Czechoslovak Mathematical Journal

Vitézslav Novak
On the lexicographic product of ordered sets

Czechoslovak Mathematical Journal, Vol. 15 (1965), No. 2, 270-282

Persistent URL: http://dml.cz/dmlcz/100669

Terms of use:

© Institute of Mathematics AS CR, 1965

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100669
http://dml.cz

Yexoc10BauKHi MaTeMaTHYECKHil KypHai, 1. 15 (90) 1965, Ilpara

ON THE LEXICOGRAPHIC PRODUCT OF ORDERED SETS

VitEzsLAv NovAk, Brno

(Received January 24, 1964)

In this paper there is proved the necessary and sufficient condition for the
lexicographic product of ordered sets over an ordered set to be an ordered
set. The well extension of an ordered set is defined and the necessary and
sufficient condition for the existence of a well extension of an ordered set is
proved. A certain calculation of the dimension of the lexicographic product
of ordered sets is obtained. Especially the dimension of the ordinal product
of ordered sets is determined.

1. THE LEXICOGRAPHIC PRODUCT OF ORDERED SETS

Any set throughout whole this paper is assumed non-empty.card G denotes the
cardinality of a set G. A linearly ordered set is called a chain, a set in which every
two distinct elements are incomparable is called an antichain. If G is a set in which
ordering relations are defined, then by the symbol G(<) the set G together with the
relation < is meant. If the ordering one relation < is defined in G we write G instead
of G(=2). :

Definition 1. Let H be an ordered set, let {G,, | o€ H} be a system of ordered sets.

By the lexicographic product!) [] G, we mean the set of all functions f defined on H
acH

and such that f(«) € G, for every x € H with the relation < defined as follows:
f £ g <if there exists o € H such that f(p) = g(ao) then there exists &; < a in H
such that f(«;) < g(ay).

If all sets G, are equal to the same set G the corresponding lexicographic product
will be called the ordinal power and denoted #G. If fe [[ G,, ge[] G,, f < g but
f <+ g we write f < g. el acH

The relation < in the lexicographic product is in general, however, only reflexive

as it is shown in the following examples. Hence [ ] G, is not generally an ordered set.
acH

Example 1. Let us consider the ordinal power #G where G is a chain of type 2
and H a chain of type o*, ie. G={a,b|a < b}, H= {09, ay, ..., %, ..., [ty >

1y see [3], p. 14.
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>0 > ...>0,>..}. If we define two functions f, g as follows: faz,) = a,
f(a2n+l) = b’ n= 0; 19 2: ---;g(azn) = br g(a2n+1) =da,n = 0’ 1’ 2: LA ] theﬂfe HG,
ge”G, f<g, g < f, but f+g.

Example 2. Let us consider the ordinal power HG where G = {a, b,cla<b,
ale b|c}, H is a chain of type w*, i.e. H = {0g, 0y, ... 0y o.n| 0tg > oy >
> ...>a, >..}. If we define three functions f, g, h as follows: f(as,) = a,
S(#3ns1) = b, fdzpes) =, n=0,1,2,... g(a3,) = b, g(0t3,41) = ¢, 9(23042) = a,
n=012 .. h2,) = c h(os,41) = a, h(3,+5) = b, n =0,1,2,... then fe¥G,
gefG, helG, f<g,g<hbutffh(evenf<g,g <h,f>h).

If we choose H as a well-ordered set, or as an antichain we obtain special cases
of a lexicographic product — the so called ordinal and cardinal product. Let us give
definitions of both these operations.

Definition 2. Let H be a well-ordered set, let {G,|ae H} be a system of ordered sets.

By the ordinal product P G, the set of all functions f defined on H is meant such
acH

that f(a) e G, for every ae H together with the relation < defined as follows:
f < g < there exists «, € H such that f(a) = g(«) for every « < o, whereas f(x,) <
< g(ao)-

If H is a two-point chain, this definition agrees with the Birkhoff’s definition of the
ordinal product of two ordered sets ([ 1], [2]).

Definition 3. Let H be a set, let {Ga | e H} be a system of ordered sets. By the

cardinal product | G, the set of all functions f defined on H is meant such that
acH

f(oc) € G, for every a € H together with the relation < defined as follows:
fsg<efla) £ g(x) forevery axeH.

If all sets G, are equal to the same set G we call the relevant cardinal product by the
cardinal power whose basis is G and exponent the antichain H and denote it GH.

