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A CONTRIBUTION TO GODEL’S AXIOMATIC SET THEORY, III

(The axiomatic dyadic aritmetics of finite sets and their classes)

LADISLAV RIEGER, Praha

(Received December 10, 1960)

Axiomatic dyadic arithmetic consists of a certain elementary (i.e. first
order) axiomatic description of Hensel’s integral dyadic (i.e. p-adic with
p = 2) numbers; it is built of 28 axioms concerning addition, multiplication
and potentiation of 2 as the only primitive notions. In short the main result is
as follows. The axiomatic dyadic arithmetic is precisely the axiomatic
theory of finite sets and their classes') of Bernays-Godel, though with other
primitive notions.

Contents: 1. Introductory remarks. 2. Axioms of the theory of finite sets
(of Bernays-Godel) and their reductions. 3. The axiomatic system of dyadic
arithmetics. 4. The equivalence-theorem and the reproduction-theorem. 5.
Conclusive remarks and open problems.

I. INTRODUCTORY REMARKS

The present paper is a selfcontained continuation of the paper [11]?) (under the
same title, in this Journal). There we had in fact constructed various particular
examples of “non-normal” dyadic arithmetics (called “dyadic s-t-rings™); here we
define the general notion of dyadic arithmetic by means of 27 + 1 elementary axioms;
the only primitive notions are addition, multiplication and potentiation of two.
(See sec. 3.)

Ii. Assuming the 27 axioms of dyadic arithmetics (i.e. with the last axiom omitted)
we can define the membership-predicate, say €*, by the formula

(*) xer Ve [V/2] = 2[Y/2" 1] = 1
df

(where [ Y/2¥] means the integral part of the quotient Y/2*¥), and we can prove all the
18 axioms of the axiomatic set theory of Bernays-Godel (see [G]), though with the
axiom of infinity C1 replaced by its negation, called the axiom of finity.

l) I.e. with the axiom of infinity replaced by its negation, called the axiom of finity.
2) See the references at the end of this paper; the present paper has been the subject of a seminar
held in the school-year 1959— 60 at Charles University, Praha.
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lii. Assuming the mentioned axioms of Bernays-Godel (with the axiom of finity),
we can define®) addition and multiplication for all classes as well as potentiation of
two = {{0}} for them — and we can prove all the 28 axioms of dyadic arithmetics.

li and Tii are the two parts of our so-called equivalence theorem (in the sense of the
mutual interpretability of dyadic arithmetics and of the Bernays-Godel theory of
finite sets and their classes; see sec. 4).

Moreover, we prove in sec. 4 the so-called reproduction theorem I1i, Llii. I1i states
that, supposing (among others) the last axiom of dyadic arithemtics and defining new
addition, multiplication and potentiation of two in the sense of lii, applied to the al-
ready introduced €, of Ii, we obtain the originally assumed operations of dyadic
arithmetics. 1lii says that, conversely, defining €, by means of the already introduced
arithmetical operations upon classes (in the sense of lii) we obtain the originally
assumed membership-relation.

These results show that the nature of the axiomatic membership-relation is an
arithmetical one if one assumes the axiom of finity; in this respect, it is far from the
intuitive Cantorian concept. Indeed, every class in the sense of the theory of finite sets
of Bernays-Gddel can be taken for a dyadic integral number (in the generalized sense
of Hensel), every set in this theory can be taken for such a “finite” (nonnegative)
dyadic integral number. The intuitive justification of the first fact is suggested by the
observation that the relation between a Hensel dyadic integral number Y and a positive
integer x, that Y = ... 4+ 2* + ... in the dyadic expansion of Y, indeed is a member-
ship-relation, satisfying ali the axioms of the theory of finite sets (and their classes).
The intuitive justification of the second fact goes back the following one-to-one cor-
respondence between positive integers and finite sets:

0-0; 0}e2=1; {({0}}e2=2; {0{0}}e2°+2"=3;
(O o2 =45 OO} 20 +22=5; [O}{0)) o2 + 22 =6;
{0} 2" + 28 + 22 =7,
which has already been realized by T. SKoLEM in [Sk*] of 1923.
The elaboration of these two hints to-our equivalence-theorem and to our repro-
-duction-theorem is not immediate; it requires some effort, not too interesting of itself,

though necessary. Nevertheless, the detailed performation of the proofs suggests many
subtle problems and thus perhaps it is not useless to follow them through.

In a forthcoming paper, we shall give a general algebraical method of extending
dyadic arithmetics, without any countability restriction (cf. [II], where we could not
proceed beyond the first uncountable ordinal, not speaking of several unnecessary
-complications and of some omissions; thus the forthcomming paper will include an
improved reformulation of the main results of [II]). '

3) See 4.2.
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2. AXIOMS OF THE THEORY OF FINITE SETS (OF BERNAYS-GODEL)
AND THEIR REDUCTIONS

Let us rewrite the system of axioms of the theory of finite sets and their classes of
Bernays (see [B]), in the modification of Godel (see [G]), i.e. the axioms Al —A4;
B1—B8; non C1, C2, C3, C4; D; E — with some obvious minor typographical chan-
ges.

Primitive notions:*)

Cis(Y) (Y is a class) .
M(X) (X isa set).
. XeY (X belongsto Y).
The letters X, Y, Z, ..., possibly with indices, are class-variables; the letters x, y, z, ...,
possibly with indices, are set-variables; general quantifiers are often omitted if possible;
definitions 1.1 —1.5 of (G) are assumed.
Axioms:

Al: Cls(x). (Every set is a class.)

A2: X € Y= M(X). (Only sets become members.)

A3: Vu(ue X <>ueY)= X = Y. (The axiom of extensionality.)

A4: ¥xVyIzVu(u ez <> u = x v u = y). (The axiom of unordered pairs.)

B1: 3ZVxVy({xy) € Z <> x € y). (The axiom of the e-relation.)

B2: VXVY3ZVu(ue Z<>ue X & u e Y). (The axiom of intersection.)

B3: VX3YVu(u € Y<> 1(u € X)). (The axiom of complement.)

B4: VX3YVx(x € Y <> 3y({xp) € X)). (The axiom of domain.)

B5: VX3YVxVy({yx)> € Y<> x € X). (The axiom of direct product.)

B6: VX3YVxVy(<xy)) e Y<> (yx) € X). (The axiom of pair-conversion.)

B7: VX3YVxV)Vz({xyz) € Y <> {yzx) € X). (The first axiom of triple-conversion.)

B8: VX3YVxVyVz({xyz) € Y <> (xzy) € X). (The second axiom of triple-conver-
sion.)

Now we shall formulate the negation of the axiom of infinity Cl of [G], i.e. the
axiom of finity 71C1 (Em(z) states that Z is empty; < excludes identity).

1C1: 13z{ 1Em(z) & Vx[x € z = Iy(y € z& x = y)]}. (Explicitly: There does not
exist a non-empty set z such that every member of z is included in some other member
of z.)

A positive reformulation (Pr(X) means 7TM(X), i.e. X is a proper class):

ICH*: VX({Em(X) & Vx[x € X = 3y(y € X & x < y)]} = Pr(X)).(Explicitly: 1f
every member of a non-empty class X is included in some other member of X, then X
is a proper class (not a set).)

C2: Vx3yVuVu(u e v& ve x = u € y). (The set-sum-axiom.)

C3: (< includes identity): Vx3yVu(u < x = u € y). (The potency-set-axiom.)

4) Cls and M as well as equality = can be defined; for methodical reasons, however, we assume
the original version.
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(Define by 1.3 of [G]:
Un(X) < Yu¥oVw({ou) € X & {wuy e X =0 = w),
ar

i.e. X is unambiguous.)
C4: VxVU{Un(U) = 3yVu[u € y <> Fu(v € x& (uv) € U)]}. (The axiom of replace-
ment; every set x has an image-set by means of any given unambiguous class U.)
(Define Ex(X, Y) <> Vu (ue X& u e Y) by 1.23 of [G], i.e. X and Yare disjoint.)
af

D: VZ(1Em(Z)= Ju(u € Z & Ex(u, Z)).(The so-called Fundierungsaxiom: in every
nonempty class Z there are members disjoint with Z.)

E: IW{Un(W)& Vx[ TEm(x) = 3y(y € x & (yx) € W)]}.(This is the G5del’s strong
axiom of choice: there exists a class W which is a mapping ascribing to every non-
empty set exactly one of its elements.)

Remark. Let us denote by U, n, = the set-theoretical join, meet and difference of
two classes (in order to avoid collision with the arithmetical +, ., —).

As can be expected, the axioms listed are not independent. The two reductions we
shall use (perhaps they are not the only possible ones) are as follows.

I. Ttis known that the axiom B8 can be omitted, as a consequence of the remaining
axioms of the original system X of [G] — no matter whether the axiom of infinity is
supposed or not. (See e.g. [H.-K.] or the axiom B6[M].)

II. It can be shown that the axioms C3 and E can be then deduced from the rem-
aining axioms (of the theory of finite sets).

The reduction II and especially the dependence of the axiom of choice in the axio-
matic theory of finite sets (and their classes) is due to P. VOPENKA [V].

Therefore we can and will assume the reduced axiomatic system of the theory of
finite sets and their classes (of Bernays-Godel), i.e. the axioms Al—A4, Bl —B7,
11Cl, C2, C4 and D.

Now we must emphasize that these axioms of the thecry of finite sets and their
classes are trivially satisfied by the “model” consisting of the sole void class. (1 owe
this remark to V. TRNKOVA.) In order to avoid this singular unintended interpretation,
we must assume an additional existential axiom, say F:

F: 3x M(x) (i.e., there is at least one set).

Adding this axiom F to the already listed ones, we obtain the definitive list of the
system X’ of 16 axioms of the theory of finite sets and their classes, in the sense of
Bernays-Godel (perhaps it is better to say of v. Neumann-Bernays-Godel).

3. THE AXIOMATIC SYSTEM (o) OF DYADIC ARITHMETICS
Assume the first-order (classical) logic with the identity =. The letters X, Y, Z, ...;
A, B, C, ..., possibly with indices, are individual variables (or individual signs) for the

so-called dyadic integers, which form our universe of discourse.
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There are three primitive notions of (0):

(1) the ternary predicate of addition. Say +(X. Y, Z) means that Z is the sum of X
and Y;

(i) the ternary predicate of multiplication. Say - (X, Y, Z) means that Z is the
product of X and Y;

(iii) the binary predicate of potentiation of 2. Say 2(X, Y) means that Y is the po-
tency of 2 by X. (See the axioms sub (d) below.)

Like the axioms of the theory X’ of finite sets and their classes, our axiomatic
system (o), consisting of 27 + 1 requirements describing +(., ., .), - (-, ., .), 2(-, .).
falls into three groups. Their formulation and discussion requires some preliminary
preparations of later axioms by means of lemmas depending on the former ones;
however, these lemmas will also be applied in the main section 4.

The first group (r) (ring-axioms) deals with + and . only. It requires first that dyadic
integers form integrity domain (i.e. a commutative ring with unit and without divi-
sors of zero). Further, the characteristic of this domain shall be different from 2 =
=1+ 1 (Note, however, that the non-elementary general notion of a characteristic is
not to be used). Finally, there is an important last special ring-axiom (r 13), requiring
the “absence of one-half”.

The second group (d) (dyadic axioms) deals with the potentiation of 2 and is divided
into two subgroups. The first of these, (d'), enables us to introduce the notion of a
“finite dyadic integer”, or equivalently to define the property of “to be positive or
zero” of any X, by means of 2X + 0. (We thus obtain a certain discretely ordered
subdomain of the whole integrity domain.)

The second subgroup (d”) (of the group (d) of dyadic axioms) enables us to define
the dyadic membership-relation €, by the formula (*) of section 1 already mentioned.

The so-called integral part [ Y/2*] of the quotient Y/2* is warranted by the axiom
(d"3), though without using the nonelementary notion of quotient-field. The last
(d)-axiom (d"4) enables to introduce the (dyadic) exponential valuation (in the sense
due to W. KruLL, see [ K]), defined, however, for our integrity domain and thus taking
on values from the additive discrete ordered commutative semigroup (with cancella-
tion and zero) of the already defined “finite dyadic integers”.

The third group (cl) (“class”-axioms) is essentielly equivalent to group B of [G] as
reformulated for the above €, by means of the solvability of suitable arithmetical
equations.

