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LOCALLY G;-SPACES

ZpENEK FroLik, Praha
(Received July 11, 1960)

Locally topologically complete (in the sense of E. CECg—I) completely
regular spaces are investigated.

The notation and terminology of J. KELLEY, General Topology, are used through-
out. All spaces are supposed to be completely regular. The Stone-Cech compactific-
ation of a space P will be always denoted by (P).

A space P is said to be a G,-space (or topologically complete in the sense of E. Cech)
if P is a Gs-subset of B(P). If a G,-space P is a dense subspace of a space Q, then P
is a G,-subset of Q. In [2] the following “internal” (i.e. without reference to larger
spaces) characterization of Gj-spaces is given:

A space is a Gg-space if and only if there exists a complete sequence of open
coverings of the space P.

Let us recall that a sequence {,} of open coverings is said to be complete if,
whenever I is a family of subsets of P with the finite intersection property such that
MA U, +0foralln = 1,2, ..., then the intersection of all M, M eI, is non-void:

In"the sequel we shall need the following two propositions (for proofs see [2]).

Proposition 1. If P is a Gs-space, then there exists a complete sequence {U,}

of open coverings of P such that (1) every U, is additive, i.e. Ac %, Be, imply
AuBeY,

2) Uy Uy (n=1,2,..).
(3) If an open set B is contained in some A € N,, then B belongs to U,.
Proposition 2. If {%,} is a complete sequence of open coverings, A,e¥,,
A= F\ A,, then the closure of A is a compact space.
In"s=elction 1 the concept of a locally G;-space is introduced and studied. Every
paracompact locally Gj-space is a Gj-space; the assumption of paracompactness is

essential. The topological product of a countably compact locally Gsspace and
a countably space (pseudocompact space) is a countably compact space (pseudocom-
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pact space, respectively). In locally G,-spaces the concepts of local characters (in-the
sense of E. Cech) and local-pseudocharacters coincide.

In section 2 the invariance under mappings of locally G,-spaces (and locally com-
pact spaces, Gs-spaces) is studied. The image Q under a closed and continuous map-
ping of a metrizable G;-space is a G,-space if and only if Q is metrizable.

1. LOCALLY G4-SPACES

Definition 1. A space P is said to be locally a G,-space, if every point of P is contain-
ed in an open subspace R of P which is a G,-space.

The following example shows that a space which is locally a G;-space may fail to be
a Gg-space.

Example 1. Let T be the space of all countable ordinals. Let us denote by K the
set of all real numbers x, 0 < x < 1. Let us define an order > fortheset R = T x K
such that («, x) > (B, y) if and only if either « > B (in T) or f = aand x > y (in K).
The set R with the order topology is a space which will be denoted by R again. It is
well-known that the space R is locally compact, countably compact and locally metriz-
able. Let us denote by R’ the set of all points («, 0) of R where o runs over all isolated
ordinals in T. Evidently the set R’ is discrete. The space R being countably compact,
every set M < R’ closed in R is finite. Thus R’ is not a F_-subset of R. It follows that
P = R — R’is not a Gs-subset of R. Since P is dense in R, by definition P is not a G,-
space. On the other hand it is easy to see that P is locally a G;-space and locally metriz-
able.

The space P from the preceding example 1 contains a dense locally compact
subspace T x I where I is the open interval (0, 1) of real numbers. Generalising, we
shall deduce the following .

Theorem 1. Every space which is locally a Gsg-space contains a Gsspace as an
open and dense subspace.

Proof. Let P be locally a Gs-space. Let us consider the family U of all open
subspaces of P which are Gjs-spaces. Let B be a maximal disjoint subfamily of 2.
Evidently, if an open set B is contained in an 4 € Y, then B also belongs to Y. It
follows at once that the union R of the family % is a dense subset of P. Of course, R
is an open subset of P. We shall prove that R is a G-space. For every B in % there
exists a complete sequence {¥,(B)} of open coverings of the space B. Put

%, = U{U(B), BeB} (n=1,2,..).

It is easy to see that {2} is a complete sequence of open coverings of the space R.
Thus R is a G4-space.

To show that every paracompact space which is locally a Gs-space 1s a Gg-space,
we shall prove the following
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Theorem 2. If there exists a locally finite open covering B of the space P such that
every Be B is a Gy-space, then P is a Gz-space.