If H is a two-point set, this definition agrees with the Birkhoff’s definition of the
cardinal product of two ordered sets ([1], [2]). In the following it will be shown that
both the ordinal product and the cardinal product of ordered sets are ordered sets.
But it is not difficult to prove directly these statements.

Now we give a necessary and sufficient condition for the lexicographic product of
ordered sets to be an ordered set. For this reason we need the following definition.

Definition 4. Let G be an ordered set. We say that G satisfies the descendig chain
‘condition if for any element x,€G every chain C= {x,>x;>x,>...} in G is finite.

Theorem 1. Let H be an ordered set, let {G, | a € H} be a system of ordered sets.
Then | G, is an ordered set if and only if the set H' = {a|ae H, G, is not an

acH
antichain} satisfies the descending chain condition.
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Proof.?) 1. Let the condition of the theorem be satisfied. We shall prove that the
relation < in [] G, is nonsymmetric®). Hence let fe[[ G,, ge[] G,, f < g and

acH aeH acH
assume that at the same time g < f. Choose any a, € H such that f(ao) = g(2)-
Such an «, exists, since otherwise f = g. Then there exists a; < «, in H such that
f(oy) < g(«;). This implies that G,, is not an antichain. As g < f, there exists
®, < ay in H such that g(a,) < f(«,) and therefore G,, is not an antichain. As
f < g, there exists a3 < «, in H such that f(a;) < g(a;), which implies that G,, is
not an antichain. By induction we can construct an infinite chain C = {o¢; > o, >
> a3 > ...} in H such that G, is not an antichain for every n = 1, 2, .... This is
a contradiction, so that the relation g < f does not hold and < is nonsymmetric.

We shall prove that the relation < is transitive. Let f, g, h e H G,and f<g,9 £ h.
acH

If f = h, then f < h. In the other case there exists &g € H such that f(ao) %+ h(ay)-
Then either f(ag) = g(ay) or g(a,) + h(a,), let us say that f(ay) + g(xo) (the case
g(xo) = h(xy) would be treated in a similar way). As f < g, there exists
a; < oo in H such that f(a;) < g(a,), from this it follows that G,, is not an antichain.
If g(a;) < h(x,), then f(a;) < h(a;). In the other case there exists a, < ay in H
such that g(x,) < h(a,) so that G,, is not an antichain. If f(,) < g(a,), then
S(a;) < h(a,). In the other case there exists ay < o, in H such that f(a3) < g(as);
therefore G,, is not an antichain. This construction must finish after a finite number
of steps since otherwise we should obtain an infinite chain C = {o; > oy > a3 > ...}
in H'. Hence there exists o, < o, such that f(a,) < h(a,) so that f < h. The relation

< is therefore transitive and [ | G, is an ordered set.
acl

2. Letthecondition of thetheorem be notsatisfied. Then there exists an infinite chain
C= {0y >0, >...>a,>..} in H such that G, is not an antichain for every
n=0,1,2,.... For any n = 0,1, ... choose two elements a,€ G,,, b,€G,, such
that a, < b, and define two functions f, g in the following way:

) = a, flonsr) =byy n=0,1,2,..., fla)=x,

for e H — C where x, € G, is any element;

9(a20) = byy g(tze1) = a,, n=0,1,2,..., g(a) = x,
foroe H — C. Then fe[[G,, g €[] G, f < g, g < f so that the relation < is not

acH aeH
nonsymmetric. Hence [] G, is not an ordered set.
aeH
Corollary 1. Let H be an ordered set. Then || G, is an ordered set for any system
acH .
{G, | a € H} of ordered sets if and only if H satisfies the descending chain condition.

2) Another proof can be found in [3]. The definition of the lexicographic product, however,
and hence all other formulations in [3] are dual with respect to our definitions and formulations.

}ie.f<g=g <« ffloranyf,eecllG,
acH
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Corollary 2. Let G, H be ordered sets. Then ¥G is an ordered set if and only if
either H satisfies the descending chain condition or G is an antichain.