There is an additional requirement, the so-called successor-principle (s); despite of
[11], this axiom is not necessary in order to ensure any axiom of X’ for €,, since the
requirements mentioned previously suffice to this purpose. Neverthelless, (s) seems
to be indispensable in order to ensure the converse reproduction-theorem 1li (already
mentioned in section 1).

Let us turn to the axioms of (¢) themselves.
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The group (r):

(r1): VXVY3Z + (X, Y, Z). (Axiom of unrestricted existence of the sum of dyadic
integers.)

(r2): [X; = X,& Y, = V,& + (X1, Y1, Z)) & + (X3, Vs, Z5)] = Z; = Z,. (Axiom
of unicity of the sum, giving rise to the terms X, + Y;, X, + Y,, ... by means of the
equivalences + (X1, Y1, Z)) <= X, + Yy =Z, + (X3, Y0, Z,) <> X, + Y, = Z,, ..,

df df

(13): X + (Y+ Z) = (X + Y) + Z. (The law of associativity of addition.)
(r4): X + Y=Y + X. (The law of commutativity of addition.)
(r5): VXVY3Z(X + Z = Y). (The law of unrestricted subtraction.)

Lemma 1. and convention 1.

a) The Z in (r5) is (up to =) uniquely determined by the given X, Y; thus we write
Z = Y — X, introducing a further kind of term.

b)If X =Yin (r5), then the Z is uniquely determined independently of X; this
unique Z is the so-called zero, 0 = X — X for every X, 0 being an individual con-
stant.

c) We write 0 — X = — X for every X, introducing a further (usual) kind of
term.

Proof can be omitted.

(r6): VXVY3Z.(X, Y, Z). (The axiom of unrestricted existence of products of
dyadic integers.)

(17): [Xy = X,& Y, = V,& (X1, Y, Z,)& (X, Y,,Z,)| = Z, = Z,. (The axiom
of unicity of multiplication, giving rise to the terms X, . Y;, X, . Y,, ... by means of
the equivalences - (X, Yy, Z\) < X, .Y, = Z;, -(X5, Y5, Z)) = X, . Y, = Z,, ...)
We often write X Y instead of X . Y. o

(r8): X .(Y.Z) = (X.Y).Z. (The law of associativity of multiplication.)

(r9): X.Y=Y.X. (The law of commutativity of multiplication.)

(r10): (X + Y).Z=X.Z + Y.Z. (The law of distributivity.)

(r11): 3ZVY(Z . Y = Y). (The law of the unit.)

Lemma 2 and convention 2. The Z of (r11) is unique and is called the unit and
denoted by 1; thus by convention, | . Y = Y for every Y. Further, we obtain that
—1.Y=-Y.

Proof can be omitted.

(r12): (1 + 1 = 0). (The characteristic of the considered ring is not 2.)

Consequence. 1(1 = 0), i.e. our ring cannot degenerate to zero.

Convention 3. 1 + 1 = 2, thus 2 is a further individual constant, the so-called
two, not to be confused with the predicate 2(., .).

(r13): YX(X + X = 1). (This is the unusual “law of excluding one-half”; we
also write X + X + 1.)
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(r14): VXVY(X.Y=0=X =0 v Y =0). (The law of excluding divisors of
zero.)
The group (d):

(d'1): VX3Z 2(X, Z). (The law of unrestricted existence of the potency Z of 2 by
X see later.)
(d2): [X, = X, &2X,Z,)&2(X,, Z,)] = Z, = Z,. (The law of unicity of the

potencies of 2, giving rise to the terms 2*,2Y, ... by means of the equivalences
AX,Z) 2% = Z, AY,U) 2" = U, ...).
dar df
d'3): 2! = 2.

(d'4): 2% .2¥ £ 0= 2% . 2" = 2¥*Y
(d’5): 2¥*¥ =0=2% . 2" =0.
(d'6): 2X7Y 427X = 0=2%. 2" = 0.
(d7): X .(1 = X).2¥. 2" ¥ = 0.
We shall use a limited number of the following individual constants (all of them dif-

ferent from zero, on account of the axioms (d'3), (d'4) and (r14)): 2" *' = 222! 1" ' =
23 21+1+1+1 — 24

In order to prepare the second subgroup (d”) of the group (d), let us include some
definitions and lemmas.

Definition 1. If 2* # 0, then we say that X is positive or zero, and write 0 < X if,
moreover 0 X X & X # 0, then X is called positive. E.g., 0 X 1 and 1 is positive
by (d'3).

Lemma3. 0 X&0XY=0=ZX+ Y.

Proof. By (d'4) and (r14).

Lemma4. 0 X X&0=XY=0=X.Y.

Proof. By (d’5) and (r14).

Lemma 5. 0 X&0=ZY=>20X-YVvOo<Y-X.

Proof. 2¥ & 0&2¥ + 0=>2% . 2" % 0 by (r14), whence 2¥°Y + 2""% + 0 by
(d’6), i.e. 2X" Y £0 v 2" ¥ % 0.

Lemma 6. We have 0 =< 0, i.e. 2° % 0.

Proof. Since 0 = 1 — 1, then from 2° = 0 we would obtain 2° + 2° = 0 and thus
2'.2" = 0 by (d’6) (with X = Y = 1) — in contradiction with (r12) (on account of
(r14) and (d'3)).

Lemma 7. We have 2° = 1.

Proof. By (d'3), (r12), lemma 6, (r14), (d'4), we obtain 0 + 2" .2° = 2'*% = 2,
i.e.2.2% = 2; thus 2(2° — 1) = 0, whence 2° = 1 by (r14).
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Lemma 8. X .2¥.27¥ =0 for every X, ie. 0 XX& 0= - X=X =0 (by
(r14)).

Proof. Suppose X . 2¥ . 27X & Oforsome X. Then X # 0&2¥ + 0& 2™ % + O by
(r14), whence 2' . 27X = 2'"¥ + 0 by (r12), (r14), (d'3), (d'4). Further, 1 — X = 0;
for otherwise X = 1 and 27%* = 27! 4 0 would give 27! + 27! =2.2"! = 2!,
.27 =2% =1 (by (d'3), (d’4)) — contrary to (r13).

Thus, summarizing, from X .2%¥.27% % 0 we obtain X . (1 — X).2¥.2'" ¥ %0
(by (r14)) — in contradiction with (d'7) — proving the lemma.

Theorem 1. Assume the axioms (r1)—(r14), (d'1)—(d’7). Define the predicate
R(.) by the equivalence

R(X)<2¥ +27%+0.
df

Then the dyadic integers with the property R form a discretely ordered integrity
subdomain if the ordering relation < is defined thus
X<Yea2" Y+ 0&X +Y
df
(i.c. leting X to be positive, 0 < X, in the case X . 2% 4 0) — in the usual sense of
elementary abstract algebra (see e.g. [WI]).
More precisely: If we relativize the quantifiers to the predicate R, then (r1)—(r14)
hold as well as the following statements 1 —VII:
I (X < X).
I: X+ Y=X<YvVY<X.
HE: (X < V)& (Y<Z)=> X < Z.
IV: X<Y=2X+Z<LY+ Z
Vi X<Y)&(0<Z)=X.Z<Y.Z
VI: 0 < 1.
VII: 713X (0 < X < 1).

Proof. Since R(X) <0 < X v 0 < — X by definition, hence R(X) <> R(—X) by
lemma 8 and thus R(X)& R(Y) = R(X + Y) by lemma 3 and lemma 5; analogously
R(X)& R(Y)= R(X . Y) by lemma 4. Now, the verification of (r1)—(r14) as relativi-
zed to R is obvious. Further, the lemma 7, i.e. 1 = 2° = 2X~X & (0, states I. The defi-
nition of R and lemma 5 yield II. Lemma 3 states I1I. Point IV follows immediately
from the definition of < as relativized to R. Point V follows from lemma 4 (and
(r14)). (d'3) (together with (r12)) yields VI. Finaly. point VII (i.e. the discreteness
of <) follows from (d'7).

Corrolary of theorem 1. 2°* = 0if X + 0 and 27 = 1 if X = 0 (see (r12)
and V of the theorem as well as (d'1) and lemma 5).

Remark 1. It is not required that either 0 < X or X = 0 or X < 0 for every X,
i.e. YXR(X) is not true in general (but not excluded by axioms sub (r), (d'), (d")). The
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case of YXR(X), i.e. of VX(2¥ + 27 % 0), defines the notion of an ordered dyadic
domain.

Nevertheless, further axioms of the group (cl) exclude VXR(X); it turns out that a
dyadic domain satisfying the axioms of the group (cl), i.e. the so-called dyadic arith-
metics, is not formally real (i e. a suitable sum of nonzero squares vanishes), so that
such a dyadic domain cannot be ordered, in accordance with the standard dyadic
arithmetic of Hensel's usual integral dyadic numbers.

On the other side, a suitable weakening of the axioms sub (cl) enables to preserve the
property of being formally real; such dyadic domains will be used in the next paper of
this series, and will be called dyadic semiarithmetics.

Remark 2. Assuming R(X), R(Y), we easily observe that
X<Ye27=0.

Now, we are able to continue the exposition of the axioms of the group (d) of dyadic
arithmetics by the second subgroup (d”), starting with the following formal simpli-
fying convention:

Write X =x, Y=y, Z =1z, ...instead of 0 X X,0 <X Y,0 <X Z, ..., introducing
lower case letters as symbols for the positive (abstract) dyadic integers — and for zero;
thus X = x < 2%¥ % 0. (Thus e.g. Vx® or Ix®, with ‘x’ free in the propositional func-
tion @, are abbreviations of VX (0 < X = &) and 3X (0 < X & ®) respectively — in
the usual sense of relativizing quantifiers; relativized general quantifiers are often
omitted as well as the unrelativized ones.)

(d"1): x < 2% (This is the so-called axiom of the dyadic exponential growth; this
axiom seems unnecessary for the dyadic membership-relation e, (as given by the
formula (*) of sec. 1), if we do not insists on the “Fundierungsaxiom™ D of . A closer
investigation of the consequences of omitting (d”1) as well as the corresponding con-
sistency-proof for its negation would be a future and not simple task.)

Lemma 9. a) 0 < 2%, b) VX (0 < 2%).

Proof. a) is clear from (d'1) and from theorem 1.

Ad b): If X = 0 then 0 < 2% = 1 by (d'l). Hence assume X + 0. If 2¥ + 0 then
0 < X = xand 0 < 2* by a). Therefore 0 < 2% in general.

Lemma 10. a) VxVy(2¥ = 2* < x = y), b) VxVy(2* < 2¥ = x < y).

Proof. Ad a): Assume x = y; (by theorem 1) without loss of generality let x <y,
jie. 1=y —x.

Then 287% = 21+0=x=1) = 9 pv=x=l — py=x=1 4 gv=x=1" whence 2 =1 is
excluded by (r13). But clearly 2 7* = | <> 2" = 2% (by (d'4)), proving 2* = 2 = x =
= yand thus a). Now b) is clear by a similar argument.

(d"2): VXVy3ZIr((X = 2*.Z + r)& (0 X r < 2’)). (This is the so-called Euclidean
axiom of division with remainder by any nonzero potency of 2.)
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Lemma 11. and convention 4. Z and therefore clearly also r of (d"2) are both
uniquely determined by the given X and y; we shall write Z = [ X[2”] and call this Z
the “integral part of the quotient X/2¥” (not defining the quotient itself, of course),
and call r the corresponding remainder; thus X = 2. [X/2y] + r.

Proof. Suppose X = 2".Z, + r;fori = 1,2and 0 < r; < r, < 2¥(without loss
of generality, according to theorem 1.) Then 0 < r, — r; = 2(Z, — Z,). If r{ = r,,
then clearly Z, = Z,. Hence suppose 0 < r, — r,. Then 0 < Z, — Z, (by theorem

1), and moreover | < Z, — Z,. Therefore 2" < 2%(Z; — Z,) =ry, — r(, i.e. 22 =<
=< 2" + ry = r,, in contradiction with r, =< 2. Thus r; # r, is impossible, proving
the lemma.

Remarks. (1) r = 0 inlemma 6 iff X = 2*.Z, i.e. Z = [X/2*]: we then say that
X is divisible by 2” (i. e. without remainder).