Proof. According to the proposition 2, for every B in B then exists a complete
sequence {2,(B)} of open coverings of the space B such that

(1) Uy(B) = U(B) (n=1,2,...)
and

(2) every A€ U, (B), Be B, n= 1,2, ..., meets only a finite number of sets from B
For every n = 1,2, ... put

A, = U{Y,(B), Be B} .
We shall prove that {2} is a complete sequence of open coverings of P. Let M be
a family (of subsets of P) with the finite intersection property and such that Ao M +
+ 0 for every n = 1,2, .... To prove (M = 0, it is sufficient to show that A,(B) N
N M + 0 for some Bin B and all n = 1,2,.... Let us choose an 4 in A M.

According to the assumption (2) there exists only a finite number of sets B e B meeting
A, namely By, ..., B,. It follows that for every n = 1, 2, ...,

k
A, "M < U (U(B) nM).
i=1

Thus there exists a B; = B such that %,(B) n M + 0 for an infinite number of n.
According to the assumption (1) we have

U(B)YAM+0, n=12..;
this completes the proof.
As an immediate consequence of the preceeding theorem we have:

Theorem 3. Every paracompact space which is locally a Gy-space is a Gs-space.

Theorem 4. Let a space P be locally a Gy-space. Let us suppose that a countable
subset N of P has an accumulation point. Then there exists a compact subspace K
of P such that K n N is an infinite set. Moreover, if U is an open set containing an
accumulation point of the set N, then K may be chosen with K < U.

Proof. First let us suppose that P is a Gs-space. Let x be an accumulation point
of the set N. Let {2} be a complete sequence of open coverings of the space P. Let

0
us choose A, e, n = 1,2, ..., containing the point x, and put 4 = () 4,. Using
n=1
the completness of the sequence {%,} it is easy to see that the closure of A is a compact
subspace of P. Thus, if x is an accumulation point of 4 N N, then we may put K = A.
In the other case we may assume without loss of generality that N n 4 = 0. Since
x € N and the sets A4, are open, we have at once that the sets A, 0 N are infinite.
Thus we can construct by induction an infiinite subset X of N such that the sets X — A,
are finite. It is easy to prove that X is a compact space. Indeed, if I is a maximal
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family of subsets of X with the finite intersection property, then the sets 4, N X
belong to M, and hence, by completness of the sequence {2}, the intersection of all M,
M e M, is non-void. It follows that X is a compact space.

Now let the space P be locally a Gs-space and let U be an open neighborhood of an
accumulation point x of the set N. There exists an open neighborhood V of x such
that Vis a Gs-space. Let us consider the G4-space V n U and the infiniteset N n U n V
having x as an an accumulation point. Applying the first part of the proof we obtain
a compact set K = U n Vsuch that K n N is an infinite set. The proof is complete.

Theorem S. Let a space P be locally a Gsspace. Let us suppose that a disjoint
countable infinite family N of open subsets of P has an accumulation point x € P
(that is, every neighborhood of x meets an infinite number of members of N).
If U is an open neighborhood of x, then there exists a compact subspace K of U
meeting an infinite number of sets from N.

Proof. First let us suppose that P is a Gy-space. Let {2,} be a complete sequence
of open coverings of the space P. Let us choose 4,€,, n = 1, ... containing the

point x, such that 4, = A,,, and put 4 = () 4,. It is easy to see that the set A is

n=1

compact. Thus, if x is an accumulation point of A "N = {4 N N; N e N}, then
we may put 4 = K. In the other case we may assume without loss of generality that
AN N = 0 for every N in N. The sets 4, being open, the families {N; N n 4, # 0,
N e N} are infinite. By induction we can construct a sequence {N,} of distinct sets
from M and choose x, such that x, € N, N 4,. Let X be the set of all x,. Clearly the
sets X — A, are finite. Thus the closure K of the set X is a compact subspace of P
and K n N =+ O for an infinite number of N € .

Now the same argument as that in the proof of the preceding theorem completes
the proof of theorem 5.

As a consequence of the preceding two theorems we have the following

Theorem 6. Let a space P be locally a Gs-space. If P is a countably compact
space, then for every countably compact space Q the topological product P x Q
is countably compact. If P is a pseudocompact space, then for every pseudocompact
space Q the topological product P x Q is pseudocompact.

Proof. It is well-known that if K is a compact space and a space Q is countably
compact (or pseudocompact) then the topological product K x Q is countably
compact (or pseudocompact, respectively). Now let P and Q be countably compact
spaces. Let N be a countably infinite subset of P x Q. If the projection M of N into P
is a finite set, then for some x € P the set N n [(x) x Q] is infinite. The space (x) x Q
is countably compact and hence the set N has an accumulation point (x) x Q. In
the other case we may choose a compact subspace K of P such that M n K is infinite.
The product space K x Q is countably compact and hence the infinite set N N
N (K x Q) has an accumulation point. Thus N has an accumulation point and the
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product space P x Q is countably compact. The assertion concerning pseudocom-
pactness may be proved analogously.

