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Let P be a set, X, Y = P. Let us say that X is congruent with Y, if a permutation f
of the set P (i.e. a one-to-one mapping of the set P on P) exists such that f(X) = Y.
We write X ~ Y'). Evidently there holds: X ~ X; X <~ Y=Y~ X; (X ~ Y,
YoZ)=>X~Z;, X~ Y=>P—-—X~<P-Y; X~Y= (card X = card Y,
card P — X =card P — Y). : :

Let & and J be systems of subsets of P such that a permutation f of the set P
exists for which 7 = {Y: Y = f(X), X € &}. Then we say that & is an equivalent
system to 7 and we write & ~ J (or also I = f(&)). Evidently

S, ST =T ~F; (V&aﬁ—, T ~U=>F =~ U.

Let ' ={Y:Y=P — X, Xe&}. & is called the system of complements to &.
We have

(P =%; ST =S =T
The following statement is evident, too.

Theorem 1. Let & < 2°. Then the following statements are equivalent:
)P T =>F=7.
2)(Xe¥, X~ Y)=>Ye &

Theorem 2. Let card P = p = N,. Let (%) denote the system of all systems
T < 2P for which & ~ T . Let card ¢(¥) # 1. Then card (&) = p.

Proof. By Theorem 1, a pair of congruent sets X and Yexists such that X € & and
Ynone &. '

1) The concept “‘congruent sets’ has been introduced in [1] IL. part, pp. 84. See [2] and [3], too.
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1. Let card X < p. Then such a set Z exists, for which Z n (X U Y) =0 and
Z~XIfZeSL, putX, =Y, X, =2,if Znone &, put X, = X, X, = Z. Let R
be a decomposition on P into sets congruent with X such that X, X, € R. Let R,
be a system of those elements of the decomposition R belonging to &, R, a system
of elements of the decomposition R not belonging to &. R, # @ # R, (as it follows
from the choice of X, and X,) and at least one of these sets has the cardinality p.
Let it be e.g. R, (for R, the procedure is analogous). Let the elements of the system
R; be denoted by Y;, Y,, ..., Y, .... Let Y’ be an element of the system R,. There
exists such a permutation f, of the set P for which f(Y’) = Y,, f(Y,) = Y’ and for
(VER, V# Y, V#Y)=f(V)=V. Thus, Y,nonef(¥), Yef(¥#), (V£Y,
V#Y)=>Ved = Vef(#). From it follows immediately ¢ # x = f(¥) #
# f{&). As the set of indices ¢ has the cardinality p, we have consequently
card (&) 2 p.

2. Let card X = p, cardP — X =p. Let X’ =P — X, Y =P — Y. We have
X' ~ X, Y = Y. First, we shall define certain sets X}, X as follows:

a) If X' none &, put X; = X, X5 = X'.

b) If a) does not occur and if Y€ &, put X; = Y', X3 = Y.

c¢) Don’t let occur either a) or b). Let Z be such a set from sets X and X', for which
card (Z N Y’') = p. Let such a subset Z' exist, Z’ =« Zn Y, Z' ~ X and Z'€ &.
Then put X7 =Z', X; =Y. Let Z'none ¥ forany Z' =« Zn'Y', Z' ~ X. Then,
denote Z; one such subset and put X; = P — Z, X, = Z;. (Thus, in all cases we
have defined two sets X; and X} such that X] ~ X, ~ X, X| n X, =0, X| €%,
Xynone&.)

o) Letthereexist Z* = X, Z* ~ X,card X| — Z* = p, Z*€ &. Then put X, = Z*,
X, =X

B) Don’t let a) occur. Let there exist Z* = X3, Z* ~ X, card X} — Z*
Z* non € &. Then, we put X; = X}, X, = Z*.

y) Let neither ) nor f) occur. Let Z; be asubsetin X', Z; ~ X,card X; — Z; = p,
let Z, be a subset in X3, Z, ~ X, card (X, — Z,) = p. Then, Z, none ¥, Z,€ .
Put X, =2Z,, X, = Z,.

Thus, there always exist sets X; € &, X,none &%, X; ~ X, ~ X,card P — X; U
U X, = p. There exists a decomposition R on P such that it contains p elements,
that X, and X, are elements of this decomposition and all elements are congruent
with X. The proof is to be continued as in the preceeding case.