(2) For the sake of formal generality, put [ Y/2*] = 0 iff 2¥ = 0 (for every Y), in
the case formerly excluded. (Of course, the above equality which follows from (d"2)
cannot hold in the case 2¥ = 0.)

(d"3): VX3y3IZ(X + 0= X =2".(1 + 2.Z)). (This is the so-called axiom of
dyadic valuation: this name may become clearer after the four following lemmas.)

Lemma 12 and convention 5. The y and Z of (d”3) are uniquely determined by
any given X = 0; we shall write y = W(X) (if X # 0) and call this y the dyadic
(exponential) value of X.

Proof. Suppose 04 X =2 (1 +2.Z,)=2".(1 +2.Z,) and y, <y,
without loss of generality. The clearly [X/2"'] = 1 +2.Z, = 277" (1 + 2. Z,).
Now y; * y,(and thus also Z; # Z,),so that y; < y,, i.e. 1 <y, — yy,is excluded
by (r13), since we would have 1 =2""% (1 +2.Z,) —2.Z, =2. (227",
(1 +2.2,) - Zy).

Remark tolemma 12 and convention 6. In order to obtain greater formal simpli-
city and generality, we could e.g. set — 1 and, say 0, instead of y and Z respectively,
in the formerly excluded case of lemma 12, i.e. put W(O) = — 1. Thus the identity

X =2"%(1+2.2)

with W(X) and Z uniquely determined by the given X, holds in general; this is in_
accordance with 27! = 0, and this last fact is easy to see, for otherwise we would
have 2*'.27' = 2% =1=2"" + 27", in contradiction with (r13). Hereby, the
group (d) of axioms of dyadic arithmetics is closed.

We shall shortly say that the already given 21 = 14 + 7 axioms of groups (r) and
(d) describe the (elementary) notion of a dyadic domain; if, moreover, 2¥ + 27X + 0
holds for every X, we have the ordered dyadic domain; in this case, (d’6) holds auto-
matically and can be omitted.

In order to state the axioms of the third group (cl) of dyadic arithmetics (as a parti-
cular kind of dyadic domains), we need some more consequences of the axioms stated
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previously. Let us note (see later for details) that axioms (r) and (d) together (and
moreover, with (d”1) omitted) just suffice to ensure the axioms Al, A2, A3, A4 (i.e.
the axiom of extensionality and the axiom of the unordered pair) and the axiom B2 (of
complement) for the dyadic membership-relation €, (as defined by the formula (*) in
sec. 1), taking positive and zero (abstract) dyadic integers for “sets” and dyadic
integers in general for “classes”. (Assuming (d”1) too, we obtain the “Fundierungs-
axiom” D also.)

Convention 7. We shall abbreviate sg (X) = 1 — 2!72%,

Lemma 13. We have sg(X) = 1,0, —1 according as there is 0 < X, 0 = X,
X < 0 respectively.

Proofis by immediate computation, on account of 2¥ = 2for X = 1(see lemma5),

Remark. If TIR(X), i.e. if 2¥ + 27% =0, then sg(X) =— 1. Thus sg(X) is

defined for every X, for the sake of formal completeness and simplicity.

Convention 8. Further, we abbreviate
max (X, Y) = X.sg(X — Y)+ Y.sg(Y— X + 1),
min (X, Y) =— (max(—X, —Y))
(with the same remark as before).
Lemma 14. Assume R(X), R(Y). Then max (X, Y) (= max (Y, X)) = X if Y< X
and max (X, Y) (= max (Y, X)) = Y iff X ZY; similarly,
min(X,Y)=X iff X<Y
and
min(X.Y) =Y iff YZX.
Proof is by computing, immediate by lemma 13.

The purpose of lemmas 13 and 14 is to give explicit “arithmetical” formulas (by
superposition of our three primitive operations) for such functions as e.g. max, min.

Lemma 15. (On the dyadic valuation—properties.) In every dyadic domain

(a) W(X) = W(—X).

(b) Assuming X + Y # 0, then W(X + Y) = min (W(X), W(Y)). More preci-
sely, W(X + Y) = min (W(X), W(Y)) if W(X)+ W(Y) and W(X +7Y)x=
= W(X) + 1 if W(X) = W(Y).

(c) If X 0 % Y, then W(X . Y) = W(X) + W(Y).

Proof. (a): If X =0 =— X, there is nothing to be proved. If X #+ 0, then write
X =2(1 + 2Z) (by (d"3)), whence — X = 2(— 1 —2Z) =2(1 + 2(— Z — 1)).

(b): If X.Y =0, then (b) is trivially true. If X .Y % 0, then Y = 2°(1 + 2T),
X = 2. (1 + 2. Z); without loss of generality let u < v.
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In the case u < v, i.e. 1 < v — u, we have
X+ Y=21+22""""(1 + 2T) + z)),

whence W(X + Y) = u = min (u, v) by lemma 7; in the complementary case u = o,
we have X + Y =2""(1 + Z + T), whence W(X + Y) = u + 1 by lemma 7 again.
(©): X .Y =21 +22)2°(1 + 2T) = 2***(1 + AZ + T+ 2ZT)) by lemma 7
again.
Now let us state the axioms of the group (cl), by means of the fundamental and
already mentioned

Definition 2. (Of the dyadic membership.) Define a new so-called membership-
operation®) , (., .) by the following superposition of our primitive dyadic operations
with the previously introduced operation of “dividing by a potency of 2, with re-
mainder’’:

ex (X, Y) = sg (2%) . ([Y/2X] — 2[Y/2**1]).

We say that X is a dyadic member of Yiff e, (X, Y) = |; we write also X €, Yin this
case.

In this sense, we shall also call any X with 2* % 0(i.e. with 0 < X) a “set” (X = x)
— and any Yin general — a “class”.

Lemma 16. VXVY(&, (X, Y) =0 v €, (X, Y) = 1).
Proof (cf. the proof of lemma XVII of [I1]).

(a): Prove the auxiliary identity

(i) [u2'] = [[v/2]2] -
Indeed, by lemma 6 [U/2"] = Q.2 + 1,0 < 1 < 2. Q = [[U/2"])2].

Case (1): t =0. Then [U/2"] =Q.2,s0 that U =Q.2.2"+r, 0Zr<2",
ieeU=0.2"" 4+ r,0=r<2"""ie. Q = [U[2°""].

Case (2): t=1. Then [U/2°] = Q.2+ 1, so that U=(Q.2+ 1).2" + r,
0=r=<2%ie U=0Q.22"" +(2"+r),0Z(2" + r) < 2" + 2" = 2""" 50 that
[U/2°""] = Q again.

(b): If 2¥ = 0, then clearly €, (X, Y) = 0. Hence suppose 2% + 0, i.e. X = x.
Then sg (2¥) = 1 and e, (X, Y) = [¥/2¥] — 2[[Y/2*]/2] by (i), whence €, (X, Y) is
the remainder on dividing [ Y/2*] by 2! = 2, i.e. €, (X, Y) = 0, L.

Convention 9. (The “unordered” and the “ordered pair”.) a): Let us write

(XY} =25 + 2" (sg(X — Y))*;

thus {xy}, =2 + 27 iff x + y — and {xy}, = 27 iff x = p, other cases of {..},
being defined also, but irrelevant.

3) We write €,(X, Y) instead of C¥ in [11].
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b): Put (XYDx = {{XX}, {XY),}« as a further abbreviation; we observe that
(xpdy = 2271 + 27) if x % yand {xy), = 2*7iff x = y, other cases being defined
but irrelevant.

Lemma 17. {X1V 1) = X205 => X1 = x, & ¥y = 5.

Proof. (a): Assume x; = y;. Then (xyp; s = {{x;X;}s {x1x 1 Jufs = {2927} =
= 22 Thus (X1 V1) = {X;,)4 entails (by lemma 5) the impossibility of x, + y,;
thus x, = y, and {X;¥2>4 = 22" Therefore x, = x, = y, = y, in this case, as well
as in the case X; = Va.

(b): Suppose X1 F ¥, <Xy p1 )% = {X3),)4 Then x, + y, (by the preceding result)
so that (x;y; >y = {2¥2% + 2%}, = 2% 4 227 2% = 227(] 4 22"%); i = 1, 2. Thus
x; = W(W((xiyDx) and y; = W(W([<x;y04/2°77 = 1)) for i = 1,2, whence
Xy = Xp, Vi = V2

Convention 10. (The “first member” and the “second member” of X.) According
to lemma 17 let us abbreviate

'X = W(W(X)),
2X = W(W([X2WOT — 1) osg ([X2W0] — 1) + 'X(1 — sg? ([X2W™] - 1)).
We can then verify that 'X = x and 2X = y if X = {xy),. Especially, we see that
'X = 2X = xif X = {(xx)4 = 2%". For the case of X not of the form {xy>, ' X and

2X are defined, but irrelevant. In all cases, the operations ' X and 2X are the so-called
“first member”’ and “second member”” of X.

Now we are ready to proceed to the group (cl) (of the so-called “class™-axioms) of
dyadic arithmetics. (Note that lower case letters in (cl 1)—(cl 6), (s) are used only for
better readability — and could be replaced by upper case ones, due to def. 2.)

(c1 1): (The “membership”-axiom.)
AYVz(ey (2, Y) = €4 ('z, %2) . 2_(’_<122‘>‘)z)
(i.e. ze, Yiff z = ('z%2), and 'zg, *2).
(c12): (The set-theoretical difference-axiom.)
VXVYIZVu(e, (u, Z) = 2500701

Conventions 1. (Boolean operations.) a) Write Z = X - Y in (cl 2), calling it
a set theoretical difference of X and Y. Note that, for the moment, we do not need the
unicity of the Z in question (this follows later, by the “extensionality” of €,). Thus the
symbol X - Y is preliminarily an g-symbol (in the well known logical sense of Hil-
bert); the same remark holds for the terms introduced by means of the term X —~ Y, as
well as concerning analogous &-terms.

b) Write — 1 %Y== Yand X @ Y=X5 (X5 Y)and X § Y=+ (5 X%
Q- Y), calling them a “union”, and an “intersection” of the “classes” X and Y
respectively.
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(c13): (The “direct product”-axiom.)

VXVY3IZVu(e, (1, Z) = €4 ('u, X) . €4 (Pu, Y) . 27 @ (w0t
(ie. ue, Z iff u = ('u”udy and 'ue, X, 2ue, Y).

Conventions 12. a) Write Z = X % Yfor any Z given by X and Yin (cl 3).

b) Further, given X, Y, set U(Y, X) = ((—1) ¥ 2") § X, introducing a further
e-term; this term is useful in a not obvious dyadic formulations) of the next axiom “‘of
domain”; note that t €, U(X, u) iff t = ('*1), €, X and *t = u.

(cl4): VXV YVu(ey (u, Y) = sg (W(U(u, X)) + 1)). (Explicitly, to every X there is
an Y such that any u “belongs” (in the sense of €,) to Y iff U(u, X) = ((—1) ¥ 2*) ¢
QX # 0, i.e. iff there is an y such that {yu), €, X; see convention 6 and the fact
that —1 is the “universal class”.

Convention 13. Write Y = Dy(X) for any Y given by X in (cl 4) and call D,(X)
a “domain” of X.

(c15): (The axiom of conversion in ordered pairs.)

VX3YVule, (u, Y) = 4 (Cu'udy, X) . 2707 Cw00%) |
Convention 14. Write Y = Cnuv,,(X) for any Y given by X in (cl 5).

(c16): (The axiom of “conversion in ordered triples™.)
VX3YVu(e, (u, Y) = e, (<"(Pu) CCu) "udsdss X) - 2_(“~<1"<l(2“)2(2"’>*>“'2) .

Convention 15. Write Y = Cnuy,(X) for any Y given by X in (cl 6) This concludes
the “class’-axioms.

Finally, let us state the singular additional so-called successor-principle:

(s): There exists a “class” S such that €, (u, S) = (u — 'u). 2”@ w0° This
principle requires the “class” of all “ordered pairs” such that the “second member”
exceeds the “first member” by 1; thus the “class S represents the successor-relation.
As has been mentioned, the purpose of (s) is not to ensure some set-theoretical axiom
for €, but to imply the reproduction-theorem Ili of sec. 4.

