée par l'homographie K_4 jouissant des propriétés suivantes: C'est une homographie entre les espaces S_4 et \overline{S}_4 , tangente à la correspondance T_1 ainsi qu'à la

correspondance ponctuelle T_4 entre les surfaces (A^*) , (B^*) formées, dans les espaces S_4^* , \bar{S}_4^* duels à \bar{S}_4 , S_4 , par les espaces tangents des congruences L, L'. Supposons que nous ayons dans l'espace duel le repère

$$\begin{split} E_0 &= - \left[A_1 A_2 A_3 A_4 \right], \quad E_1 = \left[A_0 A_2 A_3 A_4 \right], \quad E_2 = - \left[A_0 A_1 A_3 A_4 \right], \\ E_3 &= \left[A_0 A_1 A_2 A_4 \right], \quad E_4 = - \left[A_0 A_1 A_2 A_3 \right], \end{split}$$

et un repère $(F_0, F_1, F_2, F_3, F_4)$ analogue dans \overline{S}_4^* .

Si l'homographie K_4 est tangente à la correspondance T_1 , c'est-à-dire, si elle est de la forme (18), alors nous avons $K_4E_3 = F_3$ et il résulte de la condition K_4 d $E_3 = dF_3 + (...) F_3$ des équations que doivent vérifier les coefficients a_{ik} . Parmi ces équations, nous trouvons de nouveau (19).

Nous dirons que les surfaces (A), (B) sont en semidéformation projective asymptotique si elles sont en correspondance C et qu'il existe une homographie H de l'espace P_n sur \overline{P}_n telle que les courbes $H\gamma$ et $C\gamma$ (γ étant une courbe asymptotique sur la surface (A)) aient un contact analytique du second ordre.

Supposons que les surfaces (A), (B) soient en correspondance ponctuelle C. L'homographie tangente la plus générale H_1 de la correspondance C est

$$\begin{split} H_1 A_0 &= B_0 \;, \quad H_1 A_1 = \alpha_{10} B_0 \; + \; B_1 \;, \\ H_1 A_2 &= \alpha_{20} B_0 \; + \; B_2 \;, \quad H_1 A_i = \sum_{k=0}^4 \alpha_{ik} B_k \quad \left(i = 3, \, 4\right) \;, \end{split}$$

donc $H_1 dA_0 = dB_0 + \Theta B_0$.

Nous avons ensuite

$$d^{2}A_{0} = (d\omega_{1} + \omega_{1}\omega_{00} + \omega_{1}\omega_{11} + \omega_{2}\omega_{21})B_{1} + + (d\omega_{2} + \omega_{2}\omega_{00} + \omega_{2}\omega_{22} + \omega_{1}\omega_{12})B_{2} + \omega_{2}^{2}B_{3} + 2\omega_{1}\omega_{2}B_{4}$$

et

οù

$$H_1 d^2 A_0 = d^2 B_0 + 2\Theta dB_0 + (...) B_0 + \Phi_1 B_1 + \Phi_2 B_2 + \Phi_3 B_3 + \Phi_4 B_4$$

$$\begin{split} & \varPhi_1 = \omega_1 (\tau_{11} - \tau_{00} - 2\alpha_{10}\omega_1) + \omega_2 (\tau_{21} - 2\alpha_{20}\omega_1 + \alpha_{31}\omega_2 + 2\alpha_{41}\omega_1) \,, \\ & \varPhi_2 = \omega_1 \tau_{12} + \omega_2 (\tau_{22} - \tau_{00} - 2\alpha_{10}\omega_1 - 2\alpha_{20}\omega_2 + \alpha_{32}\omega_2 + 2\alpha_{42}\omega_1) \,, \\ & \varPhi_3 = (\alpha_{33} - 1) \,\omega_2^2 + 2\omega_1 \omega_2 \alpha_{43} \,, \\ & \varPhi_4 = \omega_2^2 \alpha_{34} + 2\omega_1 \omega_2 (\alpha_{44} - 1) \,. \end{split}$$

