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Чехословацкий математический журнал, т. 12 (87) 1962, Прага 

DIRECT DECOMPOSITIONS OF LATTICES, II 

OTOMAR HÀJEK, Praha 
(Received June 4, 1960) 

The main result of this paper is that the completion by cuts of partially 
ordered sets with O, / is multiplicative; i. e. that 

Р Л = РлРа 
where P denotes direct product and ^ cut-completion. This is then applied 
to an analysis of the Glivenko-Stone theorem. 

We shall, in general, use the notation of LT^) with some exceptions. P will mean 
a p. o. (partially ordered) set. In P, ä is the set of x ^ a (M-closure); u , n and с are 
set-joins, meets and inclusions, reserving v , л , ^ for the lattice operations; ö is the 
Kronecker delta, 

^0 if a Ф b , 
I if a = b : ^t = 

P is the completion by cuts of a p. o. set P. The direct ("cardinal" in LT) product of 
p. Ô. sets Рд (fl e Л Ф 0) will be denoted by P^P«? and in P = P^P^ the equality sign 
means "is isomorphic to"; if then xeP and [ x j ^ correspond, we shall write x = 
= [^ÜIA (and also use [xj^^^ or [ x j merely). 

1. CUT-COMPLETION OF DIRECT PRODUCTS 

Thé following lemma is easily verified: 

Lemma 1. Let x̂ , = [^а]аел ^ ^л^а- Then \/^ь exists if and only if Ух^ exists for 
each a e A, where upon ^ ^ 

b b b 
also dually. 

Let a p. o. set P have extremal elements, and P = P^P^; then every P^ has extremal 
elements, so that every 

^a — iPi\ieA Ш 

^) G. BiRKHOFF, Lattice Theory, 2nd. ed., New York 1948. 



is in P (the central elements — see LT, II, § 9). Then the set of all these e^ generates 
a complete atomic Boolean subalgebra of P, Also, using the isomorphism of P = 
= Р^Рд and lemma 1 repeatedly, we see that for any x e P there exist x л e^, x v e ,̂ 
etc., in P, and that quite generally 

Lemma 2. x = \/(x л e^) = Д(х v ê ) for all x e P. 

Lemma 3. / / e is central in P and \/x^ exists, then 

e A V-^a = V(^ A X«) ; 
also dually. 

Proof. There is a direct decomposition P = P1P2 in which e = [ / ,0 ] ; let then 
x^ = [xi,X2]. Using lemma 1 twice, 

e АУХ, = [/, 0] л V W , xl] = [/, 0] л [Vxl, \fxl} = 
= [Ух% 0] = V [ ^ b 0] := V([/ , 0] л [al x^]) ^ y{e л x,) . 

We recall that (cf. LT, ÏV, §§5 -7 ) X e P if and only if X = X^"- a P ("closed" 
subset); also that 

1. u. b. of X^ in P = (и^а)*"" , 
g. 1. b. of X, in P = f)Xa 

(all X^ E P); finally that the injection P -> P is x -^ x == x*^. In a series of itahcised 
statements we will prove our main result: 

Theorem L Let P be a p. 0. set with extremal elements, and P = P^P^. Then 
P — Р^Рд under an extended map. 

(More explicitly, if/ is the isomorphism P -^ P^Pa> and g the isomorphism P -> 
--> Р^Рд to be constructed, then g is an extension of/, /'. е . / cz ^.) 

(1) As before, form central elements e^ = [^^]/ел- Using the lemma of LT, И, § 8, 
we may and shall identify P^ with ^ ;̂ and then, in x = [ x j ^ , the x^ is x л e^. 

(2) IfXeP, then {[J(X n ë,)Y с X*. For let у e {[J{X n ê«))*. Let x e X, a e A. 
аеЛ a 

Then у ^ Хд, for all a; thus у = [ у J ^ [x^] = x, for all x e X; thus finally у e Z*. 
(3) If X G P , then (U(X n ëj)* ' 3 Z*+ 3 (U(X n ë,))*^ - the latter inclusion 

a a 

is trivial. Re-phrasing, for every x e P, 

X = V(->̂  л e J . 
a 

(4) If ;>: e P, then (}{X u ê;)* + =̂  X*+ =3 f){X u ë;)*+ (the former inclusion is 

trivial). Indeed, let y G П ( ^ ^ ё«)*^; /• é-., for every a e A: y S f whenever t ^ all 
a 

X e X and t ^ É̂ .̂ Take any t ^ all x G X. Then / v ê  ^ all x G X again, and ^ é'̂ , 
implying y й t V e ,̂ for every Й G Л; from lemma 2 we conclude y g Д(? v ê ) = t, 
for ail our t G X*, i. e. j ; G X* ^ Re-phrasing, for every x E P, "" 