The given 14 + 7 + 6 + 1 = 28 axioms of the system (o) (divided into the groups
(r), (d), (c1) and (s), and containing several consequences and conventions) define the
notion of dyadic arithmetic. It is not too difficult to prove that Hensel’s integral
dyadic numbers (represented e.g. by zero-one sequences) satisfy these axioms: the non-
negative integers (in the dyadic system) are “sets”, and the other dyadic integers are
“proper classes”. In the forthcomming paper, we illustrate the variety of other examp-
les of dyadic arithmetics; some have already been shown in the paper [II].

6) For further constructive purposes, we attempt to satisfy two requirements: (i) The ““characte-
ristic function” €,(u, Y) of the “domain” Y of X shall be explicitely given (by a term as in other
(cl)-axioms). (ii) The ‘““domain-axiom” shall have a simple prenex normal form, with an equation
as the scope. For the exceptional character of the ‘“domaino-peration”, see also 4,2 (III) below.
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4. THE EQUIVALENCE-THEOREM AND THE REPRODUCTION-THEOREM

4.1. Our aim is to prove the two main theorems of this paper as indicated in sec. 1.
Let us formulate them precisely on the basis of sections 2 and 3.

The equivalence-theorem.

Ii. (The first part of the equivalence-theorem.)

Let () + (), ()= (). 2 be the three primitive operations of dyadic arithmetic
(of abstract Hensel’s dyadic integers) satisfying the 27 (proper) axioms of the
system (o) of sec 3 (i.e. with the successor principle (s) disregarded). Define two
unary predicates CI(-), M(*) and the binary predicate (*) €4 (*) as follows

ClL(Y)«=Y=Y, M (X)=2"+0;
df daf
Xe, Yeosg(2%) . ([Y2¥] = 2[y2** ' ) = 1.
daf

Then Cly, My, €, satisfy the axioms of the system X’ of sec. 2, of the theory of finite
sets of Bernays-Godel.

Tii. (The second part of the equivaience-theorem.)

Let CI(*), M(), (-) € () be the three primitive notions of the theory of finite sets
and their classes of Bernays-Godel as based on the axiomatic system X' (of sec. 2)
Then it is possible to introduce three basic dyadic operations () (+) (), () (*) ().
(2) with (2) = {{0}} (where 0 is the void set) for all classes of X' as taken for ab-
stract Hensel’s dyadic integers in such a manner that they satisfy all the proper
27 axioms of dyadic arithmetic; the successor principle (s) is also satisfied.

The reproduction-theorem.

IIi. (The first part of the reproduction-theorem.)

Suppose the situation of theorem i, and also let the successor-principle (s) hold.
Let us introduce three new dyadic operations, say (-) ¥ (), (*) & (), 2%, upon
“classes” in the sense of the already (in theorem Ii) defined dyadic membership-
predicate €, applying theorem lii to €, instead of to €.

Then % = 2 and () T (), () ;,:(~), %(" are identical with the supposed primitive
dyadic operations (*) + (), () - (*), 2 respectively.

Hii. (The second part of the reproduction-theorem.) Suppose the situation of
theorem Iii. Let us introduce a dyadic membership-predicate, say (€),, by means of
the already defined (in theorem Iii) dyadic operations () (+) (), () () ("), (2)"
applying theorem Ii to them (instead of to (*) + (), (). ("), (2) respectively).
Then (e)* is identical with the originally supposed primitive membership-predicatee.

Remark. In [Il], we have reached, in fact, a result essentially very close to Ii. Both
the non-elementary formulations and the proofs of [1I] will be considerably improved,
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clarified and elementarized in what follows. The rest of this sec. 4 appears to be new.
Note again that our notion of so-called set-theoretical (s.-t.) dyadic rings of [11]is not
elementary because it is formulated as a class of certain rings within the axiomatic set
theory (of Bernays-Godel, with the axiom of infinity), in the usual sense of abstract
set-theoretical algebra. Here in [Ill], on the contrary, dyadic arithmetic appears as a
self-contained elementary axiomatic theory. In [IV] we shall also generalize and
improve the constructions of various concrete dyadic arithmetics in the set theory of
Bernays-Gddel (as initiated in [I1]).

Proof of li. We consider a dyadic arithmetic in the elementary sense, as a certain
integrity domain (of the so-called dyadic integers also called “classes’), without one
half and with characteristic not 2; there is a discretely ordered subdomain consisting
of all dyadic integers X such that either 2* & 0 or 27* # 0. In particular, all the Xs
with 2¥ 4 0 (i.e. 0 < X) are called “naturals™ or also “sets”” and denoted by x, y, z, ...

The above binary predicate €, (X, Y) clearly has the following property: X is a
“set” iff there exists a “class™ Y such that X e, Y. (This follows at once from the defi-
nition of sg (*).)

Thus the axiom A2 holds, and the axiom Al is satisfied trivially. Let us turn to the
verification of the axiom of extensionality A3.

First note that, considering [Y/2*], we cannot speak of the quotient Y/2% itself
explicitly, as in the remark on p. 9 of [II], for we have no quotient field at our
disposal. (Compare the original proof of the crucial lemma XXIIT of [IT].)

Lemma 20. If X + Y then €, (W(X — Y), X) =+ €4 (W(x — Y), Y). As a con-

sequence, we have: If YU(U €, X <> U €, Y) then X =Y, i.e. the axiom of extension-
nality A3 is true.

The proof of lemma 20 requires a further lemma also useful for other purposes.

Lemma 21. Given X, Y, z let us write (by lemma 6 of sec. 3)
X =[X2].27+x, 0=x<2,
Y=[Y2?].22+y, 0=Zy<2*,
and let us assume further that y < x. Then
[x — v/27] = [x/27] - [Y/27].
Proof of lemma 21. From the supposition we have X — Y = ([X/2°] — [y/27]) -
.2" + x — y.Since 0 < x — y < 2%, lemma 6 (sec. 3) implies the result.
Proof of lemma 20.
Suppose the contrary, i.e. suppose X + Y and e, (W(X — Y), X) = & (W(X —
—Y), v).
Because then W(X — Y)is a “set” (by the lemma 7), putting z = W(X — Y) we

have
ez, X) = [X/27] = 2[X/27* "] = ey (z, ¥) = [¥/27] — 2[x/2**']-

66



Therefore [X/27] — [¥/27] = 2. ([Y/2**'] — [X/2°"']). Applying the above
tlemma 21, we infer + [(X — Y)/2°] = 2[(Y — X)/2**']. On the other hand,
[(X = Y)/2°] = 1 + 2Z for some Z, according to lemma 7 (sec. 3). Thus | = 2.
(= Z £ [(Y = X)/22""]) in contradiction with the axiom (r13) (of the absence of
one-half); this proves lemma 20. — Thus the axiom of extensionality A3 is true for e,.
In order to prove further axioms, let us infer some more lemmas.

Lemma 22. If X # 0 then W(X) e, X.

Proof. According to lemma 16, we have [ X/2W®] = [2W™ (1 + 22)2W™¥] =
= | + 2Z. Using the auxiliary identity of the proof of lemma 16, we obtain

[X2WOHT = [[2WD (1 + 2Z2)2W¥)2] = [(1 + 22)2] = Z.
Therefore indeed e, (W(X), X) = (1 +2Z) —2Z = 1.

I

Lemma 23. If z < W(X) then ~1(z e, X).

Proof. z <W(X) implies [X/27] = [2W® . (1 + 2Z)/27] = 2WP (1 + 2Z).
Likewise (for z + 1 X W(X)) [Xx/25"'] = 2W®™=="1 (1 + 2Z). Thus indeed
€xl(z, X) = 2WO7F (1 4+ 2Z) — 22V =71 (1 +2Z) = 0.

Lemma 24. If u €, v then u < v (i.e. if v = u then 71(u €, v)).

Proof. If v X u then v < 2“(by the axiom (d"1)), whence [v/2"] = [v/2*"'] = 0,
so that indeed e, (u,v) =0 —2.0 = 0.

Remark. The following simple observation may be useful when determining whether
a given “set” t is “an element” of a given “class” U:

U can be written in the form U = Z . 2'*' + r,0 < r < 2'*', where the “class” Z
and the “set” r are unique; thus there are exactly two cases:

Case I.7 < 2. In this case (because U = 2Z . 2" + r,0 < r < 2') clearly [U/2"] =
=27 and [U2'*'] = Z.

Therefore [U/2'] — 2[U/2'*"] = 0, ie. (1€, U).

Case 2. 2'<r<2*"". Inthiscase U=Z.2""" + 2"+ 7 =(2Z + 1) . 2" + F,
where 0 < 7 = r — 2" < 2" (because r < 2" + 2 = 2'*! and F is unique).

Therefore in this case [U/2'] = 2Z + 1, though [U/2'*'] = Z as before. Thus
U =2[un*"=02z+1)-Z=1,ie te,U.

Summarising: Let U =2Z.2""" + r, 0 Zr <2**' (with Z and r uniquely
determined by the given U and 1). Then t €, U iff 1 e, r, ie. iff 2 < 7.

Now we prove the fundamental lemma:

Lemma 25. Assume 71(t€y X). Then x€, X +2' <> xe, X v x =t. (In other
terms: X ¥ {t}y = X + 2" if 7I(t e, X), introducing in this case the sign of the

“class-sum” ', in the sense of €.)
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Proof. By the above remark, 71(7 €, X) means that X = Z.2**!' + r,, 0 =2 r, <
< 2'. Therefore X + 2' = Z.2'*" + (2' + r,), where 2" < 2" + r, < 2'*!' = 2" +
+ 2%, so that 1 €, X + 2' (on account of the above remark).

Thus in the proof of the equivalence x €, X + 2" <> x €, X vV x = 1 we may as-
sume x = t, i.e. we only have to prove the equivalence

(x + N&(xee X +2) > xe, X.

The case x < t: In this case 0 < 2'7*7!, Assume x e, X + 2. Then X +2' =
=Z.2%"" 4+ r with 2* <7 <2**', Thus X=(X+2') —2'=Z.2xtt _ 2t ¢
+r=(Z—-27""). 25" 4+ r with 2 < 7 < 2**" and therefore x e, X (by the
above remark).

Conversely, assume x €, X, i.e. X = Z.2%"" + r_ with 2 < r. < 2**!. Then

X+2'=2Z.2"" 4 2 4 r,=(Z+27%"). 2" 4 r,

with 2* < r, < 2" ie xe, X + 2"

The case t < x: Then 0 < 27! Assume xe, X + 2'; then X +2'=Z.
L2 v 45, 05 < 2%

Now, t €, s. (Indeed, otherwise we would have s = u . 2'*' + r, with r, < 2" and
thus X +2'=Z.2"" 4+ 2% 4 4 2" 4 5, = (Z. 2"+ 2" u) 2 4 py,
r, < 2', i.e. we would have 7I(t €, X + 2') contrary to the already proved result.)
From t €, s we obtain s = u . 2'*" + 2' + ¥, 2* X r,. Thus

X=(X+2)=2=Z.2"" +254(s =2, 0=Zs—2<2",

ie. x €4 X. Conversely, assume x €, X, i.e. X = Z.2°"' + 2% + r with r < 2. For
similar reasons as above, since 71(f €4 X), then 71(t ey r), i.e. r = v.2""" + ¢ with
g<2.Thus X +2'=Z.2%"" 4+ 22+ 0. 2" 4+ 2"+ q=(Z.2"7" 4+ 27 "7 1 ¢
+v). 2" + 2" + ¢, g < 2, proving that x €, X + 2". This proves lemma 25.

Now, the axiom A4 (of unordered pairs) holds for €,; this is a simple consequence
of lemma 25. Indeed, given the “sets” x, y, write {xy}, = 2* + 2".(sg(x — »))%,
ie. {xy}, = 2" + 27if x % yand {xx}, = 2*. We observe directly that z €, {xy}, <
<z=XVzZ=y.

Turning to the verification of the axioms of group B (of 2’), note that 0 indeed is the
“void set” (clearly e, (x, 0) = 0 for every x since [0/2*] = [0/2**'] = 0) and that
—1 is the “universal class” (since for every x, — 1 =— 1.2+ (2* = 1),2* = 1 <
<2ie[-12]=[-1/2""]=- L sothat g, (x, = 1) == 1 =2.(—1) = 1.

Having the “void set” 0 and the “universal class” —1 at our disposal, we can re-
place axioms B2 and B3 by the single “axiom of the class-difference” — and in fact
this is the axiom (cl 2). Thus in this way axioms B2 and B3 hold for €,.