Nous en voyons que la condition nécessaire et suffisante de la déformation projective est que l'on ait $2\alpha_{10}=a$. L'homographie H_1 nous détermine donc une projectivité π_2 entre les droites $[A_0A_1]$, $[B_0B_1]$ des congruences paraboliques qui se correspondent par T_1 . Nous obtenons la même projectivité π_2 entre les droites correspondant par T_1 aussi à l'aide de l'homographie H_2 qui est l'homographie tangente à la correspondance T_2 (qui est le prolongement ponctuel de la correspondance T_1 , comme on peut calculer de la façon bien connue). Ainsi nous obtenons le résultat suivant:

Dans un espace projectif à quatre dimensions, toutes deux surfaces paraboliques sont en semidéformation projective. Les congruences paraboliques dans S_4 que nous obtenons comme tangentes asymptotiques aux surfaces paraboliques ne sont pas forcément en déformation projective; elles y sont seulement si la partie principale de l'homographie H_1 , ou H_2 , coïncide avec la partie principale de l'homographie K_3 , ou K_4 respectivement, c'est-à-dire si les projectivités π_1 et π_2 coïncident.

J'exprime mes remerciements sincères à M. A. Švec pour l'attention avec laquelle il a suivi mon travail.

Littérature

[1] A. Švec: Déformation projective des congruences de droites dans S_n ; Czechoslovak Math. Journal, 5 (1955), 546—558.

Резюме

ИЗГИБАНИЕ ПАРАБОЛИЧЕСКИХ КОНГРУЭНЦИЙ В S_n

Б. ЦЕНКЛ (B. Cenkl), Прага

В проективном пространстве $S_n(n \ge 4)$ исследуется при помощи методов Картана проективное изгибание параболических конгруэнций; этими проблемами уже занимался А. Швец [1].

Обнаруживается, что в $S_n(n \ge 5)$ любые две параболические конгруэнции находятся в проективном изгибании 2-го порядка. В S_4 дело обстоит, однако, несколько иначе. Пусть между двумя параболическими конгруэнциями L, L' дано соответствие T_1 (прямой соответствует прямая), между фокальными поверхностями имеется точечное соответствие С, индуцированное соответствием T_1 . Пусть H_1 -коллинеация, осуществляющая проективное асимптотическое полуизгибание (или изгибание) фокальных поверхностей конгруэнций $L,\,L'$ в соответствии C. Этой коллинеацией определяется проективное соответствие π_2 между соответствующими друг другу прямыми в T_1 . Проективное соответствие π_2 получается также при помощи коллиенации H_2 , которая представляет собой касательную коллинеацию соответствия T_2 (точечного расширения соответствия T_1). На фокальной поверхности (A) конгруэнции L возьмем неасимптотическую кривую с и построим асимптотические касательные вдоль этой кривой. Мы получаем линейчатую поверхность R и подобным же образом линейчатую поверхность R' на поверхности (B), где c' = Cc — неасимптотическая кривая на фокальной поверхности конгруэнции L'. Между касательными плоскостями поверхностей $R,\ R'$ имеется сответствие T_2 (определяемое соответствием T_1). Главная часть коллинеации K_3 , касательной к соответствию T_2 , определяет проективное соответствие π_1 между соответствующими друг другу прямыми в соответствии T_1 . π_1 определяется также коллинеацией H_4 , касательной к точечному соответствию T_4 между поверхностями (A^*) , (B^*) , образованными в пространствах S_4^* , \bar{S}_4^* , двойственных S_4 , \bar{S}_4 , касательными пространствами конгруэнций L, L'. Если проективные соответствия π_1 и π_2 совпадают, то получается пара конгруэнций L, L', находящихся в проективном изгибании, и наоборот, если конгруэнции L, L' находятся в проективном изгибании, то проективные соответствия π_1 , π_2 совпадают.