Corollary 3. Let H be a well-ordered set, let {G,|a€ H} be a system of ordered
sets. Then P G, is an ordered set.
xcH
Corollary 4. Let H be a set, let {G, | o€ H} be a system of ordered sets. Then
[1 G. is an ordered set.
acH
Theorem 2. Let H(<) be an ordered set, let {G,|xe H} be a system of ordered

sets such that || G, is an ordered set. Then it is possible to define an ordering <
aeH(<)

in H such that H(X) satisfies the descending chain condition and || G, = [] G

acH(<) aeH(=X)
Proof. Denote H; = {«| o€ H, G, is not an antichain}, H, = H — H;. Then
H,( <) satisfies the descending chain condition. Let us define the ordering < in H
in the following way:

I

x,yeH,=x <y ifandonlyif x <y

x, ye H, = x < y if and only if there exists ze H,; such that x <z < y
erl,yeHZ:x(f,y if and only if x 5yy.

First we shall prove that < is an ordering, i.e. it is a nonreflexive and transitive
relation. The nonreflexivity is clear. We shall prove the transitivity. Hence let x, y, z €
eH,x<y,y<z. Ifx,y,ze H;, then x < y, y < z so that x < z and from this
x < z. If x, y,ze H,, then thereexist u,ve Hy suchthat x <u <y, y<v <z
Then x < u < zsothatx < z. If xe H,, ye H,, ze H,, then x < y, y < z so that
x < z. It is not difficult to prove that in all remaining cases there holds x < z.
Hence < is transitive and therefore it is an ordering. Now we shall prove that H(X)
satisfies the descending chain condition. Suppose the existence of an infinite descen-
ding chain in H(X) 1 Xo > Xy > X3 > ... > X, > .... As H((X) = H,(£) satisfies
the descending chain condition, there is x, € H, only for finitely many n and we may
assume x, € H, for every n. As x, < X,, there exists y, € H, such that x; < y, < X,.
As x, < x;, there is y, € H; such that x, < y; < x; and hence y; < y,. By
induction we can construct y, € H, for every n such that x,,; < y, < X, < Vp—1.
Then {y,};% is an infinite descending chain in H,( <) which is a contradiction. It is
lefttoprove [ G, = [] G.. Let f,g€[] G, f<gin [] G, Assume thatf < g
aeH(Z) acH(=<) aeH aeH(<)

in [] G, Henceeither f>gorf|gin [] G, Iff> g, then there exists ao € H

acH(=<) acH(<)
such that f(og) > g(ay) whereas f(x) = g(«) for every a € H(X) for which a < o.
As oy € Hy, there is o < ay<>a < o, so that f(a) = g(«) for every a e H(<) for
which « < a,. Hence the relation f < gin [] G, is impossible and this is a contra-
diction. acH(=)
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If f || g, then two cases are possible: .

1) either there exists o, € H(X) such that f(a) || g(o) whereas f(«) = g() for
every o < o,

2) or there exist a, o, € H(X) such that f(«,) <g(a,), f(a) = g(e) for every a<a;;
S(oz) > g(oz), f(@) = g(a) for every a < a,.
In case 1) we have o < o, @ | 09 = € H, so that f(a)= g(a) or f(a) | g(x) for every

ae H(Z), « < o. Hence the relation f < g in  [[ G, is impossible and this is a
aeH(z)

contradiction. In case 2) there is a, € H; so that « < a,<>a < a,. Hence the rela-

tion f<gin [] G, is again impossible and this is a contradiction. Therefore f< g
aeH(2)

in [] G,
acH(=X)
As the ordering < is the extension®) of the ordering X it is clear that f| g in

[1 G.impliesf || gin [] G,and the proof is completed.

aeH(=) aeH(=)
2. THE WELL EXTENSION OF AN ORDERED SET

Definition 5. Let G(=< ) be an ordered set. An ordered set H( <) is called an extension
of the set G(<)if H = Gand x £ y= x =< y. The ordering < is called an extension
of the ordering <.

Definition 6. An extension =< of ordering < is called a linear extension if <X is
a linear ordering of the set G.

Definition 7. A linear extension =< of ordering < is called a well extension if G
is a well-ordered set with respect to <.

Itis clear that every ordered set G(<) has at least one extension-for instance G(<).
The existence of a linear extension of any ordered set was first proved by E. Szpilrajn-
Marczewski in [13]. Other proofs can be found in [5], [8], [11], [12]. On the other
hand it is clear that not every ordered set has a well extension. If, for instance, G is
a chain of type w*, then G has no well extension. We shall give a necessary and
sufficient condition for the existence of a well extension of an ordered set G.

Theorem 3. Let G be an ordered set. Then G has a well extension if and only if G
satisfies the descending chain condition.