Further axioms of group B of X’ are almost immediately ensured by their dyadic
“arithmetical” counterparts (cl 1)—(cl 7), so that nothing need be proved for this
group of axioms.
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Remark. It would be easy to maintain the original version of the axioms sub B of
X', i.e. to require B2 and B3 in the dyadic version. Then B3 would have the form
VXVY3IZVu(ey (u, Z) = €4 (u, X) . €4 (1, Y)) .
and B2 would be written as
VX3ZVu(ey (u, Z) = 1 — e, (u, X)) .

Note, however, that the last statement follows from the axioms sub (l) and (d) (i.e.
from the only axioms of dyadic domains). Namely, we observe that Z = — | — X has
the property of (Boolean) complementation. Indeed, — 1 =— 1.2% + (2 — 1), so
that the remainder r of X on division by 2* is always less or equal to the remainder
2% — 1 of —1 divided by 2*. Thus we can apply lemma 21 and obtain

[(= 1= %02 = [ 112] - [x2] == 1 = [x72]

and also
[(= 1= X)25] == 1 — [x/21].
Therefore indeed
(= 1 = X) =— 1 — [X/25] = 2(— | — [X/2**1]) =
=1 = ([X/2] = 2[X/2**"']) =1 — €4 (x, X).

Next, proceed to the immediate verification of the “Fundierungsaxiom” D of 2.
Indeed, from lemmas 22, 23, 26 we conclude immediately that if X # 0, then no “set”
is simultancously a “member” of the “member” W(X) of the “class” X or of this
“class” X itself; thus the axiom D holds for €.

So far we have verified the axioms sub A, B, D of X’ for €,.

Finally, let us turn to the verification of the axioms of group C of 2’. We emphasize
here, that, despite of our opinion put forward in [II], these axioms are satisfied
without any additional requirement concerning our primitive operations of dyadic
arithmetics; the proof is by very similar simple devices.

Let us elaborate the argument in the case of the axiom C4 (of replacement). In
order to prove this axiom for €, let us apply a certain particular instance of the gene-
ral existence-metatheorem M1 of [G], which holds for our €, on account of the
axioms already verified. Roughly speaking, this metatheorem, say (M1), with respect
to our membership-predicate €, is only a “comprehension”-statement. It enables us

to define a “class”, say U, by a condition of the form u €, U < tb(u) with u free in @,
df

supposing only that in the propositional function &(u) there are no quantified “class”
variables; (®(u) is “normal”); further eventual free “set”- or “class”-variables of ®(u)
are then parameters. (The definition of the notion of a propositional function is by
the obvious metamathematical recursion, starting with atomic propositional functions
of the forms x €, Y, x €, y, X €, y, X €, y, x = X, X = Y and successively applying
logical operations; we refer to [ G] for details.) If we wish to avoid any metamathema-
tical notion in using a particular instance of (M1),, we have only to follow the succes-
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sive logical building up of the given condition @(u) by forming an explicit term for the
“class™ U in question, by means of the basic “class”-operations introduced in (cl), ac-
cording to the proof of M1 in [G]; and this is a matter of routine which can be omitted
here for the sake of better readability.

The particular instance of (M1), that we use in order to prove C4 for e, is as fol-
lows:

Let Z be a given “class”. Then there exists a ““class™, say U, such that ve, U, if
Z (= the “class” of all the “Z-images™ of “members™ of the “set” v) is a “proper
class™ (i.e. not a “set"). Clearly U. # 0 for some Z if C4 does not hold for €.

Thus, contrary to C4, assume U = U, + 0 for a certain Z. Then u = W(U) is a
“set” and u €, U, i.e. Ziu is a “proper class”. We have W(U) =% 0 because Z,0 = 0
is a “set”. Therefore W(W(U)) = W(u) = v is a “set” also (and v €4 u).

Now, lemma 25 states that the “class-difference™ u - {v}, (existing as a “class” on
account of (cl 2) is precisely the ring-theoretical difference u* = u — 2° of two “sets”
(where 2" < u), so that u* is a “
(u* e, U).

Therefore Ziu* is a “set”. But 232" = Z {v}, = {Zjv}, is a “set” also and the
“set” u is the “class-sum” of the “disjoint “set-summands™ u* and {v}, (for other-
wise Ziu* = Zju would be a “set”, contrary to our assumption).

set’’; furthermore, we observe u* < u, whence

Therefore the “‘image-class’ Zyu satisfies the equations
Ziu = (Ziw*) § (Zy{v}y) = Zju* + 2%+

and thus is a “set” (according to lemma 25). From this contradiction we conclude
U, = 0for every “class” Z; therefore the replacement-axiom C4 is true for our dyadic
membership-predicate €,.

The remaining needed verifications of the C-axioms of X’ for €, now are simple and
could be performed by the argument already used. However, let us show a more
simple and direct way.

According to section 2, it is sufficient to verify the “set-sum™-axiom C2 and the
axiom of finiteness 71(C1).

As to C2, we already have the “sum-class’ S(x) for every “set” x as the “class” Y
such that u €, Y precisely iff there is a “set” v with u €, v& v €, x, by a further parti-
cular instance of the mentioned (M1),. Thus by lemma 24, we conclude u < v&
& v < x, whence u < x for every u g, Y.

Now, there is a “set” g such that Vit < x <>t €, ¢); namely g = 2**' — .
(Indeed, if t < x then

AR R, L2 B TE S R T S N g (Zx—, _ I).21+l + 2+ (2r _ 1)‘
whence 1€, 2*"' — 1.) We observe that the “sum-class™ S(x) (over the “set” x) is
“included” in the “set” 2**' — 1 and therefore S(x) itself is a “set”; this is a simple
consequence of the already verified “replacement-axiom™ C4 (see [G], 4.31 and 5.11).
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Finally, as to the axiom 71(C1) of finiteness, we proceed as in the above verification of
C4. On account of a further instance of (M1),, define the “class™ U so that v e, U iff v
violates the axiom of finity. Assume U = 0, i.e. that "1(C1) does not hold. Then u =
= W(U) is the lowest “set” in U and clearly u & 0. Thus W(u) = wis a “set” also
and u = (u — 2%) § 2" with “disjoint” “set-summands”. Here 0 < u — 2* < u, so
that u — 2" does not violate 71(C1). This is a contradiction, since then clearly u itself
could not violate 1(Cl).

Hereby the axiom of finiteness ~1(C1) is also verified, and the whole first half i of
the equivalence-theorem proved.

4.2. Proof of both the Iii and Ilii:

(@) The idea of the following simultaneous proof of lii and Ilii can be traced thus:

We shall introduce the so-called Hensel’s dyadic integers over ordinals of X', as
zero-one ordinal functions. We hereby imitate Hensel’s original immediate intro-
duction of this intuitive dyadic integers rather than the usual definition of them (by
completing rationals in the sense of a dyadic metric). In this part of the proof then only
remains to ensure that the elementary logical tools of 2’ just suffice to this purpose.
Then we shall verify the axioms of dyadic domains for dyadic integers over ordinals of
X’ and introduce the dyadic binary membership-predicate €,(., .) to dyadic integers,
by the well-known formula. On the other hand, we observe that the so-called finite
dyadic integers (with ultimately constant zero-value) can be isomorphically replaced
by ordinals, using their dyadic digital images; thus we transfer €, (between finite
dyadic integers) into the dyadic membership-relation, say €*(., .), between ordinals.
(e* is defined in the sense of the usual Peanian arithmetic of ordinals of X’ as of natu-
rals, by the formula (*) again.)

Finally, €* itself will be transferred into the primitive € between sets, by an iso-
morphism F (as a mapping of On onto V) the inductive construction of which is a
particular instance of an idea of Mostowski [MI1] (see also Shepherdson [Sh]). These
results finally yield the binary one-to-one correspondence-predicate F(., .) between
our dyadic integers over ordinals of 2’ and all classes of X', F being an isomorphism
with respect to €, and €. At the same time, of course, F induces to all classes the three
basic operations of dyadic arithmetic as satisfying all the 28 axioms of the system (o)
of section 3; these induced operations reproduce the primitive € as an arithmetical
dyadic membership-predicate, in the sense of the known formula (*).

In an appendix of this proof of both lii and Ilii — we give a more direct and more
intuitive description of the just mentioned “natural’ arithmetical operations on classes
of 2’, in terms of e.

Many lengthy but obvious or essentialy well known details of the proof may be
omitted; the main points of the proof (according to the just traced scheme) consist in
warranting the normality of some used notions (in the sense of [G], as applied to the
system X'), in order to ensure the existence of some needed classes. (However, a
knowledge of Hensel’s intuitive dyadic numbers is desirable, of course.)
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(IX) The construction of Hensel’s dyadic integers over ordinals of the system X'.

Notation. We assume the axioms of 2’ (see section 2) and we shall use the follow-
ing notations. By p (possibly with indices), we denote zero-one functions from an
ordinal v into the set {01}. (We take the values 0, 1 for “dyadic numerals” in 2’ and
the p form a numerical (digital) image of a certain ordinal in the dyadic digital
system, as usual; on the other hand, recall that {01} = 2.)

We write the ordinal corresponding to a given p thus

v—1
=Y u@) .2
E=0
in the usual arithmetical sense of the symbols, as applied to ordinals of 2.

Conversely, if an ordinal « is given, then there are many zero-one functions yu with
o = o, (they form a proper class, of course). Exactly one y of them is defined on the
lowest ordinal, say v, such that « = «;. This zero-one function called the shortest
dyadic digital image of the given ordinal « — and we denote it by «.

For any zero-one function 4 (as defined on an ordinal v) and for any given ordinal f3,
let us define another zero-one function u | p thus:

If B < v, then p| B is the function u partialized to B (in the usual sense, cf. [G]); if
otherwise v < f3, then u [ f is the u extended by means of zero-values, i.e.

(1| B) (&) =0 if cep=v and (u]B)(&) =ume) if cev.

Definition 3. (Dyadic integers.) a) A Hensel’s dyadic integer over ordinals of X', in
short, a dyadic integer, is a zero-one ordinal function; thus I' is a dyadic integer iff
I' < On x {01} and I" maps the class On of ordinals into the set {01}.

Greek capitals will denote variables for dyadic integers. If 4 is a dyadic integer and o
is an ordinal, then A ] o denotes, as usual, the A partialized to the ordinal a.

b) A dyadic integer A is said to be finite iff it is ultimately a zero-function, i.e. if
JE(E £ E= A(E) = 0).

For every finite A, let us write A = A, where « = Z (A] (& + 1)) (&) . 2° with the
uniquely determined lowest possible &.

Conversely, given any nonzero ordinal o = 2% + 22 4+ ... + 2% (with a; < a, <
< ... < a,), there is exactly one A such that A = A,; this A, simply is the sum-class
of the class of all the functions of the form o | p with B > a,. In the case of « = 0, A,
is the zero-function (with V&(Ae(&) = 0)).

¢) Thus there is a one-to-one correspondence, given by a binary predicate, say
Corr(., .), between ordinals and finite dyadic integers. In normal terms, we write

Corr(a, )<= I = A, (in the sense of b).
The normality of the predicate Corr(., .) is warranted by the equivalence
— B-1
Corr(a, I) <> 3PYB(B < =Y (I'| B) (&) . 2° = o) ;
£=0
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on the other hand, of course, this correspondence is not a function in X’ since finite
dyadic integers are proper classes in 2’. (A dyadic integer which is not finite may be
called infinite.) Thus we write Ay = 0, A; = 1, 4, = 2.

Definition 4. Addition, multiplication and potentiation of two for dyadic inte-
gers.)
Let A, I be dyadic integers. If f; < f,, then abbreviate

AI[f,:/zl, Fl/ﬂzuf, Alﬂzzﬂz- ri/’)zzl‘;<

and set
Bi=1 ] pi-1
2, = 3 uf&). 2%, ax =Yy pi(&).2° for i=1,2.
£=0 £=0
a) (Addition.) Realizing the usual addition of ordinals by means of their dyadic
digital images, we easily observe that :

P e By = Oy, + d,,;l B -

This is the so-called stability-condition of dyadic digits for addition. (In nonele-
mentary terms of intuitive dyadic integers, this is a quite strong uniform-continuity
condition, which is fullfiled by the addition of naturals in the sense of their dyadic

metric.”) Thus we can and will define the dyadic integer A + I as the sum-class of the

class of all the zero-one-functions on ordinals of the form &:+ o+ | B, where p =
=A I p,u¥=T I f and f € On is arbitrary.
Hereby we introduce a ternary normal (operational) predicate, say +(., ., .), so

that
+ (A, T A)=Ad=A+T.
dar

b) (Multtplication.) Analogously, observing the multiplication of ordinals of 2’ in
their dyadic digital images, we see an analogous stability-condition (in the above
symbols):

ocm.ozl;;]ﬁl = aﬂz.azlﬁl if py<p,.