3. Let card X = p, card P — X < p. Then, P — Xe€ &', P — Ynone &'. Thus,
according to 1. card ¢(&’) Z p, and consequently card ¢(¥) = card ¢(¥’) 2 p.

Thus, the proof of the theorem is finished.

Theorem 2 does not hold for finite sets, as it can easily be seen from the following
example: P = {1,2,3,4}, & = {{1, 2}, {3,4}}. It is clear that just the systems
&, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}} are equivalent to &.

p,
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As 2?7 permutations of P exist, there exist at most 27 systems equivalent to a given
system &. Next, let us prove the following theorem.

Theorem 3. Let p = NX,. Then 22” non-equivalent systems & < 2F exist such that
the number of systems equivalent to them is exactly 2P.

Proof. Let P = P, U P,,card P, = card P, = p, Py n P, = 0. Let & be a sub-
system in 27! containing P,. We shall show that card ¢(&) = 2”. Let f be a one-to-one
mapping of P, on P,. Let X = P,. Let us define the permutation fy of the set P in
the following way:

x € X = fy(x) = f(x),

x €f(X) = fx(x) = (),

else fx(x) = x.

Evidently, U fx(&) n P, = X. Thus, (X # Y; X, Y < P;) = fx(¥) # f(&). Thus
card ¢( &) = 2P.

Let & be the class of all systems & < 2%, containing P,. Evidently card & = 2%".
Let us decompose & in classes of mutually equivalent systems. As every of this classes
has cardinality at most 27, there exist 2%” these classes. Let &, be the class containing
one element of each class of the mentioned decomposition. In accordance with what
was said, we have card €, = 2%"; (¥, F,€8,; &1 # F,)=>F non ~ &y
&L €6, = card ((¥) = 2%

Let F and G be mappings of the system 27 into 2 (thus X < P = F(X) < P;
X c P = G(X) = P). Wesay that the mapping F is equivalent to G if a permutation f
of the set P exists such that X = P = f(F(X)) = G(f(X)). We write F ~ G or also
G = fo F. The relation ~ is evidently an equivalence. Assign a mapping F’ to the
mapping F as follows: F'(X) = P — F(P — X). Call the mapping F’ the complement-
ary mapping to F. It holds F ~ G = F' ~ G'.If, namely, G = f o F, then f(F'(X)) =
=P — f(F(P — X)) = P — G(f(P — X)) = G'(f(X)). Thus G’ = fo F'. Further-
more (F') = F.

Theorem 4. Let card P = p > N,. Let F € (2F)?". Then the cardinality of the set
mappings G equivalent with F is 1 or at least p. The first case occurs exactly when
F has these two properties:

1) X < P=>F(X)E{P,X,P - X, 0}

2) If X =~ Y then

F(X) = P=F(Y) = P.
FX)=X=FY)=Y.
FX)=P—-X=F(Y)=P Y.
F(X)=0=F(Y)=0.

Proof. It can be readily seen that a mapping F fulfilling the relations 1) and 2) is

equivalent to itself only.
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Let F € (2F)*", X < P. Put
ng(X) = card (F(X) — X), dF(X) = card (X — F(X)),
op(X) = card ([P — F(X)] — X), mg(X) = card (F(X) n X).

The ordered quadruple of cardinal numbers (ng(X), dp(X), 0p(X), mg(X)) is called
the type of the set X in the mapping F and we denote it by Ti(X). Put Si(X) =
={Y: Y~ Xand T(Y) = T{(X)}. Let Sy = {Y: Y~ X}.

First it is evident that Te(X) = Typ,- «(f(X)) for every permutation f. Further,
it is evident that systems Si(Y) for Ye Sy form a decomposition on Sy.

We have fSH(X) = S;p,-1(f(X)) for every permutation f. It holds, namely,
ZefSHX) = Z = f(Z,) for a suitable Z, € SF(X) = Tipr-d(Z) = TH(Z,) = TYX) =
= Trrr-i(f(X)) = Z € Spps-o(f(X)).

Z € Spp-(f(X)) = Tpep-A(Z) = Tf;’f“(f(X)) = T{f™'2) =
= TeX) = f'Ze SHX) = Ze fSHX) .