Proof. The necessity of this condition is clear. We shall prove the sufficiency..
Hence let G(g) satisfy the descending chain condition. Denote G, the set of all
minimal elements in G (the mentioned assumption guarantees the existence of -
a minimal element below any element in G). Suppose that we have defined all sets G,

4) See Definition 5.
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for every ordinal 4 < a. Then we define G, in this way: G, = {x|xeG — U G;;

A<a

for every y € G, y < x there is y € U G,}. Denote f the smallest ordinal 4 for which

A<a
G, = 0. Such an ordinal exists for if card G £ N; then G, = 0 for every 1 = w;+-

Then G, = 0 for every A < f and G;,, nG,, =0 for A, < B, 4, <P, Ay *+ 4,.
Choose any well ordering < of G,(4 < B) and put G(X) = Y. G,(X) 7). G(X) as
A<B

a lexicographic sum of well ordered sets over a well ordered set is a well ordered set.
We shall show that G(X) is an extension of G(=X). Hence let x, y € G, x < y. Then
there exist 4,,4, < f such that x€ G,,, y € G,,. The assumption x < y implies
Ay < A, and from this x < y in G(X). Hence G(X) is a well extension of G(=X).
Now we shall describe a certain construction which will be called the construction (K).

The construction (K): Let G(<) be an ordered set. Let § be an initial ordinal of
cardinality card G. Let us form a simple sequences) of type f containing all elements
of G: G={go, gys--s9s--- | A<PB}. Put G,=1{go.gp,--e» gz --- | A <a}.
for every « < B. Then G; = G. Now let us define the ordering < in every G,(« < )
by the transfinite induction in the following manner: G, is an empty set, therefore G,
can be assumed as ordered. Assume that we have defined the ordering < in each
set G, for each 1 < a. Then we define the ordering < in G, so:

1) if o is an isolated ordinal then
ga—1 < g, (A < o — 1) < there exists 4,_,; < a — 1 such that
Ja-1 < Gs,_, (in G(é)) andg,  =<g,in Ga—1(_$_),
Ga—1 > 92 (A < o — 1) in all remaining cases,
91<9, (hu<a—1)eg,<g,in G, ().

2) If o is a limit ordinal then we put for g,€G,, g,€ G, g, < g, < there exists
v < asuch that g, < g, in G(X).

It is clear that each G, is a chain with respect to <.

Theorem 4. Let G(<X) be an ordered set, Gi(X) a chain obtained from G(<) by
the construction (K). Then Gyi(=X) is a linear extension of G(<). If, moreover,
G(<) satisfies the descending chain condition then Gy(X) is a well extension
of G(=).

Proof. G4(X) is a chain so that it is sufficient to show that G,4(<) is an extension
of G(£). Let x,ye G, x < y. Then there exist ordinals 2 < f, u < § such that
X =g, ¥ =4, If 1> pthen clearly g, < g, in G;,(X) and from this g, < g,
in Gy(=X). Assume therefore that there are ordinals' pu with this property: there
is A < p such that g, < g, in G(Z) but g, > g, in G, . Let u, be the smallest

%) ¥ 6,(X) denotes the lexicographic sum of sets G,(=) over the set of all ordinals 4 < f.
2<p .
% ie. Giy F g, for 2y £ 4,.
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ordinal with this property. Thus g,, = x, g, = y where 4 < po, ¥ < x in G(<Z)
but g, < g, in G, 4. Then there exists v < p, such that g,, < ¢, in G(<) and
g, < g,in G,(X). As g, > g,, = x > y (in G(£)), there is g, > ¥ = g, (in G(L))
butg, < g,in G, (). But this is impossible for v < 1and for v > 4 we have obtained
a contradiction with the minimality of p,. Hence G4(=) is an extension of G( ).

Assume now that G(<) satisfies the descending chain condition. We shall prove
that in this case G,(=X) is a well extension of G(=), i.e. Gy(=X) also satisfies the
descending chain condition. Proof will be made by transfinite induction. Assume that
G4(=X) contains an infinite descending chain with the greatest element go: go >
> gi, > gi, > .- > g3, ... The ordinal A, can be chosen such that it is the
smallest ordinal with the property: G,(=) contains an infinite descending chain
whose first and second elements are g, and g,,. Analogously 1, can be chosen as
the smallest ordinal with the property: G4(=) contains an infinite descending chain
whose first, second and third elements are g,, 9;,, g,,- Assume that we have defined
the ordinals A,, 4,, ..., 4,_;. Then 4, can be chosen as the smallest ordinal with the
property: Gy(=) contains an infinite descending chain with the first, second, ...,
(n + 1) elements go, g;,, ..., g4,- Then {4,};2, is a strictly ascending sequence
of ordinals for if there exists n, such that 4, > 4, .;, then go >g, > ... >
> Gy > Gagyy > iy - 18 als0 an infinite descending chain in G,(<) whose
(n + 1)™ element has index A,,., < 4, which contradicts the choice of the
ordinal 4, .. Now there are two possibilities:

1. Either g¢ > g;, > g;, > ... > g,, > ... in G(=). This is, however, a contra-
diction because G(=<) contains no infinite descending chain.