Thus we can and will define the dyadic integer A . I as the sum-class of the class of
all the zero-one functions on ordinals of the form o;:;; p with g =1 [ B, u* =
= I'| B and with an arbitrary € On.

Hereby we introduce a further normal ternary (operational) predicate . (., ., .) so
that . (A, T, d)<>4 = A.T. .

df

c) (Potentiation of two.) Denote by 2 the dyadic integer A, (with 2(0) = 0, 2(1) =
=1, 2(t) = 0 for every 7 > 1).

= 2"(1 4 2g), then the dyadic distance is d(m,, m,) = 27"; (ii) if otherwise m; = m,, then
d(my, m,) = 0, of course.
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We see immediately the corresponding stability-condition (in the sense of the above

symbols) thus ;
25| By = 2| B,

whenever p, = A| 1,y = A| By By < Pa-

Thus again, we can and will define the dyadic integer 2* as the sum-class of the class
of all the zero-one functions on ordinals of the form 2;; ’ B, where u = A , B, peOn.

It is easy to see that if A = A, is a finite dyadic integer, _then 24 = r,,. so that
2(&) = 0 everywhere except for ¢ = ¢. Thus in particular 21 = 2.

If otherwise A is an infinite dyadic integer, then we observe that 2” = 0.

Hereby we introduce a binary (operational) normal predicate, say 2(., .), with

YA, A) =4 = 21
df
The definitions of dyadic integers and their basic operations in 2’ are then complete.
Note that if A = A,, I' = I', are finite dyadic integers, then

Ay +T,=A4,0,, A,.T,=4,,, 2" =4,,,

carrying thus the above addition, multiplication and the potentiation of two finite
dyadic integers isomorphically into the usual addition, multiplication and potentiation
of two respectively, corresponding ordinals in the sense of the Peanian arithmetic. We
shall use this isomorphism later.

Now, analysing the above definitions 3 and 4, we find that dyadic integers form an
associative and commutative semigroup with cancellation and with the neutral 0 with
respect to the operation +. Further, the nonzero dyadic integers form an associative
and commutative semigroup with cancellation and with 1 (where 1(0) = 1, 1(¢) = 0if
&> 0) as the neutral unit with respect to the operation . . Moreover, it is not difficult
to prove the distributive law A . (A + I) = 4. A+ 4. T.

Next, consider the dyadic integer, say Q, with V&(Q(&) = 1).

By the definition 4 a), it is easily seen that Q can be taken for —1,i.e. Q + [ = 0.

Thus, on account of the distributive law, we conclude that dyadic integers form an
integrity domain with the unit T and the zero 0. In addition, from the definition of +,
we observe almost immediately that 4 + 4 # 1 for every dyadic integer 4, showing
the absence of “one-half” in dyadic integers. Likewise, it is clear that “the characte-
ristic of our integrity domain” is not two, i.e. that I + 1 = 2. (The general notion of
the characteristic of an integrity domain or of a field is not elementary, of course.)

In this way, we have verified the axioms of the group (r) of dyadic arithmetics for
our dyadic integers of X’.

The verification of the axioms of the next group (d) (of dyadic arithmetics) is now
almost immediate, in view of the above one-to-one correspondence Corr(., 2
(between ordinals and finite dyadic integers, which is an isomorphism with respect to
+,.,20).
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As to the subgroup (d’). we first observe that the normal predicate, say R(.), with
R(A) s A=T,vA=—1. I“.l,) defines a discretely ordered integrity subdomain
dr

such that the corresponding ordering-predicate, say <, is characterized by the equi-
valence 4 < A <> A + A& 2""" % 0; and this is exactly the statement of the axioms
of subgroup (d’).

Further, the axiom (d”1) is true on account of the above def. 4¢) and by the cor-
responding law for ordinals (applying Corr(., .)).

As to the axiom (d”2): Given dyadic integer A and a finite dyadic integer I" = I,
we see that A = 4.2" + 0,, where 4(&) = A(E +7), 0 <2, ie. 020, < 2",

Therefore [4/2"7] (&) = A(¢ + y) and [4/2"7] is the “integral part of the quotient
A/2" in dyadic integers.

As to the axiom (d”3): If a dyadic integer A # 0 is given and ¢ is the lowest ordinal
with A(c) = 1, when we observe that A = 2"*(1 + 2. 4), where 4(¢) = A(¢ + o +
+ 1). Therefore W(A) = I', (where A(o) = 1 & VE(E < 0 = A() = 0)) is the dyadic
value of the dyadic integer A.

So far we have proved that dyadic integers over ordinals of 2’ form a dyadic domain
(in the sense of section 3). Thus we are able to introduce the dyadic membership-
operation (as a normal ternary predicate in X') for dyadic integers in the sense of
section 3 thus:

ex (I A) = [A25] = 2. [A)2r+1]

and e, (T, A) = 0iff I"is an infinite dyadic integer.

(Note that if we define, for the sake of formal completeness, [ 4/0] in any manner
and if we use the sg-operation (with sg (') = T — 21-2"), then we can include the
case of an infinite I' by writing

eI, A) =sg(2") . ([4/2"] — 2. [4/21+1])).
Thus the dyadic membership-predicate (-) €, (-) is as follows:
FeyAse (I A)=1:
df;
of course, T1(I" €, A) whenever I is an infinite dyadic integer.

Let us emphasize that, in fact, €, (I',, 4) = A(y); this is easily verified using the
already proved results; this shows the normality of the predicate (.) €, (.).

(III) The isomorphism between ordinals and sets of X' with respect to their mem-
bership-relations. Now, it turns out to be incovenient to continue the verification of
axioms of dyadic arithmetics in our dyadic integers; moreover, the immediate veri-
fication of the (cl)-axioms in dyadic integers fails in the case of the “domain-
axiom” (cl 4), for a certain needed ordinal function cannot be warranted because its
immediate description is non-normal. (For intuitive dyadic integers, this state of af-
fairs consists in that the “domain-operation” is continuous but not uniformly conti-
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nuous in the dyadic metric of naturals, whereas other ‘“‘set-theoretical” operations in
dyadic integers are uniformly continuous in this metric.)

Thus let us now turn to the above mentioned construction of a one-to-one function
F, as mapping the class On of ordinals onto the universal class V, isomorphicaly with
respect to the dyadic membership-relation €* in ordinals — and the primitive member-
ship-relation € in sets.

We assume the usual elements and terms of the (Peanian) arithmetics of ordinals of
2’'. Especially, o + f, «. ff, 2% have their usual sense; a — f8 is the “arithmetical”
difference, i.e. (2 — /3) +pB=aif f<a and o — f = 0if « < . Likewise [«/B]
(the result of the ““arithmetical” division with remainder) has its obvious sense: we
have (uniquely for every a, 8 + 0)

a=[o/f].B+o, 0Z0<p.
The dyadic membership-operation €* in ordinals thus is again (see section 3)
e* (o, B) = [0/2"] — 2[«/2°*1].
We often write o €* f8 instead of €* («, ) = 1. We observe that
et fes =20 4 2P 4 4 2P,

where 8, < 8, < ... < B, and a = 8, with a unique 7, I £ 7 < «. Of course, the
relation (.) €* (.) is “extensional”, i.e.

Va(o €* By <> ae* B,)= B, = f,.

In order to construct a (€* — €)-isomorphism F, first recall the notion of type (of
a set, in 2').
The o-th type t'« is a set defined by induction thus
10=90, r(x+1)=P(i')
(i.e. the next type is the potency-set of the given type).

It is well known and easy to prove that the class-sum of the class of all types is the

universal class V; we write (J '« = V. Of course, t'a = (o« + 1); note also that
aeOn

xet'(ox + 1) = r'ziff every element of x is of type 7o

Analogously, denote by P*(a) the “potency-set™ of the “set™ o in the sense of the
above relation €* between ordinals, i.e. if o = 2% + 2%* + ... 4 2% then let f =
=P*a) iff =20+ 20 4 4 2% with B, =20 4 2 2P (v =
=1,..,k), where f; < f,, < ... < By, is any increasing subsequence of the se-
quence o; < 0y < ... < 0.

We infer easily that P*(2” — 1) = 22" — 1 for every y € On.

Indeed, it suffices to realize the following: First, 0 < v <27 — < v c* 2" — ]
denoting by =* the “inclusion” in the sense of €*, i.e.

aS*Plefa= et f.
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Second, 2" — 1 =27 +2' + .. 429 4 . 4271 (0 &<y — 1) and

27— 1 =20 422 4 221 £ 22020 4y gv gy 0202
o=sv=s2"-1).

Thus the above formula is true in view of the definition of P*(«) for a = 2% — 1.
Next, define the ordinal function 7 as follows:

T70=0, t(x+ 1) =P*ra),

t’'a could be called the a-th “type” in the sense of €* in ordinals. If we want to deter-
mine the value of t’« more explicitely, then denote by h(oz) the a-times iterated potency
of 2,i.e. set 'O = 1, h'(a + 1) = 2"®. Then the just proved formula P*(2" — 1) =
= 2%" — 1 yields the simple result

t'a = h(a) — | for every ordinal o e On.

(The proof by induction is almost immediate.)
These preliminaries enable us to construct the so-called natural mapping F of On
onto the universal class ¥ as an isomorphism with respect to e* and e (cf. sec. 1).

Define by induction a sequence {f,}.con of mappings as foliows: f, is void; f; is
defined on the ordinal 7’1 = 1 = {0}, and we set f10 = 0. Clearly f, < f; and f, is
a one-to-one map of the set 7'l = {§} onto the set 'l = {0}, so that ae* f <«
< flaefipforevery x e 7’1, f € v'1. (The corresponding statement is trivially true for
fo» of course.)

Suppose f, is defined as a one-to-one mapping of the set 7'y onto the set 'y such that
ae* f < flaefip whenever a et'y, feTy.

Take an arbitrary 9 with ¢’y = h(y) — 1 £ 3 < h(y + 1) = 1 = 7'(y + 1).

By the above definition of the “type” 7'(y + 1), $e7'(y + 1) = ¢'y. Thus if
ve* Jthen v e 1’y so that v < t'y. Therefore f,v is defined for every v with v €* 9. Thus
we can and will define £, ;9 as the set of all the images f,v where v €* 9.

Putting f), ;0 = fio for every o € 'y, we define the mapping f,,; of the “type”
7(y + 1) into the type r'(y + 1).

First, we have to show that f,, is a one-to-one mapping of z'(y + 1) onto the
whole 1(y + 1). '

In fact it is easy to see from the above definition of f, ,;, from the “extensionality”
of e* and from the inductive assumption that f, ., is one-to-one.

That f,., is onto the whole ¢(y + 1) is also clear; for if y e#(y + 1) then let
S, f1tas - flo0 (with o <% < ... < ocK) be the different elements of y, according.
to the inductive assumption. Then

fraa2 #2244 2%) =y

by the above definition of f;+1-
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Now, we have to prove by induction the main statement:
ae* e fli e fii B
whenever aet'(y + 1), fet(y + 1).

Indeed, if f €1’y then 2 € t'y and there is nothing to prove, by the inductive as-
sumption. Thus assume B e t'(y + 1) = t'y. Then according to the inductive defi-
nition of f., {, f.. 8 is the set of all the sets of the form f,f, where f = ... + 26 4 L.
i.e. where f, €* f. Therefore if a €* f then « = f§, with a suitable 1 and f], 2 €
€ f1+1f by the definition of f, 1.

Conversely, assume f.,;x € f 6. Then f], o = fla and a€1’y, a€* ff, by the
definition of f,, , again.

Therefore indeed ae* f<f;,jaef ,f if the same equivalence holds for y
instead of y + 1.

