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Чехословацкий математический журнал, т. 14 (90) 1965, Прага 

CONTINUOUS ADDITIVE MAPPINGS 

JAROSLAV HOLEC and JAN MAftfK, Praha 

(Received January 16, 1964) 

Let Z be a Boolean ring and (3 an Abelian group. Suppose that a con
vergence on Z and a convergence on & with certain properties are given and 
let jbihQ a. continuous additive mapping of a suitable set M c: Z into (̂ . We 
construct a set B, contained in the closure of M, and a continuous additive 
mapping ß of В into @ that coincides with ju on В n M. The results enable 
us in a further paper to extend the mapping ju. 

1. Let M, N be non-empty sets. A mapping of N into M will sometimes be denoted 
by the symbol {x„}„^j^ or simply {x„}, where x„ is the image of n in the mapping under 
study. Let 53 be the set of all mappings of iV into M and let a subset Ж of the Cartesian 
product 2} X M be given. Instead of [{x„}, x] e Ä we usually write x„ -> x; the 
set M is called a convergence (with support N). In the sequel, we often define directly 
the meaning of the symbol x„-^ x; the corresponding set M is thee, of course, the set 
of all pairs [{x„}, x] such that x„ -> x. 

A set F с M is called closed (with respect to the given convergence), if the 
implication (x„ e F, x„ -> x) => (x e F) is valid. It is easy to see that the intersection 
of an arbitrary class of closed sets is closed and that the set M is closed. For each 
P cz M there exists, therefore, the smallest closed set, containing P; this set will be 
denoted by uP. Evidently, a set Q is closed if and only if б = "Ô-

Let jR be a further non-empty set and let Ä* be a convergence on R with support N. 
For [{r„}„gjv, r] G<t* we shall write r„ -> r again; there is no danger of misunderstan
ding. If Ç) is a mapping of a set P с M into R such that the relations x„eP (neN)^ 
X G P, x„ -> X imply (p{x„). -> (p{x), we say that cp is continuous (with respect to the 
given convergences). 

2. An algebraical ring Y is called a Boolean ring, if yy = y for each y e Y. (We 
don't suppose that У has a unit.) The zero of 7 will be denoted by 0. 

Let У be a Boolean ring. If x, j ; G У, we have x + y = (x + y)(x + y) = 
X + xy + jx + y so that xy + yx = 0; if we put y = x, we get x 4- x == 0. 
At the same time we see that xy = yx; the ring У is therefore commutative. 

For X, j ; G У we put x v >' = x + у + xy. If P, Q cz У, we denote by P + Q 
the set of all x 4- y, where x G P, у G g; in a similar way we define PQ, P v Q. If P 
consists of only one element x, we write P + ß = x + ß etc. 
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The union, the intersection and the difference of sets 5, F will be denoted by S u F, 
S n Fand S - F respectively. Tf P, ß , R с 7, we write PQ n R = (PQ) n R. 

Remark . Let X be a ring of sets (i.e. a non-empty class of sets that contains with 
every pair of its elements their union and difference). If we put x Л- у = {x — y) KJ 
Kj [y — x), xy = x n у {= X — (x ~ y)) for X, у E X,we see easily that X is a Boolean 
ring. Clearly x ^ у = x v y,' x — у = x -h xy and we have x a у if and only if 
xy = X. 

3. In the whole paper, Z is a Boolean ring, A is its subring and a convergence on Z 
with support Л̂  is defined such that the following conditions are fulfilled: 

1) If x„ -> X, then xx^ = x„, X + x„ e Л (w G N). 
2) If x„ -> X, a G Л, z G Z, xz = 0, then ax„ -> ax, x„ + ax„ -> x + OX, X„ + Z -^ 

- > X + Z. ' '. • 

The next assertion shows how such a convergence can be defined. 

4. Let Y be a Boolean ring and let N be a non-empty set. Let В с Y and let ^ be 
a set whose elements are mappings of N into B. Suppose that {bb„} e ^ , {b„ + bb„} G 
G ^ for each {b„} e ^ and each b G B. Define a convergence on Y in the following 
way: The relation x„ -^ x means that 

(1) XX„ = X„ {ПЕ N) , {X + X j G ^ . 