X = Д ( х V e'^ . 
a 
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(5) Each e^ is central in P. For it is complemented in P, in P; and applying the 
results of (3), (4) to the direct decomposition P = ëj'^ which takes e^ into [/, 0], we 
see that 

x = (x л e,) V (x л ê ) = (x V e,) л (x v e'„) 

for all X G F, and conclude that e^ is central in F,^') 

(6) Set Q^ = {x A e^ : X E P}, the M-closure of e„ in P. Then 

X -> [x л ej^^^ 

is a meet-homomorphism taking F into P^ß«; this meet-homomorphism is obviously 
an extension of the isomorphic map P = P^P^ ™ see (1). Choosing any x^ e ß^, we 
have \/x^ -> [ x j , since e„ A \/ x^ = V(^a /̂  ^ь) = ^a (̂ « central in P, lemma 3; 

йеЛ b 

^a ^ ^ъ й ^ъ Л ê  = О for а ф Ь); thus the mapping is onto P^ß«. Finally, x A e^ = 
^ у w e^ for all ae A imphes x = V(-̂ ' ^ e^) = \/{y л e^ = j , so that the map is 
1 — 1. Now, a 1 — 1 meet-homomorphism onto is an isomorphism (LT, П, § 5, ex. 7a), 
and we obtain P = P^ôa-

(7) If e is central in F, X a ë (M-closure in P), then X is closed in F if and only 
if it is closed in ë; i. c. X e F precisely when X e ë. For let X cz ë. If y is such that 
V й t whenever t ^ all x e X and t ^ e (i. Q. у e (*^)-closure of X in ë), and if z ^ 
all X e X, then z л e ^ all x e X again, so that j ; ^ z л é̂  by assumption, y й z; 
thus y- is in the (* ^)-closure of X in P; the converse being obvious, we see that (* ̂ )-
closures in ë and in P coincide. 

(8) From this we conclude ß^ = P^. For Q^ consists of X cz ë^, closed in P, thus in 
«̂ = Pa also; conversely P^ consists of X = ë,, closed in ë^, therefore in P also. Thus 

finally P - P^P^, q. e. d. ^ _ ^ 
Thus presence of the extremal elements is a sufficient condition for P^P^ = P^P^-

The converse theorem also holds, in non-trivial decompositions.^) 

Theorem 2. Let P, P^ (a e A) he p. o. sets, with A and all P„ containing more than 
one element. If 

F = P^F^ and F = ?/F^ 

then P, and consequently all F^ also, contains both 0, /. 

Proof. Assume that / non G P, say. Then some PQ will also have / non G PQ. Take 
any element x E F = P^P^ whose o-th coordinate is / and other coordinates are 
arbitrarily fixed x^ G P^. By definition of completion by cuts, x is the (* ^ )-closure oT* 
the set of elements y E F with y ^ x in P, /. e. 

x = ( . x n P ) * + , 

^') LT, II, exercise a) in § 8; P is a lattice. Incidentally, the result of this exercise can be easily 
extended to the case when L is merely p. o. 

^) The motivation of Theorem 2 is LT, lY, § 7, exercise 4. 
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Now consider the set x n P. It contains all elements [ y j e P = P^P^ with y^ ^ x^ 
for a Ф o, but with quite general yQG PQ. Then (x n P)* is void, for no element of 
P = Р^Рд can have o-th coordinate ^ all JQ ^ -f'o (recall / non G PQ ). Thus 
(x n P)* "*" = P,i. e. X = I in P. But this cannot hold for all x's of the type described, 
for there is more than one such; a contradiction. 

2. AN ANALYSIS OF THE GLÏVENKO-STONE THEOREM 

A consequence of theorem 1 is the 

Lemma 4. If P is a p. o. set, then every central element ofP remains central in P, 

For if e goes into [/, 0] under a decomposition P = P1P2, then it must go into 

[/, 0] again in the extended map taking P = Pj^P2 (this indeed is our statement (5)). 

Conversely, of course, an element of a lattice P which is central in P is only neutral 
in P; and it is not difficult to construct an example to show that it need not be central 
in P (i. e,, not complemented). 

Lemma 5. Let P be a p, 0. set. If 

X A (y V z) = (x A y) V (x A z) in P 

whenever x e P but y, z e P,'^) then P is distributive. 

Proof. Take X, 7, Z in P ; in any case 

X л ( 7 V Z) è (X л 7) V (X A Z) in P 

( л , V are bounds in P; however, л is also set-meet). Take any w e P , w e X л 
A ( 7 V Z); thus и e X, и e Y V Z, and therefore w e w л ( 7 v Z). By assumption, 
11 e ii л ( 7 V Z) == (w A 7) V (w л Z) с (X л 7) V (X A Z); we conclude that 
also X A ( 7 V Z) ^ (X л 7) V (X A Z). Thus L6' holds in P (LT, IX, § 1). 