Next, since clearly f, = f, ., we can and will form F as the sum-class of the class
of all the already defined f,’s, i.e. F = U f,.

7€0n
It is easy to see that F is a one-to-one map defined on the whole class On of ordinals
of £, and maps onto the whole universal class V of all sets. Clearly ae* g (i.e. f=
= ...+ 2+ ..., ie [B27] —2[p2*""] = 1) iff F'ae F'B. Conversely, we thus
have the equivalence x € y <> F~'"(x) e* F~''(y).

(IV) The natural ordering, addition, multiplication and potentiation of two for
sets of X'. Next, we shall intrcduce the basic operations of dyadic arithmetics (as well
as the corresponding ordering-relation) from ordinals to sets, by means of the al-
ready determined one-to-one mapping F. (Let us systematically denote the introduced
notions by inserting the usual symbols in brackets.)

(i) (Ordering.) x (<) y < F~"(x) < F7'(y).

(ii) (Addition.) x(+)y ifz«» F~'(x) + F7'(y) = F~'(2).

(iii) (Multiplication.) x(.) y R F7U(x). F7(y) = F7'(2).

(iv) (Potentiation of two.) Set z z (0)<=F "(2) =0, ie. (0)=0; u=(1)<
< F 'u)y=1ie (1)=1{0}=1; v ='Z§)¢> F7'(v) =2, ie. (2) = {{0}} 4=dzr;
v?/; observe (1) (+) (1) = (2).

Then y = (2)* = F~'(y) = 277", We have (2)* = {x} because

ze(2Qf e F 1 (z)e* 2" "W Fl(z) = FU(x) ez = x.
(v) v = ([u/(2)]) = F~V(y) = [F~ V()25 V@]
Now, evidently, since x € y <= F~'(x) e* F~'(y), hence

xey = (D (=) @) o (R =1.

78



Abbreviating € (x, v) = ([/(2)*]) (=) (2) -, ([¥/(2)**']), we have, of course,
e(x,y) =l (F (), F7'(y)=1.

(V) Extending the natural arithmetical operations from sets to classes. Our final
task is to extend the already introduced operations (+), (*), (2)© to classes of X' in
such a manner that the primitive membership-predicate becomes the dyadic member-
ship-predicate.

To every dyadic integer A (of X’), there is a unique class, say Y = F(A), defined (in
view of a particular instance of M3 of [G]) thus:

veF() = AFY(y) = 1.

(F(A) = Yis the class of all sets whose natural ordinal numbers F~'(y) determine the
ordinal place of a dyadic digit 1, if A is taken for a dyadic infinite digital image). of
course, the term F(A) is normal.

Conversely, to every given class Y, we can form the unique dyadic integer A such
that Y = F(A); namely, we set A(¢) = 1 <> F'¢ € Y. Thus we can write A = F~'(Y) in
this sense, introducing F~'(Y) as a further normal term.

Now, suppose A4 = A, is a given finite dyadic integer. Then

yeF(A) = A(F ' (y)=1.
The right side of this equivalence means that F''(y) e* o (because & €* o < A,(£) =
= 1). Thus, supposing F'a = x (with an x uniquely determined by o), we observe

yeF(A)<=F (y)e* F ' (x) = a.
We thus conclude that F(A,) = F'a, F7'(x) = Ap-1., for every ordinal a.

Definition 5. (Natural aritmetical operations for classes of Z'V) Put

(i) (Addition.) X (+) Y = Z<> F7(X) + F!(Y) = F7'(2).
(ii) (Multiplication.) X (., Y<>F~'(X).F~(Y) = F'(2).
(;1) (Potentiation of two.) {{0}} = (2), (2)* = Zji'r_l(x’ = F7'(2).

First, in view of the above identity F(4,) = F'x and on account of the (+, ., 2¢))-
isomorphical one-to-one correspondence Corr(., .) between ordinals and finite

dyadic integers, the new operations (+), (-), (2)’ on classes according to (i), (ii), (iii)
respectively are indeed extensions of the operations sub (ii), (iii), (iv) respectively as
formerly introduced in sets.

Second, the operations (+), (-), (2)"” clearly satisfy the axioms sub (r) and (d) of
dyadic arithmetics, since the dyadic integers do so.

Thus (denoting again the dyadic arithmetical operations on classes systematically by
brackets) we easily obtain the desired fundamental equivalence

ze Y= (Y/QPD (=) @) o (Y] =1,
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in other terms
zeY< F l(z)e, FT'(Y).

In fact, setting F~'(Y) = A, then ze Y iff A(F™'(z)) = 1; thus ze Yiff I, g, 4,
where F’y = z; and thus

F'(z)=T,, I'e,A<z€eY.
Thus we have almost completed the proof of Theorems lii and Ilii.

The remaining verifications of the axioms sub (cI) and (s) of dyadic arithmetics for
the already defined “natural” operations (+), (-), (2)*) are now evident; note that €
satisfies the axioms sub B of 2’ and the (cl)-axioms are merely the B-axioms as restated
in terms of the dyadic membership-operation. Likewise the successor-principle (s)
only requires the existence of a function S = ¥ x Vsuch that S'x = F(F~'"(x) + 1);
such a function clearly exists since F < On x Vis a function in 2’.

(VI) A more direct description of the natural ordering and of the natural arith-
metical operations on classes of X'. The given characterization of dyadic arithmetical
operations on classes serving to represent the primitive membership-predicate as an
arithmetical dyadic membership-predicate (though performed in set-theoretical terms
of 2') is quite complicated; a more direct description may be desirable.

This is not difficult to give if we translate into € (in sets) the description of <, +, .,
2¢) (given directly in terms of €* in ordinals). We do not go into obvious details — and
state the results of the mentioned translation already in terms of €.

First, the natural ordering (<) of sets of 2’: Following the above F and considering
the characterization of the ordering-relation < for ordinals by means of their dyadic
form, we can characterize (<) thus:

Set <, = 0. Let <, be defined in such a manner that <, = t'o x t'o and that <,
orders the type t'a. Then define <, thus:

a) X <p4+1 Y < x <,y in the case {xyYera x r'a.

b) Put u <.+ v<>max ((u = v) U (v =~ u)) e v in the opposite case (denoting by
daf =2,
max () the greatest element of the set y as ordered by means of <,).

<a

Clearly <+ is irreflexive and trichotomic; the transitivity of <, follows from
the transitivity of <, by a not difficult inductive argument. Clearly <, < <,;;. Thus

we can form < = {J <, as a (well) ordering relation of the universal class V. On
aeOn

account of the above isomorphism F (between ordinals and sets, with respect to €*
and €) we easily conclude that < = (<).

Now, in order to give a direct definition of the natural addition, multiplication and
potentiation of two for classes (by means of recursions in the sense of the natural well
ordering < of sets already introduced directly), we need the following notations:
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To any given ) define the class <y and y> bysettingxe sy py <X x,xey> <«

dar dr
< x =< y with the normal terms <y and y» . Clearly y» is always a set, <y is
df

always a proper class.
Let X be any class, y a given set. Denote by X, the set-sum of all the “intervals™ as
sets of the form ( <y) n (z» ) that arc subclasses of X. (More precisely, define

velU,<3z{(v=(<y)n(z> ) & (v € X))
dr

and set X, = S(U,) with y as a “parameter” (S(A4) is the sum-class of A).

Remark. X, = 0 if not y € X; otherwise {y} = X, =+ 0.

Define a further (normal) mapping predicate denoting by Z = Max(X) the unique y
maximal in X is the sense of < — if such a y exists — and putting Max(X) = Vin the
opposite case.

Remark. By the preliminary argument of the proof of lemma 19 above, we observe
that Max(X) = V iffeither X = 0 or X is a proper class.

(Otherwise, the required y as a maximal element of the set x = X exists in X', by
(C1). We write p* = p = {Max(y)}.

Definition 5. (The dyadic addition of classes.)

(5a) Define first the dyadic addition of sets as follows:

(i) 9® x = x® 0 = x for every x.

(i) x @ {z} = ((x v {z}) = x.) U {(Max(x.))'}
for every x and z, writing ¢’ the successor of « in < and with V' = V.

For the general case of y = y* U {Max{y)} in x @ y, by induction (in the sense of
<) put

(iii) x ® (y* U {Max(y)}) = (x ® y*) ® {Max(y)}.

Remark. The formally correct but less intuitive reformulation of this inductive
definition may be omitted. Note that x ® {z} = x u {z} ifl 71(z € x), by definition
Sofii). We shall use the fact that y* < y as a consequence of (iii) of lemma 19. Ana-
logously later in definitions 6, 7. It is not difficult to prove x @ y = x (+) y (by means
of the above F).

In order to extend @ to classes in general, let us abbreviate uy = (X x {1}) U
V) ((;X) X {0}), forming iy as the so-called characteristic function of the class X
(defined on V and mapping into {01}).

Remark. Conversely, if u is a function from Vinto {01} then clearly u = uy, where
the unique X = u~'"{1}. (Of course, X need not be a proper class.)

Further, with every class Y we can associate the class of characteristic functions p, of

their elements x € Y and we can try to define the “limit” characteristic function of this
class of characteristic functions (if it exists).

81



More precisely, to every class Y and to every u € V' let us define the normal term
(lim p,) (u) thus
xeY

(lim p)) () = 0 <> IxVy(y e Y& x Zu= pfu) = 0),
ar

xeY

(lin} t) (u) = 1 4:: IVy(ye Y& x Su= pfu) = 1),
X€

(lim ) (u) = 2 <> 1P & 19, ,
xeY a

where @, ¢, abbreviate the first and second conditions respectively on the above left

sides, i.e. we also define (lim p,)(u) if neither of these disjoint conditions is satisfied.
xeY

In this way, for every Y, we have defined a function, say lim g, from Vinto {012} (on
xeY
account of M5 of [G]). Finally, introduce an auxiliary class Uy, to any given

classes X, Y thus
zeUxpy< 3x3p(z = (X n(x2 )@ (Y (3,2 ) -
(S_ﬁ) Now, the dyadic addition for classes can be defined as follows
X@Y=(lim p) {1}

zeUx®y

i.e. as the class of counterimages of 1 of the mapping lim pu..
yeUx®y

Remark. It is not difficult to see that X @ Y of (5P) indeed generalizes x @ y of
(%c). On the other hand, in our definition of X @ Y, we take proper classes for “limits”
of sets in generalizing the sense in which proper Hensel’s dyadic integers appear as
dyadic limits of naturals. Likewise for the multiplication and for the potentiation of
(2). 1t is not difficult to prove that X @ Y = X (+) Y again.

Having defined the dyadic addition of classes, let us define their multiplication.
Definition 6. (Dyadic multiplication of classes.)
(60) The dyadic multiplication of sets:
(i) xO0 =00 x = 0 for every x.
(it) {x} © {y} = {x ® y} for every x, y.
(ii)) Assume x = x* U {Max(x)}.

As the inductive assumption (in the sense of <), let x* O {y} be defined. Then put
x O {y} = (x* O {y}) ® ({Max(x)} O {y}) (on account of (ii) above).

(iv) Assume y = y* U {Max(y)} and, as the inductive assumption, let {x} O y*
already be defined. Then put

{3 Oy = (i} 0y @ ({x} © {Max(y)))

(on account of (ii) above).
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(v) In the most general case, assume x = x* U {Max(x)}, y = y* U {Max(y)}.
Let x* O y*, {Max(x)} © y*, x* O {Max(y)} all be defined, as the inductive assump-
tion. Then put

YO = (+* 019 ® (Max() O %) ® (x* O (Max(1)}) ®
® ({Max(x)} O {Max(y)})
using( (i), (iii), (iv)).

(6B) Now, define the dyadic multiplication of classes. Analogously to (58), intro-
duce the auxiliary class Uy thus:

ze€Uyox <= 3x 3y (z = (X N (x;2 ) O(Yn (y12)))
df

and then put
XCY=(lim ) "{1}.
zeUxQOy

We can again prove X O Y = X (.) Y.

Definition 7. (Potentiation of (2).) Set (2)* = {X} (= {XX}) for every class X, with
regard to the definitions 3.1 and 3.11 of [G]. Therefore (2)* is the singleton {x} iff
X =x; and (2)* = 0 iff X is a proper class; therefore {0} = (2)° = (1), {{0}} =
- Q) = ).

Clearly again this is the former potentiation of two (of def 5iii).