2. Or there exists the smallest integer n, such that Gipy < iy in G(£) but
Ginir I 95,,inG(S). Asg, . <g; inG, .y thereexistsan ordinal u < 4,..,
such that g;  <g,in G(£)and g, <9, inG, .. Then go > gz, > --- > ga,, >
> 9, > g, ., > --- is also an infinite descending chain in G4(Z) whose (n + 2)"
element has index p < 4, ., which is a contradiction with the choice of the
ordinal 4,,,,. Assume now that we have proved that G,(=) does not contain any
infinite descending chain with the greatest element g, for every 1 < a. Assume that’
G4(=X) contains an infinite descending chain with the greatest element g, : g, >
>gi, > Ga, > - > gy, > -..- Then 4, > afor every n = 1, 2, ... for if n, existed
such that 4,, < « then 93,y > Giy 41 > ... would be an infinite descending chain
in Gy(X) with the greatest element g 4, Where Z,, < a which contradicts the
induction assumption. In a similar way as in the first induction step A; can be
chosen as the smallest ordinal with the property: G,(=<) contains an infinite descending
chain with the first and second elements g,, g;, and in general, 4, can be chosen as
the smallest ordinal with the property: G,(=) contains an infinite descending chain
with the first, second, ..., (n + 1) elements g,, g;,,---» g,,- It is easy to see that
{2.}o 1 is again a strictly ascending sequence of ordinals. Two cases are now possible:
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1. Either g, > g, > g3, > ... > g4, > ... in G(Z). This is a contradiction with
the assumption of the theorem.

2. Or there exists the smallest integer n, such that g, < Gipger in G(Z) but
Ginq I 9s,, in G(Z). As Tingrs < 9s,, In Glnoﬂﬂ(é), there exists an ordinal
B < Aygsy such that g, <g,in G(£), 9, < 93, in G%H(é). But then g, >
> Gu > a7 a7 G > iy e is also an infinite descending
chain in G,(=<) whose (n + 2)'" element has index pt < 4,4+, and this is a contradic-
tion with the choice of the ordinal 4,,+ ;. Hence G,( =) contains no infinite descending
chain and is therefore a well extension of G(<).

3. THE DIMENSION OF A LEXICOGRAPHIC PRODUCT

Definition 8. Let G be an ordered set, let {L, | k € K} be a system of chains, let f,
be an one-one isoton mapping of G into L. If, for any two elements x, ye G, x <
S y < fi(x) £ fu(y) for every x e K, we shall say that the system {L,, f, | k € K}
is a realizer of the set G. By the cardinality of this realizer we mean the cardinality
card K.

It is known ([4]) that every ordered set has at least one realizer. Hence we can
define:

Definition 9. The minimum of cardinalities of realizers of the set G will be called
the dimension of the ordered set G:

dim G = min (card K | {L,, f, | k € K} is a realizer of G)”).
The following results are known:
(1) If card G = 4 then dim G < [5 card G] ([5]),
(2) dim P(m) = m *) ([7]).
(3) If G, is a chain with card G, = 2 for every a € H then dim [1G,=cardH
([6. [10]), s

(4) dim Y, M, = sup {dim N, dim M,(x e N)} ([9]),
aeN
(5) dim[] G, £ Y dim G, ([6]).
acH acH .
We shall give a certain calculation for the dimension of the lexicographic product of

ordered sets. According to Theorem 2, we can limit ourselves to the case that the
set H satisfies the descending chain condition.

Theorem 5. Let H be an ordered set satisfying the descending chain condition,
let {G, | a e H} be a system of ordered sets. Let A" be a system of chains in H whose
union is H. Then dim[] G, £ Y sup {dim G, | x € K}.

Kext"

acH

7) See [4], Definition 2.2.