Note 1. Let C be the class of all spaces P such that the topological product P x Q
is countably compact for every countably compact space Q. The class C was intro-
duced and studied in [3]. It is proved there that every countably compact space which
is locally a Gy-space belongs to C.

Let us denote by P the class of all spaces P such that the topological product P x Q
is pseudocompact for every pseudocompact space Q. Let us denote by Py the family
of all spaces P such that every closed subspace of P belongs to . The classes 9 and
Pr were introduced and studied in [4]. It is proved there that every pseudocompact
space which is locally a G;-space belongs to 9. It is easy to see that every countably
compact space which is locally a G;-space belongs to Y. Of course there exists
a space from the class W, which is not locally a Gs-space. There exists a locally com-
pact pseudocompact space which is not countably compact (and consequently,
which does not belong to ). For example, if N is the countable infinite discrete space
and if X is a countable infinite discrete subspace of B(N) — N, then the space
P = B(N) — (X — X) is locally compact and pseudocompact (since every infinite
subset of N has an accumulation point in P), but P is not countably compact, since
the set X has no accumulation point in P.

"Note 2. Let us recall that a space P is said to be a K-space, if F < P is closed if
and only if the set F n K is closed for every compact subspace K of P. Equivalentely,
x € M if and only if there exists a compact subspace K of P such that x e M ~ K.
Evidently every locally compact space is a K-space. The following example shows
that a Gs-space may fail to be a K-space.

Example 2. Let B(N) be the Stone-Cech compactification of the countable
infinite discrete space N. Let {N,} be a sequence of subsets of N such that

Ny,o>N,>..., NN,=0,
n=1
Niyy — Ny are infinite (k= 1,2,...).
Put
P=NnQON,.
n—1

The sets of the form M, where M < N, are open and closed in B(N). It follows that P
is a Gg-subset of the compact space B(N), and consequently, a Gs-space. We shall
prove that there exists a point x in P — N such that there exists no compact subspace
K of P with x e K n N. Let us suppose that for every point y of P — N there exists
a compact subspace K(y) of P such that

yeN nK(y).

Put C(y) = K(y) n N. Thus the C(y) are open and compact subspaces of P. The space
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P — N is compact as an intersection of compact sets N, — N. Thus there exists a finite
number of elements y e (P — N), namely y,, ..., ;, such that the union of the
k

corresponding C(y) covers P — N, i.e. UC(y,) > P — N. Put
i=1

k -
C=UC(y).
i=1
Evidently

k

c"=Vv C(yy)
i=1
and consequently C is a compact space. Thus we have
P=NnC'®,

From the inclusions P > C > P — N we deduce N, o C, i.e. the sets C — N,
are finite. The diferences N, ; — N, being infinite, we may choose by induction

X €N,y — N, —C (m=1,2,..).
The set X of all x, is disjoint with C and hence
X ~AC=0.

On the other hand, according to the construction of x,, the sets X — N, are finite
and consequently )

X' - NcN® (n=1,2..).
It follows that

XEt®) _ N < ﬁN‘f(l’) c P.

n=1
But this is impossible, since C " X — N = 0and P = N n C. The proof is complete.

Note 3. From the preceding example the following result may be obtained: If
NcPc B(N), then P is locally compact if an only if P is a K-space. Of course,
this result may be obtained for every discrete space N.

Now we shall recall the definition of characters and pseudocharacters of points
of a space. The character of a point x in a space P is the least cardinal m for which
there exists a local base at x of potency m. The pseudocharacter of x in P is the least
cardinal m for which x is the intersection of m open sets. It is well-known that for
compact spaces the characters and pseudocharacters coincide. We shall prove the
?ollowing generalization of this result.

Theorem 7. If a space P is locally a Gsspace, then the characters and pseudo-
characters of all points coincide.

Proof. Let {%,} be a complete sequence of open coverings of the space P. If
a point x of P is isolated then there is nothing to prove. To prove our theorem it
is sufficient to show that if B is a family of open neighborhoods of a x € P such that
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(*) N{B; Be B} = (x),
(**) ¥ is multiplicative (i. e. By, ..., B, € B implies ) B; € R),
i=1
(***)UAB+0 (n=1,2,..),

then 2B is a local base at x. Let us suppose that there exists an open neighborhood A
of x such that B — 4 # 0 for every B € 9. It is easy to see from (**) that the family I
of all sets of the form B — 4, Be 9, has the finite intersection property. According
to the completness of {%,} (by (***)), we have
‘ N{B — A4;Be®} +0.