Then by„ -> by, y„ + by„ -^ y + by, y^ + z -^ y + z, whenever 

(2) y^-^y,bGB,zGY, yz = Q. 

Proof. Let (2) hold. Plainly {y + by) (j„ + by^ = У„ + Ьу„; since у + by + 
+ Уп + Ъуг, = У + Уп-^ b{y + л ) , we have {у Л- by Л- у^Л- by,,} G ^ so that 
Уп + ^У« -> у + by. The relations by^ -^ by, y„ + z -^ у -{- z can be proved 
similarly. 

5. Throughout the paper, ® is an Abelian group (its zero will be denoted by 0 
again) and a convergence on @ with support N is defined such that the following 
implications hold: 

3) (a„ -^a, ß,^ ß)=>{^n -ßn-^a-ß); 

4) (a„ -> a, a„ = ö(ne N)) => a = 0. 

If a„ -> a, ^„ -> î , then a„ + /?„ = a, - ((/̂ „ - Д )̂ - Д„) -> a - (0 - î ) = a + ^. 
If (p, ф are continuous mappings of a set Q c: Z into @, then the mappings cp + ф, 
(p — Ф are continuous as well. 

A mapping (p of a set g c= Z into @ fulfilling the relation 

(3) (^ e ß , y G e , X + > G Q, xy = 0)=> {ф + y) = (p{x) + (p{y)) 

is called additive. 
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6. Let all assumptions of 4. [and 5.) be valid and let the convergence on ® fulfil 
the condition 

(a„ = cL{neN))=> (a„ -> a) . 

Suppose^ further, that Q a Y, Q + Q <^ Q and let (p be an additive mapping 
of Q into ® such that the relations y ^ Q, {/?„} G ^ , /i„ G Q , yh^ = h„ (n e JV) imply 
(p{hj^ -> 0. T/ïe/î Ф 15 continuous. 

Proof. Assume that y„e Q, y G Q, y„-> y and put h„ = y„ + v. Then {h„} e ^ , 
^« e Ô. УК = h„, so that by hypothesis (p{h^) -^ 0. Since y„h„ = y^ + j„ = 0, 
Jn + ^n = >̂ . we have ф) = ф„) 4- (p{h„), whence ф(у„) -> ф). 

R e m a r k . In the papers [1] and [2], Z is the class of all measurable sets and A is 
the class of all bounded sets with finite perimeter in the r-dimensional Euclidean 
space; @ is the additive group of all real numbers. (Of course, ab is the intersection 
a n b and a -\- b the symmetrical difference (a — b) u (b — a) of sets a, b G Z.) The 
convergence on @ is defined in the usual way; the convergence on Z is defined in 
two different manners. 

7. / / x„ -» X G Z, a G A, then x„ v a -^ x v a. 

Proof. Put y„ = x„ + ax„, y = X + ax. Then y„ -^ y, ay = 0, so that x„ v a = 
— Уп^га-^у-^а — x\fa. 

8. The sets A,Z — A are closed. 

(The proof may be left to the reader.) 

9. For each P cz Z w^ have A n uP = u(^A n P). 

Proof. Put F = (Z — A) и и(Л n P) and suppose that x„ G F, x^ -> x. If x G 
G Z — v4, then, clearly, XG F; if x G Л, then x„ = x + (x + x„) G Л, whence x„ G 
G и(Л n P), X G u(y4 n p), X G F. We see that и F = F. Since P cz F, we have uP Œ F; 
therefore Л п и Р с Л п Р с : и(Л n P). Evidently и(Л n P) с: иЛ n uP so that, 
by 8, u{A n P) cz An uP. 

10. If P cz A, Q Œ Z, then P uQ cz u{PQ), P v uQ cz u{P v g ) . 

Proof. Choose an x G P and construct the set F of all y with xy G ci(Pg). Evidently 
ß cz F. If j„ G F, ŷ j -^ y, we have xy„ G "(Pß) , xy„ -^ xy G U(PQ), whence y G F . It 
follows that uQ cz uF = F,P uQ cz u(PQ). The assertion 7 yields similarly the second 
inclusion. 

11. If aGA, ap cz P c: Z, /̂геп aA n uP Œ u{aA n P). 

Proof. Put Ô = v4 n P and choose an XG aA n uP. We have XG A nuP == uQ 
(see 9), whence x = ax G a ug cz u{aQ) (see 10); clearly aQ a aA n P. 