8) P(m) denotes the set of all subsets of any set of cardinality m ordered by a set inclusion.
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Proof. Let K € %" be any chain in H. Denote sup {dim G, | « € K} = mg. Let My
be a set with card My = my and let {L, f¥ | x € Mg} be a realizer of the set G, for
every a € K. Such a realizer can be constructed. For « € H — K choose any chain L,
and any one-one isoton mapping f; of the set G, into L%. Further, let Ny = Mg U
U (H — K) and let H(=) be any well extension of the set H. Let ¢ be any mapping
of the set H into the set Ny with the property ¢(K) < My, ¢ is an identical mapping

on H — K. Let us put S, = P L%®. S, is a chain for every mapping ¢ and every’
acH

well extension H(=X). Let us define the mapping h,, of the set ]_I[{G, into the set S, in

the following way: h,(g9)[«] = f¥®[g(«)]. We shall prove that h, is an one-one

isoton mapping of [| G, into S, for every mapping ¢ of H into Ny with the above
acH _
mentioned property and for every well extension H(X) of H(<). First we prove

that h, is isoton. Hence let gbngH G,, 91 < 9. Denote H,, ,,, = {a|aeH,

91(®) = g,(«)}. Then Hy,, 4,y is non- empty and hence it has the smallest element o,.
The necessarily g,() < 92(ct) because 91(co) £ ga(xo) implies the existence of
an element o, < o, in H(<) such that g,(2;) < g2(%;) so that o, < ao in H(X),
o, € Hy, ,,) which is a contradiction. Hence g1(%0) < ga(2o) so that £[g,(a)] <
< f5[92(0)] for every x while fX[g,(x)] = f¥ [92(2)] for every a < and every .
Hence we have: hy(g,) [o] = f2@[g4(2)] = fZ“[92(2)] = h,(g2) [o] for every
o < oo whereas h,(g1) [#0] = £2[g1(c0)] < fan " [92(%0)] = hy(g2) [o] s0 that
h,(g9,) < h,(g,) in S,. This implies that h,, is isoton. Now we shall prove that h,, is
one-one. Let g;,¢ ZEHGa, g1 = gs. Then Hy,0n =0 so that if ageHgy,

there is fx[g1(x0)] * fao[gz(ozo)] for every x so that h,(g,) [0o] = £2[g(c0)] +
£ f2ONgy(e)] = hy(92) [#0], ice. hy(g1) + hy(92); h, is therefore one-one.
Now choose any chain K € # in H(<). As H(Z) satlsﬁes the descending chain
condition this chain is well-ordered and we can write

K = {ko, kg, ..., Ky ..., 1A < Bg} Wwhere ko <k; <..<k;<

Choose any well extension Hy(=) of the set H(<) obtained by the construction (K)
such that we put g, = k, for 1 < . Denote @y the set of all mappings ¢ of the
set Hy into the set Ny with the above mentioned property and with the property
(p(ocl) = ¢(a,) for any oy, @, € K (i.e. ¢ is constant on K). Then clearly card @y =

= my. Further, let ® = (J ®k. There is card ® < Y mg. We shall show that
Kex" Ke.}t/

. h, | p € ®} is a realizer of [] G,. As we have shown that each h,, is an one-one
acH

isoton mapping, it is sufficient to show that for any two incomparable elements
91> 92 eII]{G there are @y, ¢, € @ such that h,(g,) < hy,(92) hpy(91) > hy,(g5).
Hence let g1, g2 € [| G,. g1 || 92- There are two possibilities:

acH

{S, h

]

1) either « € H exists such that g,(%) | g,(xy) whereas g,(@) = 92(%) for every
a < o,
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(2) or ay, a,e H exist such that g,(x,) < gs(x,) whereas g,(x) = g(«) for
every o < a, and g,(,) > g,(x,) whereas g,(a) = 9(a) for every o < a,.

If (1) holds, let K € " be any chain containing «,. Then clearly « || & in H(<)
implies « > o in Hy(=X) so that g,(«) = g,(a) for every a <« in Hy(X). As
91(%) || 92() in G,,, there are ki, k, € My such that f%[g,(0)] < fEi[g2(c0)]
and f;[g1(0)] > fal92(2%)]- If @, € @k is such a mapping that ¢,(x) = &, for
every a € K and ¢, € @ is such a mapping that cpz(oc) = K, for every a € K, we have
o9 [8] = 129L0:(0)] = 72 [g@] = hy(92) [=] for every & < 2y in A(=)
whereas h,,(g,) [%0] = f2:*[g ()] = falg 1(0‘0)] < falg2(%)] = faelgs (20)]=
= h,(g,) [oo] which implies h,(g,) < h,,(92) in S,, but h,(g,)[«] =

= f22@[g4(0)] = f2*P[g,(«)] = h,(92) [¢] for every a <« in Hy(=X) whereas
hoi(91) [%0] = & [91(20)] = Filg1(20)] > fi2[gx(2)] = fE[g2(%0)] =
= h,,(9,) [#o] which implies h,(g,) > h,,(g,) in S,,.