4.3. The proof of 1Ii. Let us recall our last task: Suppose the dyadic membership-
predicate €, as given by the primitive dyadic operations +, -, 2. Then (according
to the theorem proved i), €* satisfies the axioms of X’ (of sec. 2), together with
the notions

M (X)<=2¥ +0, Cls(Y)<=Y=1Y.
ar ar

Following the above proof of both theorems lii and lii, we can introduce three new
dyadic operations, say 1, ;, %('), on our (abstract) dyadic integers, defining them in
terms of €, (instead of in terms of e), as in the proof of Ii; moreover, according to 11ii,
the dyadic membership-predicate €, is reproduced by the new (undenoted) dyadic
membership-predicate as determined by the new operations 1, 5, z") (using the
known formula).

The question is whether also the 1’ is the same as the +, the ; is the same as the .
and whether Z. = 2 and .Z_(') is the same as 20,

In view of the familiar basic Peanian recursions, this question is answered in the
affirmative if we can prove (1) g = 0 (the new zero equals to the old zero); (2) Vx(x j:
£ 1= x + 1) (the new successor is the old one).

Since (1) is clear by the reproduction-theorem 1Ilii, there remains to prove (2), i.e.
to prove that the successor in the sense of the given ordering predicate < is the same
as the successor in the new sense of, say <.
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It is difficult to imagine another method for proving the identity (2) than the “in-
duction™, whether according to < or according to <,; (for futher comments as to the
induction in dyadic aritmetics, cf. section 5). But in order to prove this identity by
“induction” in the sense of the dyadic €., we must know that the term x + 1 gives
the values of a true “function” of x in the sense of the dyadic membership-predicate &,,.
And precisely this is warranted by the successor-principle (s). (Note that the new order-
ing <, as given by the equivalence X <, V<=2 "’ ¥ 4 0,isin fact a “relation’ in the
sense of e,, whereas the old < seems to be a ngcn predicate only, with respect to €,;
i.e. < seems not to be definable in terms of the predicate e, alone, thus a fortiori
< seems not to be necessarily representable by an infinite dyadic integer as a ““class”
(i.e. by a “relation”), in the sense of the dyadic membership-predicate €. Therefore
we see no possibility of proving that the new and the old ordering of finite (abstract)
dyadic integers are identical without using some further principle, e.g. (s).)

Thus assume the successor-principle (s) and let us prove (2) by induction {following
<)

First, note that clearly 0 ;- | = 0 + 1 = 1. Therefore our identity is true for x = 0:
it remains to prove it for x # 0.

To this purpose, we apply the reproduction-theorem l1lii to the dyadic membership-
predicate €,, according to the above theorem li.

Applying these two theorems in our particular case of €,, we first observe that 2

= 2 = {{0},}+ Second, we see that =2 = {x}« (i.e. the “singletons” in the

old dyadic-membership sense, and in the new dyadic-membership sense, are formed
with the same result).

This noted, assume y [ 1 =y + 1 by induction. Then {y [ I}, = {y + 1},
ie. 221 = 2T = 2”“ = 2"+ 2. Thus also 2*} 2" +2” =242 +

+ 27+ 2% Therefore
DT _ i DIl (2y ;i— zy) ;- (2y i— 2y) - (2y + 2y) + (zy + 2y) = QU+ h+1
Thus {(y + 1) f 1} ={(y+1)+1} and finally (y+1)F1=(+1)+1,
gq.e.d.

Since the remaining statements used to prove that the new |, ;, %"’ resp. are also
the same as the old +, -, 2 resp. in “classes™ (i.e. in infinite (abstract) dyadic inte-
gers) now are obvious (in view of the above considerations; cf. (v) of the above 4.2),

hence also the remaining first half I1i of our reproduction-theorem may be seen to be
proved; thus the proofs of our two main theorems are complete.

5. CONCLUDING REMARKS AND SOME OPEN PROBLEMS

(I) Dyadic arithmetics and the axiom of infinity. We have shown that the axio-
matic theory of finite sets and their classes (of Bernays-Godel) is nothing but
axiomatic dyadic arithmetic, where the so-called finite dyadic integers are sets,
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general dyadic integers (in the sense of Hensel) are classes. Thus the rcal nature of the
axiomatic membership-predicate is an arithmetical one, if we assume the axiom of
finiteness.

A natural question arises, whether our arithmetical approach applies to the general
axiomatic set-theory (of Bernays-Gadel, with the axiom of inﬁnity).

In an immediate sense, this question already has been answered in the negative, by
the above proof of 1i. Indeed, the “class” axioms sub (cl) of dyadic arithmetic just
ensure the axiom of finiteness for the dyadic membership-predicate, on account of the
strong arithmetical properties of +, -, 2¢; the root of the above verification of the
C-axioms springs from the basic property of the dyadic valuation (as yielding the
“lowest element” in every “nonvoid class”, in an arithmetically cffective way).
Whether an appropriate weakening of this property (of dyadic valuation) would be
consistent with the axiom of infinity for the dyadic membership-predicate or not, still
remains an open question. Another possibility of connecting the dyadic membership-
predicate with the axiom of infinity perhaps is in trying to partialize (i.e. to relativize)
the dyadic membership-relation in a suitable “very nonnormal” concrete dyadic
arithmetic (constructed in the theory of Bernays-Gddel), so as to obtain a model with
the axiom of infinity satisfied.

In this connection, a further note perhaps may be of interest: If the successor prin-
ciple (s) is not assumed (in the axioms of dyadic arithmetic), then the corresponding
dyadic membership-predicate €., .) in general seems to behave very curiously with
respect to the ordering-predicate < of the dyadic arithmetic. The first half ITi of our
reproduction theorem then perhaps need not hold (cf. its proof in 4.3) and it seems to
be well possible that a “set”, though “finite”, has no greatest (in the sense of <)
“element”. (This is in accordance with the possibility that the ordering predicate <
need not be given by a “class” (i.e. by a “relation”) in the sense of the dyadic
membership €,, i.e. there is no contradiction with the axiom of finiteness).

Another question connected with these possibilities is noteworthy: The question of
the so-called logarithmicity of dyadic arithmetics. (The “greatest element” of an
abstract finite dyadic integer — in the sense of the dyadic membership — is nothing
but the (abstract) integral part of the dyadic logarithm of that integer; a dyadic
arithmetic is called logarithmic if every finite dyadic integer possesses such an arithme-
tical dyadic logarithm.) The successor-principle entails logarithmicity, but I do not
know whether the converse is true. The successor-principle further implies that
x <, y=x <y, whereas the assumption of logarithmicity only ensures x =, y =
= x < 2y (¢f. [1T]).

One problem more may be noted. It is natural to ask whether a dyadic domain (or
perhaps what kind of dyadic domain) can be enlarged so as to fulfill the (cl)-axiom (or
also the (s)-axiom) of dyadic arithmetic (this is meant, of course, in the sense of a
set-theoretical realization — and then this question is a particular interesting problem
of the General Theory of Valuation (of algebraical fields)).
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Further investigations and experiences with various nonnormal models of dyadic
arithmetics may clarify the situation.

(IT) Peanian arithmetic vs. dyadic arithmetic; induction in dyadic arithmetic.
Peanian arithmetic (as a basic theory of the successor-predicate, with the inductive
scheme) stans in the same relation to the (finitely axiomatized) dyadic arithmetic
exactly as the Zermelo-Fraenkel axiomatic set theory to the theory of v. Neumann-
Bernays-Gdodel.

In the (formalized) Peanian arithmetic, one does not intend to give an implicit
axiomatic definition of the notion of naturals, but on the contrary, one assumes (in
the metatheory) the absolute naturals as intuitively clear and one gives rules only how
to define and perform proofs in a recursive (finitary) manner. (In the Zermelo-
Fraenkel system, one likewise does not intend to give an implicit definition of the
membership-predicate, but one only gives rules, how to define sets, by means of a
metalanguage involving absolute naturals.) On the other hand, both dyadic arithme-
tic and the Bernays-Godel theory of sets and their classes need no special assumptions
for the corresponding metalanguage — and, moreover, they do not require any meta-
mathematics at all; the price of this “strict finitism’ in the metatheory is the admission
of certain infinite ideal objects (infinite dyadic integers and proper classes respectively).
as forming a closure of the system. Thus the formerly logical objects (statements and
concepts) become purely mathematical objects — a situation we often encounter in the
evolution of mathematics. We do not intend to apologize dyadic arithmetic, but
rather wish to emphasize a certain incomparability of Peanian arithmetic with dyadic
arithmetic. Despite the fact that every particular arithmetical (Peanian)statement (pri-
mitive recursive definition or argument) can be imitated, word for word, in dyadic
arithmetic with the successor-principle (for the concrete predicates in question are
represented by suitable infinite dyadic integers as “classes’™, in the sense of the dyadic
membership), dyadic arithmetic cannot besaid to be stronger than Peanian arithmetic.
This could be stated only if we strengthen dyadic arithmetic by assuming the presence
of absolute naturals in the metamathematics of dyadic aritmetic; but, disregarding
other difficulties, this would be contrary to our proper intention.

On the other side, of course, Peanian arithmetic cannot be said to be stronger than
dyadic arithmetic, for the notion of infinite dyadic integers (of a“proper class™ in the
sense of the dyadic membership) cannot be defined by means of the only primitive
notion of successor in Peanian arithmetic.

Concerning induction in dyadic arithmetic, we have to distinguish between dyadic
arithmetic with and without the successor-principle. The latter are considerably poorer
in this respect, for we can only perform inductive arguments involving exclusively
predicates represented by “classes” in the sense of the dyadic membership (there e.g.
even addition is not representable in this sense). The former, however (as has been
mentioned) practically yield the same as usual Peanian arithmetic; it is, in fact, the
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theory of finite sets and their classes (of Bernays—GtSdel). In dyadic arithmetic, inducti-
ve arguments (and deﬁnitions) rather resemble the original ““naive’” Peanian manner
(in the sense of e.g. E. LANDAU: Grundlagen der Analysis, Leipzig 1930).
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Pe3rome

O TEJENEBCKOM AKCUOMATUYECKOIW TEOPUU MHOXECTB, III

(Akcuostamuueckan ouaduyeckas apugMemuKka KOHeuIblX MHONCECME
U UX KAACcog)

JJAOUCJIAB PUTEP (Ladislav Rieger), TIpara

AxcuomMaTuveckas Juaanyeckas apiuMeTura KOHEUHBIX MHOXECTB U MX KJIacCOB
— 3T0 (B JIOTMYECKOM CMBICJIE DJIEMEHTAPHAS) TEOPHS LEJIbIX JUaaHUecKuX (p-aau-
yeckux, s p = 2) uncen I'encens (Hensel), koTopast ocHoBaHa Ha 28 akcHOMAX,
KacalolMXCsl CIOXKEHUSI, YMHOXEHHSI U BO3BEICHUS YHCIIA 2 B CTENeHb (KAK OCHOBHBIX
MOHSATHI).
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OCHOBHBIM PE3yJIbTATOM CTaTLU SIBJISICTCS JI0KA3aTEJIbCTBO MOJIHOM IKBHBAJICHT-
HOCTH YMOMSIHYTBIX 28 aKCHOM U cHCTeMbl 19 akCMOM TEOpHIi KOHEYHBIX MHOXECTB
Bepuaucs-Teaens n3 [G], Ho rae akcuoma Geckoueanoctu Cl 3aMeHsETCS aKCHO-
Moit non Cl (koneunoctu) — cM. Teopemst li, Lii, I1i, Ilii.

[Tpu atom kyacest Y, Z, ... NOSABISIIOTCS B KAUYCCTBE HEABIX IHAJUYECKUX YHCEJT
BOOOILIIE, MHOXECTBA X, ), ... B KaYeCTBE HEOTPUUATENbHBIX LiEJIBIX YUCENl, U OTHO-
LICHHE MPHHAUIEXKHOCTH onpeacssercs popmyioii

xeY < [Y/25]—2y/2*" ] =1,

rjae [Y/2¥] — uenas 4acThb OHaAM4ecKoro uucia Y /2%,

Pabora siBjsieTcss HE3aBUCUMBIM NpoaoinpkeHneM paborsi [I1] (mox Tem xe Ha3Ba-
HUEM, B TOM Xe xypHasue, 84 (1959), 1—49).
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