12. / / P, Ô CI 4^ /̂ĵ ĵ  uP u g c- u(PÔ), uP V u g cz u{P v g) . 
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Proof. Put Qi = uß . From 10 we infer that P ß i cz u(PQ), whence u{PQ^) cz 
c= u(PQ); according to 8 we get ß i cz Л and so, by 10, ß i f P cz u(ßiP). It follows 
that uP uQ cz u(Pß). The second inclusion can be proved similarly. 

13. Suppose that P, Q cz Z, P + P cz P, PQ cz Q cz P and that y^ + У2 e ß 
whenever y^, У2 e ß , У1У2 = 0. Then Q + Q cz Q. 

Proof. Let xi , X2 e Q; put j ^ = x, + x^x^. Then x,X2 ePQczP, y^eP, y^ = 
= ^r>'i ^PQ ^ Q, У1У2 = 0 and so Xi + X2 = J i + 3̂2 e ß-

14. / / D /s an ideal in A, then uD is an ideal in A as well. 

Proof. By 8 we have uD cz A and from 10 we get AuD cz u(AD) cz uD. If 
УиУ2^"^» У1У2 = 0, then, by 12, y^ -^ У2 = У1 "^ У2^"(^ v D) cz uD and on 
account of 13 (where we put P = Л, ß = uD) we obtain uD + uD cz uD. 

15. Let Q,R<=^Z,Qcz uR. Let the relations x G ß , ye uR, x + y E A, xy = y 
imply that y e Q and let cp be such a continuous mapping of Q into @ that (p{x) = 0 
for each x e Q n R. Then (p{x) = 0 for each xe Q. 

Proof. Put T = {tEQ; (p{t) - 0}, P = T u ( u P - ß ) . Suppose that x„eF, 
x,j -> X. If xG Z ~ Q, then evidently XGUR — Q cz F. Let now xe Q. Since x„ G UP , 
X + Xj,eA, xx„ = x„, we have, by assumption, x „ G ß , whence x„ G T, (p{x„) = 0, 
(^(x„) -> (p(x) and so (p(x) = 0, X G T cz P. Thus we get uF = F. From Q n R cz T 
we deduce that P cz p ; as ß cz uR, we obtain ß cz P and, consequently, Q cz T 

16. Suppose that R, С cz Z, AR a R, AC a C, b e A n uR, bA n R cz С Let cp 
be a continuous mapping of bA into @ and let ф be a continuous mapping of С 
into @. //(p{x) = \l/(x)for each xe bA r\ R, then ф(х) = \l/(x)for each xe bA гл C. 

Proof. Put Q = bA n С We have ß cz Ы cz Л uP and, according to 10, 
AuR cz u{AR); hence ß cz u(AR) cz uR. Further, QA cz bA n CA cz Q cz A; the 
relations x G ß , x -\- y e A, xy = y imply therefore that y = x + (x + y) G Л, 
y = xy e QA cz ß . Now we apply 15. 

17. In 18 — 23, M is such a subring of Z that AM cz M and /г is a continuous 
additive mapping of M into @. 

R e m a r k . In 19, we shall construct a set В such that Л n M cz P с Л and a map
ping /i of P into ©which coincides with fion A n M. Let n o w / b e a function defined 
on some subset of the r-dimensional Euchdean space E/, let M be the class of all 
sets m cz E^ such that the Lebesgue integral ^u(m) o f / over m converges and let 
A, Z, @ have the same meaning as in the remark in 6. Then for b e В — M the 
number ß[b) is a certain improper integral of/ over b (see [1]). 

18. The sets A n M, A n uM are ideals in A, 

Proof. The set D = У4 n M is clearly a ring; since AD cz AA n AM cz A n M, 
D is an ideal in A. By 9, A n uM == uD and, on account of 14, uD is an ideal in A 
as well. 
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19. Let В be the set of all Ь G Л n и M with the following property: There exists 
a continuous mapping cp of bA into ® that coincides with ju on bA n M. According 
to 16, where we write R = M, С = bA, cp is determined by this condition in a unique 
way. We may therefore define a mapping ß oî В into @ by means of the relation 
ß{b) = (p{b), where (p has the mentioned property. 