If (2) holds, let K; € " be any chain containing «;, K, € # any chain containing a,.
As o || o in H(<) implies a > «; in Hg (<), we have g,(a) = g,(«) for every o« < o,
in Hy(X) and 75 [g94(%,)] < f5,[92(x;)] for every x. Choose any ¢, € @, then
o9 [8] = 17Ogs(2)] = 72 [gu(a)] = hy (32) [o] for every @ < o in Hg (=)
whereas hy,(9:) [1:] = 12/ [91(2)] < fLV[92(1r)] = hyy(92) [] so that
hy(91) < h,(g)in S,,. Analogously g,(x) = g,() for every a < a, in Hg,(X) and
Sal91(22)] > f,[92(22)] for every « so that if we choose any @, € @k, we have b, (g,) -

2] = S7Lgy(@)] = S gx(@)] = hylgs) [a] for every @ < 5, in Hy(Z)
whereas h,,(9:) [#2] = f2[g1(02)] > FE[gx(22)] = hyi(92) [22] which
implies h,,(9;) > h,,(g,) in S,, and the proof is completed.

4. SOME SPECIAL CASES

Theorem 6. Let H be a well-ordered set, let {G,|a e H} be a system of ordered
sets. Then dim P G, = sup {dim G, | x € H}.

acH
Proof. Choose the system # as the one-point set # = {H}. According to

Theorem 5 we have dim P G, < sup {dim G, | x € H}. On the other hand it is not
aeH

difficult to construct a subset G, < P G, isomorphic with G, forevery age H : G, =
acH

= {f1fePG, f(z)=const. for a =% a}. This implies dim G,, = dim G}, <
acH
< dim P G, for every a, € H so that sup {dim G, |x€ H} < dim P G, and we have
acH weH
dim P G, = sup {dim G, | a € H}. ‘
acH

Corollary 5. Let G, H be ordered sets. Then dim (G © H) = max {dim G, dim H}.

Proof follows from Theorem 6 if we put H equal to the two-point chain.
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Corollary 6. Let H be a set, let {G,| oceH} be a system of ordered sets. Then
dim[] G, £ dimG,.°)

acH acH

Proof follows from Theorem 5 if we choose H as an antichain.

Corollary 7. Let G, H be ordered sets. Then dim (G .H) £ dim G + dim H.
Proof follows from Corollary 6, if we choose H as a two-point set.

Remark. The calculation of Corollary 6 can not be improved. There are systems
of ordered sets {G, | « € H} for which dim [] G, = Y dim G, and on the other hand

acH aeH

there are systems {G,|a e H} such that dim[] G, < ) dim G,. If, for instance G,
acH acH

is a chain with card G, = 2 for every a« € H, then dim G, = 1 for every a € H and
dim[] G, = card H = Y dim G,. If G, is an antichain with card G, = 2 for every

acH acH
o€ H, then dim G, = 2 for every a € H. But [[ G, is also an antichain so that
acH
dim [] G, = 2 which is less than ) dim G, for card H > 2.
acH . aeH

Corollary 8. Let G be an ordered set, let H be an ordered set satisfyin‘g the
descending chain condition. Let A be a system of chains in H whose union is H.
Then dim #G < card & . dim G.

Proof follows from Theorem 5 if we put G, = G for every a € H.

Corollary 9. Let G be an ordered set, let H be a well-ordered set. Then dim ¥G =
= dim G.