As a special case, we obtain the 

Lemma 6>If all elements of a distributive lattice D are neutral in D, then D is also 
distributive. 

Now ta^e for P a Boolean algebra B. The famous Glivenko-Stone theorem states 
that В is then also Boolean. Using only the results of this paper, we have, first, that 
every element of В is central in P (lemma 4); therefore the condition of lemma 6 is 
satisfied, so that, secondly, В is distributive. Having got thus far, one is tempted to 
seek conditions for complementation of B; thus showing that every element of В is 
neutral and complemented, i. e. central. Surprisingly enough, this direction leads to 
a theorem which by itself is a new proof of the Glivenko-Stone theorem. Namely, we 
will show that this last is a consequence of Birkhoff's theorem 17 in LT, X, § 13. 

Let P be a p. o. set with 0, / . We generahse trivially a definition of LT (VIII, § 8) by 

'*) If F is also a lattice, then this condition implies, and is stronger than, distributivity of P, 
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calling P orthocomplemented if there exists a map x -» x' taking P into itself and such 
that, for all x, j ; in P, 

X л x' = 0 , X V x' = I , X == x", X ^ у implies x' ^ y' . 
Note that x = x' implies x -> x' is 1 ~ 1 onto, i. e. a dual automorphism, so that con
versely x' ^ y' implies x g y. In lattices we can conclude x' л j ; ' = (x v y)' and 
dually; and then we may dispense with the condition x v x' = I. An orthocomple
mented lattice with unique complements is a Boolean algebra (LT, X, theorem 17). 
But of course there are non-Boolean orthocomplemented modular lattices — see LT, 
VIII; possibly the simplest is in the fig. L 

/=0' 

Fig. L 

Theorem 3. IfP is orthocomplemented, then P is such also (under an extended dual 
automorphism). 

Proof. Let capitals denote elements of P, г. e. closed subsets of P; let X' be the 
set of all x' with x G Z, so that X'* = X"*"', etc. (recall that x -^ x' is onto). We pro
ceed to show that the map X -^ X' "*" has the desired properties. 

First, r + is closed, since (Г+)*+ = X*'*+ = (X*-^)'+ = X' + . Similarly, the 
map is an extension of x -> x' (interpreted in P, of course): x'"^ = x*"̂ '"̂  = (x')^*^, 
and this is readily shown to be x\ Again, the map has period two, since X'^'"^ = 
= X*"+ = X*+ = X. Also X cz Fimplies X' с Г , X"^ ZD Г+ . Since Ms a lattice 
andX лХ'"^ = X n X'"̂  = Oisobvious, we conclude that Pis orthocomplemented. 

Theorem 4 If В is a Boolean algebra, then so is B. 
For proof it suffices to show that В has unique complements and then to apply our 

theorem 3 and the theorem 17 of LT, X already mentioned. 
Now, if X л 7 = 0, then x л j ; = 0, j ; ^ x', for all x G X , у e 7; L е., Y cz X'"^. 

Conversely, Б = (X U Yf^ implies (X U Yf = /; then ГсХ'+ v Г + implies 
t S all x', all y\ f è all x, all y, fe{X[) 7)* = /, ^ = 0. Thus we have X'+ л 
л 7'"^ = О ; as before, this has as consequence X'"̂  с 7' + '+ == 7. We conclude that 
the only complement 7 of X in Б is X' •̂ . 
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Резюме 

ПРЯМЫЕ РАЗЛОЖЕНИЯ В СТРУКТУРАХ, П 

ОТОМАР ГАЕК (Otomar Hâjek), Прага 

Пусть Р^Рд — прямое произведение системы частично упорядоченных (част, 
уп.) множеств Р^, и пусть Р обозначает пополнение част. уп. множества Р 
с помощью сечений (т. е. метод Дедекинда в част. уп. множествах). Доказыва
ются следующие теоремы: 

Если в част, уп, множ:естбах Ра существуют экстремальные элементы О, /, 
то РАРО ~ ^А^а ^Р^ гомоморфизме, являющимся естественным продолж^ением 
разлагающево гомоморфизма Рл^а ~̂  ^а-

Обратно, в нетривиальных разлож:ениях, из Р^Рд = ^л^^а следует наличие 
экстремальнных элементов у всех Р^, 

Этот результат применяется к анализу отдельных предложений теоремы 
Гливенко-Стоне (пополнение булевой алгебры есть булева алгебра). Наконец, 
теорема Гливенко-Стоне выводится как следствие из одной теоремы Г. Бирк-
гофа, которая является таким образом более основной. 
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