20. We have A n M cz В cz A and ß(b) = ii(b) for each be A n M. 

Proof. If Ь G Л n M, then bA a MA a M and we may choose (p(x) = /л{х) (x G 
G bA), 

R e m a r k 1. We have A n M = В n M and the equahty ß(b) = ß(b) holds when
ever both sides have a meaning. 

R e m a r k 2. If M с A, then ß is an extension of/i. 

21. Suppose that AR cz R a M, b G A n uR. Let (p be a continuous mapping 
of bA into @ that coincides with pi on bA n R. Then b E В and ß{b) = ф(Ь). 

Proof. According to 16, where we write С = M, (p coincides with /n on bA n M. 

22. The set В is an ideal in A; the mapping ß is continuous and additive. 

Proof. Choose a G A, b e В and take the mapping cp of 19. Clearly ab G A, ab A a 
cz bA and, by 10, ab e A uM a u[AM) cz uM. Hence it follows easily that ab e В 
and 

(4) ß{ab) = (p{ab) . 

First of all we obtain 

(5) AB a B. 

If, further, b„ -^ b, then b„ G A, b„ = b„b and, by (4), j5(b„) = cp{b,^ -^ (p{b) = ß{b). 
This proves the continuity of ß. 

Take now b^, bz^ В with b^bz = 0. By 18, A n uM is an ideal in A and so b^ + 
+ bz^An uM. For each xe{b^ + bz) A put ф(х) = ß{bix) + ß{b2x). The 
mapping ф is evidently continuous. If xG( (b i + bz) A) n M, then bixe A n M; it 
follows from 20 and from the additivity of // that ф^х) = fi{bix) + fiÇbzx) = 
= //((bi + bz) x) = fi{x). Thus we get b^ Л- bz^B, ß{bi + bz) = Щ^ + bz) = 
= ß{b^ + ß{b2y According to (5) and 13 (where Ve write P = A, Q = B\ В is an 
ideal in A. 

23. A n {Z{B + M)) = Б. 

Proof. Suppose that aeA, zeZ, bGB, теМ and that a = z{b + m). If we 
put bj = ab, m^ = am, we have a = a{b + m) = b^ + m^, b^e В cz A, m^e M; 
since mi = a + b^ G Л, we have, by 20, mi G Л n M cz Б, a = foi + miG В. It 
follows that Б c= Л n (2(Б + M)) с Б. 
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24. Let W be the set of all mappings ф with the following properties: 

a) \l/ maps a subring M(i/^) of Z into @ and AM{\IJ) C= M(IA); 
b) i/̂  is continuous and additive. 

Now we attach to each i/̂  G ^ a set Б((Д) and a mapping jö(i/̂ ) in the same way 
as we attached the set В and the mapping î  to /i in 19. Using this notation we have, 
of course, ß = ß{fi), M = М{ц), В = Б(/|) = M{ß{ß)); according to 22, ß{il/) E W 
for each xj/ e W. For x e В{ф) we write {ß{il/)) (x) = ß{\l/, x). 

If we say that a certain relation is vahd, we understand, of course, that all expressions 
in this relation are meaningful. If we write, e.g., ß(il/, x) = 0, we assert at the same 
time that ij/eW, xe В{\1/), 

If CO is a mapping of ® into @ and if a G @, we write œa instead of co(a). If, moreover, 
С is a mapping of an arbitrary set У into @, then coC denotes the corresponding com
posed mapping (i.e. (œC) {x) = coC(x) for each, x e Y). 

25. Suppose that xj/, ф^, i/̂ 2 e »F, Ь G 5(<AI) ^ B{il/2) ^^d that ф{х) = JAI(X) + i^2(^) 
for each ХЕЬАП М(\1/^) n M(i/̂ 2)- Then ß{il/, b) = ß{^u Щ + ß{^2. Ь). 

Proof. Put R = bAn M{\1/^) n Mill/2)^ P.=:bÄn М{ф,) {i = 1, 2). Evidently 
APi a Pi c: A, whence Р^Рз ^ ^1 n P2 = R. It follows from 12 that 

(6) uP^ n UP2 с üPi UP2 с: u(PiP2) cz uR. 