But this is impossible, since 4 is a neighborhood of the point x and the assumption (*)
holds. The proof is complete.

Note. Of course, the preceding theorem may be easily proved using the direct
definition of G,-spaces as a Gs-subspace of the Cech-Stone compactification.

In the second section, from the preceding theorem we shall deduce that the image Q
of a metrizable G;-space under a continuous and closed mapping is a G;-space if and

only if Q is metrizable, or equivalently, if an only if the boundaries of inverses of
points are compact.

2. INVARIANCE UNDER MAPPINGS

In this section we shall prove two theorems concerning open and perfect mappings.
A mapping f of a space P into a space Q is said to be open if the images under f
of open subsets of P are open subsets of Q.

Theorem 8. Let f be a continuous and open mapping of a space P onto a space Q.
If P is locally compact, then Q is a locally compact space. If P is a Gs-space, then
Q is a Gyspace. If P is locally a Gsspace, then Q is locally a Gsspace.

Proof. The first assertion is obvious, the second assertion was proved in [5] and
the third is an immediate consequence of the second.

Theorem 9. Let f be a closed and continuous mapping of a space P onto a space Q
such that the inverses (i. e. inverse images) of points are compact. Then

(a) P is locally compact if and only if Q is such.

(b) P is a Gy-space if and only if Q is such.

(¢). P is locally a Gs-space if and only if Q in such.

Proof. The “if” parts of (a) and (b) were proved in [5]. The “if” part of the as-
sertion (c) is an immediate consequence of that of the assertion (b).

Now we shall prove the “only if” part of the assertion (b). Let us suppose that P
is a Gs-space. There exists a complete sequence {2,} of open coverings of the space P
such that the families 2, are additive (see Proposition 1). For every n = 1,2, ..., let
B, be the family of all sets of the form Q — f[P — 4] where A€ ¥, i. e.

B, ={Q—f[P—A]; Aed}.
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The mapping f being closed, the sets from B, are open in Q. We shall prove that the
families £, are coverings of Q. Indeed, if ye Q, then K = f~![y] is a compact
subspace of K and hence a finite subfamily {4,, ..., 4,} of U, covers K. But U, is

k
additive, and consequently, A = |J A4; € U,. It follows that
i=1

ye(Q - f[P — A]e®D,.
To prove that Q is a G,-space it is sufficient to show that the sequence {%,} is complete.
Let M be a family (of subsets of Q) with the finite intersection property and such that
MY, +0foreveryn =1,2,....Foreveryn = 1,2, ... let us choose a B, e M N B,
and a 4, € U, with
Bn= Q_f[P—'An]'
Evidently the family of all f~'[M], M € M, has the finite intersection property and
A, > f7B]eN (n=1,2..).

Thus ’

N{N;NeMN} + 0,
and by continuity of f

N{M; MeM} + 0
which establishes the completness of the sequence {%,} and completes the proof of
the “only if”” part of the assertion (b).

It remains to prove the “only if” parts of (a) and (c). First let P be a locally compact
space and let y € Q. From the compactness of f~'[y] it follows at once that there
exists a compact neighborhood K of f ~'[ y]. By continuity of f, the set f[K] is com-
pact, and from the fact that f is closed we deduce at once that f[K]is a neigborhood
of the point y. Finally let us suppose that the space P is locally a G;-space and y € Q.
Since the set f~'[y] is compact and P is locally a G,-space, there exists a finite

k
number of open sets Uy, ..., U, such that every U, is a G;-space and f~'[y] = N U..
i=1

Put
k

U=yU, V=0-f[P-U].

Since f is closed, Vis an open neighborhood of the point y. Evidently
H=f"'[V]ecU

is an open set. Thus H is a Gs-space. Applying the “only if”” part of (b) we obtain

that Vis a Gs-space. Indeed, the restriction of f to H is a continuous and closed

mapping and the inverses of point are compact. The proof of the theorem is complete.
From the preceding theorem we deduce at once the following

Theorem 10. Let f be a continuous and closed mapping of a space P onto a space Q
such that the boundaries of inverses of points are compact. Then if P is locally com-
pact, locally a Gs-space or a Gg-space, then Q has the corresponding property.
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Proof. If the boundary B(y) of f~'[y] is nonvoid put K(y) = B(y). If B(y) = 0,
then let K(y) be a one-point set, K(y) = f~![y]. Put

R = U{K(y); ye 0} .

R being a closed subsét of P, if P is locally compact, locally a Gs-space or a G,-space,
then so is R. Moreover the restriction of f to R is a closed and continuous mapping
of R onto Q such that the inverses of points are compact. On applying theorem 9 we
obtain theorem 10.