Proof follows from Theorem 6 or from Corollary 8.
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Peszrome

O JIEKCUKOI'PA®OUYECKOM ITPOMU3BEJEHNUN
VIIOPAOJOYEHHBIX MHOXECTB

BUTE3CJIAB HOBAK (Vitézslav Novak), bpao

Jlexcuxorpaduyeckoe MpoU3BeAeHHE YIOPSIOYCHHBIX MHOXECTB ONPEAEIISETCS
crepyrounv o6pasom ([3]): Ilycts H — yHOPSOOYCHHOE MHOXECTBO M IIYCTh
{Ga ! «€ H} — chcreMa ymopsyiodeHHbIX MHOXKECTB. Jlekcnkorpaduyeckoe npousse-

nenue [] G, ects MEOXeCTBO Beex dyHkuuii f, oTo6paxaroux H 8 G, co cBoii-
acH acH

CTBOM f(ot) € G, s Beskoro o€ H ¢ OoTHOLIEHHEM <, OmpelessieMbIM Tak: f <
< g <> ecnu CymecTBYeT o, € H Taxoe, 4to f(0) * g(0), TO cymecTByeT oy < ag
Taxoe, 4o f(0;) < g(o;). D10 OTHOLICHHME B OGIIEM CIIydae TOJIBKO PeIICKCUBHO,

TaK YTO OHO HE YHNOPSAOOYUMBACT H Ga. B crartbe JOKa3bIBACTCA, 4YTO I__[ G,z €CTh
acH aeH

YIOPSOYEHHOE MHOXECTBO TOTAa M TOJBKO TOIga, KOTAa MHOXecTBo H' =
= {oc | o€ H, B G, IMEIOTCS IO KpaifHeil Mepe Ba CpaBHUMBIX 3JI€M€HT3.} YAOBJIET-
BOpPSIET YCJIOBUIO OOpbiBa yOBIBAIOIIUX IIEMEN. (Teopema 1.) Ecinu 3710 ycioBue
BBIIOJIHEHO, TO HA H Bcerga MOXHO OIpEESIMTh HOBOE YNOPSOOYCHHE = TaKuM

06pa3oMm, uTo H(=<) yIoBIIeTBOpPSET ycsioBHIo 06pbiBa yobBatoux neneii . [| G, =
acH(S)
= H G,. (TeopeMa 2.) Eciu Ha MHOXecTBe G Ollpe/iesieHbl 1Ba yIIOpsAAoYeHus <, <,
aeH(=)
TO YMOPS/IOYEHHE = HA3bIBAETCS MPOAOJIKEHHEM YHOpSAoUeHHs <, ecid X < y =
= x < y. Iponomkenue =< Ha3bIBAETCS JMHEHHBIM MPOJOJDKEHHEM, eciu G-liemb
no otHowenuto k <. JIuHeilHoe MpoOmOJKEHHE =< HA3BIBAETCS MOJHBIM MPOAOJ-
KeHneM, ecii G BIOJIHE YOPAJ0YEHO Mo OTHOLIEHUIO K <. JlokasbiBaeTcs: YIops-
JIOYEHHOE MHOKeCTBO G UMeeT MO KpaiiHeil Mepe Of[HO IOJIHOE MPOJOJIKEHUE TOTA
U TOJNbKO TOrAa, korma G yIOBJIETBOPSIET YCIOBUIO OOpBIBA YOBLIBAIOMIMX LEMEd.
(Teopema 3.) [lanmee, B craThe npuBeaeHa oueHka pasmeproctu ([4]) sexcuxorpa-
(MUeCKOTO MPOM3BEEHHUS YIOPSIOUYEHHBIX MHOXeCTB. JoxassiBaercsa: ITycts H —
YIOPSZOYEHHOE MHOXECTBO, YIOBJIETBOPSAIOILEE YCIOBHIO OOpHIBA yOPBIBAFOILKX

Lenen, U MmycThb {Ga | aeH} — cUCTeMa YMOPSIOYCHHBIX MHOXecTB. Ilycte S —
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— cucrema neneif Ha H, nokpeiearomas H. Torpa dim [] G, < ) sup {dim G, | ae
acH KeX
€ K}. (TeopeMa 5.) Orta TeopeMa uMeeT psif ciieacTBuil. Tak, HapuMep, pa3MepHOCTH

Tax Ha3pIBAEMOro OpAMHAJIBHOrO mpousseneHus P G,, T.e. Jekcukorpaguieckoro
aeH

Npou3BeNeHus, B koTopoM H Bmomme ynopsoueso, paesa sup {dim G, oceH}.
(Teopema 6.) Pa3meprocTs opauHambHOl cTenenu ¥ G, B koTopoit H BromHe ynops-
JIOYEHO paBHA Pa3sMEpPHOCTH OCHoBaHud, T.e. dim *G = dim G (Cnencrsue 9.) unp.
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