According to 11, we have b e bA n ü(M(iAf)) с uPi (/ = 1, 2) so that, by (6), b G U P . 
For each xe bA put (p(x) = i5(i^i, x) + ß{^2^ ^)- The mapping cp is continuous and 
for each XE R, by assumption, (p[x) = lAi(x) + 'A2W = Ф{^)' From 21 we infer 
that b G P(i/^) and ß{ф, b) = Ф) = ß{ф,, b) + ß(ф2. b). 

26. Let œ be a continuous homomorphism of @ into @. Suppose that i, ф EW, 
b E В{ф) and that x{^) = соф{х) for each x E bA n М{ф). Then ß{x, b) = coß{ф, b). 

Proof. Put R = bA n М{ф) and define (p{x) = œß{ф, x) for each x E bA. Then cp 
is continuous and, by assumption, (p{x) = соф(х) = x{^) f^r each x E R . On account 
of 11, Ь G ЬЛ n и(^М{ф)) cz uR and, according to 21, where we write ^ = x, we have 
ß{x, b) = cp{b) = œß{ф, b). 

27. Let œbe a continuous automorphism of® such that the inverse mapping œ~^ 
is continuous as well Suppose that х,ф eW and that x{^) = OJф(x)for each ХЕАП 
n М{ф). Then В{ф) = B{x) n и{М{ф)У 

Proof. According to 26 we have В{ф) с В{х); clearly В{ф) с: и{М{ф)). Choose 
now а Ь G В{х) Г) и{М{ф]) and for each ХЕЬА define (р{^) = co'~^ß{x, x). Then cp is 
continuous and (p{x) = o)~^x{^) = Ф{х) for each x G bA n М{ф\ so that b E В{ф). 

28. ифеЧ^. then ß{ß{Ф)). = ß{ф). 

Proof. If we put x = ß{Ф\ we have B{x) с u(M(x)), M(z) = l̂̂ A) c: и(М(«А)) 
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and so B(X) ^ ^{^{Ф))- Now we apply 26 and 27 (where we put œoc = a for each 

29. L f̂ œ be a continuous automorphism o/@ SWC/Ï that the inverse mapping a)~^ 
is continuous as well. Then ß{coil/) = ojß[\j/) for each ф еЧ^. 

Proof. Apply 26 and 27. 
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Резюме 

НЕПРЕРЫВНЫЕ АДДИТИВНЫЕ ОТОБРАЖЕНИЯ 

ЯРОСЛАВ ХОЛЕЦ (Jaroslav Holec) и ЯН МАРЖИК (Jan Mafik), Прага 

Пусть Z — КОЛЬЦО Буля, Ä — под кольцо Z и @ — абелева группа. Предполо
жим, что на @ и на Z определена сходимость со следующими свойствами: 

1) Если х„ -^ хе Z, то хх„ = х„, х -\- х„е Ä для всякого п. 
2) Если х^ -^ XEZ, as А , Z EZ, XZ = О, то ах„ -> ах, х„ + ах„ -> х + ах, 

х„ + z -> X + Z. 
3) Если а^-^ OLE Щ, ß ^ - ^ ße®, то а^ — ß „ - ^ OL — ß . 

4) Если а„ = О для всякого п и а„ -> а, то а = 0. 
Для Р, Q а Z положим PQ = {ху; ХЕ Р, у е Q]. Пусть W — множество всех 

отображений ф, удовлетворяющих следующим условиям: 
а) Область определения М{ф). отображения ф является подкольцом в Z 

и АМ{ф) с М{ф\ ф{М{ф)) cz(^. 
в) Отображение ф непрерывно и аддитивно. 
Каждому ф eW поставим в соответствие отображение ß{ф) Е W, совпадаю

щее с i/̂  на Л п М[ф); M(jß(i//)) содержится в замыкании Р{ф) множества А п 
п М{ф) и если b Е Е(ф) — M{ß{il/)), то ß нельзя продолжить непрерывным 
образом на ЬА. Положим ß{ф,x) = {ß{Ф)) {х) (х Е M{ß{il/))). Если ф, ф^, фг^-^ 
и если i/̂ i(x) + ф2{х) = ф{х) для х е М{ф^ п М{ф2), то ß{фl, х) + ß(^2, х) = 
= ß{^, х) для X G M[ß{^i)) п M{ß{^2))- Эти результаты используются в даль
нейшей работе для продолжения отображений ф EW. 
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