The assumption of compactness of boundaries of inverses of points is essential.
This follows from the theorem 12. First we shall state the following well-known:

Theorem 11. The following conditions on a closed and continuous mapping f
of a metrizable space P onto a space Q are equivalent:

(a) Q is metrizable;
(b) every point of Q has a countable character;
(c) the boundaries of inverses of points are compact.

Now we are prepared to prove the following theorem:

Theorem 12. Let f be a closed and continuous mapping of a metrizable G,-space P
onto a space Q. The following assertions are equivalent:

(1) Q is metrizable;

(2) Every point of Q has a countable character;

(3) The boundaries of inverses of points are compact;
(4) Q is a Gy-space.

Proof. According to the preceding theorem, the assertions (1), (2) and (3) are
equivalent. Now let us suppose that Q is a G;-space. The mapping f being closed,
every point of Q has a countable pseudocharacter. Applying theorem 9, we obtain
that every point of Q is of a countable character. Conversely, if the assertion (3)
holds, then by theorem 10 we have that Q is a Gs-space. The proof is complete.

Let R be a line of the Euclidean plane P. Identifying the points of R, we obtain
the quotient space Q, which is not a Gs-space.
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Pe3rome
JIOKAJIBHBIE G,-TTIPOCTPAHCTBA

3AEHEK ®POJIMK (Zdenék Frolik), ITpara

PaccMaTpuBaloTcsi TOJBKO BIIOJIHE PETyJIApPHbIE TOIMOJIOTHYECKHE IIPOCTPAHCTBA.
IpocTpancTBo P Ha3bIBAETCS JIOKAJIBHBIM G;-IPOCTPAHCTBOM, €CNH IS KAXKIOro
X € P cylecTByeT OTKpBITas OKPeCTHOCTb U, sBistioascsi G-IpoCTPaHCTBOM (em.

CTaTeio [2], TEPMMHOJIOTHS M Pe3ybTaThl KOTOPOH yIOTPeGISIOTCA B MAHHOM 3a-
MeTKe).

Teopema. Kaoicdoe aoxanvhoe Gs-npocmpancmeo codepyucum omrpeimoe naommoe
noommuoxcecmso, agasioueecs Gz -npocmpancmeom.

Teopema. Ilapaxomnaxmmoe sokanvnoe Gyz-npocmparcmeo agisemes Gs-npocmpan-
cmeom.

Teopema. ITycmy P — aoxaavhoe Gy-npocmpancmeo. Ecau N = P cuemno, U = P
OMKPBIMO U CO0ePAHCUM MOUKY c2yujenus muoxucecmsa N, mo cyujecmayem KoMRAKn-
noe K < U maxoe, umo muoncecmeo K N N Geckoneuno.

3ameyanne. MoXHO MOCTPOUTH G,-IIPOCTPAHCTBO, HE SBJISIOLIEECS K-Ipo-
CTPaHCTBOM.

Teopema. ITpu cosepuenom omobpaxcenuu coxpansemes (8 o6oux HANPAB.AeHUAX)
csoiicmeéo  6vimb G s-npocmpancmeom, pagHo Kak u ceoilicmeo 6vimb AOKANLHBIM
Gs-npocmparncmeom.

Teopema. Ilycmo f — 3amxuymoe nenpepwignoe omobpasscenue P u Q. Ecau f ne-
pugbepuuecku Komnakmmno (m. e. 2panuyvl npoobpazos movex Komnakmuel) u P ao0-
KaavHo (coomeemcmeenino, agasemcsa Gy-npocmpancmeom, aokatvhsim Gs-npocmpan-
cmeom), mo maxxce Q AOKAAHO KOMNAKMHO (neasemcesn Gynpocmpancmeom, no-
kaavhoim  Gyg-npocmpancmeom). Ecau P agasemcs mempusyemoim  Gs-npocmpan-
cmeom, mo caedylouue ycaosus oskeusasenmus: (1) Q mempusyemo, (2) kaancooe

Y € Q umeem cuemnpiii Xapakmep, (3) f nepugpepuuecku xomnaxmmo, (4) Q aeanemcsa
Gs-npocmparncmeon.

Teopema. ITucmb P — sokasvnoe Gy-npocmpancmeo. Ecau P u Q cuemHo KomMnaxkm-
Hbl (coomeemcmeenHo, nceg0oKOMRakmivl), mo maksce P X Q cuemmo KoMHaKmo
(coomseemcmeenno, ncee&oxomnaicmuo).
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