Now, let F be such a mapping 2” into 2 that the cardinality of the set of mappings
equlvalent to F (denote it by M ) is less than p. We shall show that

®» | SH(X) = Sy.

Suppose that this is not true. Then the system of all fSi(X), where f runs through
all possible permutations of the set P, contains at least p different sets according to
Theorem 2. Thus, two different permutations f and g exist such that fSg(X) # gSg(X)
and fFf~' = gFg~' = G, Then fSK(X) = S5(f(X)), gSHX) = S¢(g(X)). As the
sets of the form Sg(Y) for Y =~ X constitute a decomposition on Sy, we have
Se(f((X)) n Se(g(X)) = 0. Simultaneously, Ty(f(X)) = Ti(X) = Tg(g(X)). Thus,
9(X) € S¢(f(X)) which is a contradiction. Hence, (A) is valid.

. . Let us choose X < P arbitrarily but fixed. Suppose that 1) does not hold.

) Let card (P — X) = p. a;) Let @ # F(X) — X § P — X. There exist at least
psets Z in P — X congruent with the set F(X) — X. Thus, card M = p, which is
a contradiction. .

;) Let @ # F(X) § X. Let R be a decomposition on P into sets congruent with X
and let card R = p. From (A) it follows Ye R =0 # F(Y) ¢ Y. For every YeR
choose a(Y)e Y — F(Y), b(Y) € F(Y). Let fy be such a permutatlon of the set P that

Sa(Y)) = b(Y), f(b(Y)) = a(Y), otherwise fy(x) = x.

For ZeR, Z # Y we have fy(Z) = Z, fy(F(Z)) = f(Z). For Y it holds fy(Y) = Y,
f(F(Y)) # F(Y). Thus (Y, Ze R; Y 5 Z)=> fyo'F # f,o F, whence card M > p,
which is a contradiction. ‘
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a3) Let neither «,) nor a,) occur, i.e. P — X § F(X) # P. Then, put G(Y) =
= P — F(Y) for all Y = P. The number of equivalent mappings to G is also less
than p and at the same time G(X) = X. We get a contradiction just as in a,).

B) Let card P — X < p. Then instead of F we consider the complementary map-
ping F'. For P — X 1) does not occur. In accordance with «) at least p mappings
equivalent to F’ exist. Constructing the complementary mappings to them, we get
at least p mappings equivalent to F. Thus we get a contradiction.

Let for every set X = P 1) be fulfilled. Then, according to (A) 2), holds, too.

From Theorem 4 the ensuing result follows immediately. Let (P, u) be the Cech’s
topological space®) with card P = p = N,. Then the cardinality of the set of topo-
logical spaces (P, v) homeomorphic with (P, u) is 1 or at least p. The cardinality
of the set is 1 exactly if

1. XcP=uX =X or P. .
2. (X,YC:P; X~Y; uX=X)$uY= Y.

This consequence follows also immediately from Theorem 1 and 2 for topologies
defined by means of the system of open or closed sets (see e.g. [4]) In the case of the
general Cech’s topologies such a definition is impossible.

In this connection the following problem arises.

Is it possible to assign to any Cech’s space (P, u) the system &(u) < 2F so that
u #v=(u) # #(v) and (u being homeomorphic with v) = ¥(u) ~ F(v)?
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2) Here ue 2P)2* and we have uX > X;u)= ; X c Y < P= uX < uY.
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Pe3rome

SKBUBAJEHTHBLIE CUCTEMblI MHOXECTB
U T'OMEOMOPO®HBIE TOITOJIOI'MHA

®PAHTUIIEK HEMMAH U MUJIAH CEKAHMHA (F. Neuman a M. Sekanina), bpro

Iycts P — mHOXecTBO; X, Y = P. MbI roBOpiM, YTO X KOHIPYIHTHO Y, eciu
CYILIECTBYET Takas HepecTaHoBKa f MHoOxecTBa P, 4TO f(X) = Y, U 3amuchiBaeM
X ~ Y. ([epectanoBka f — 9TO B3aMMHO OJIHO3HAYHOE OTOOpaxeHne P Ha P.)
Hycts & u J — cucteMbl HoamHoxecTs P. Eciu cyliecTByeT MEpecTaHOBKA f
MuoxectBa P takas, uto 7 = {Y: Y = f(X), X € &}, T0o & 5KBUBAJIEHTHO J U MBI
samuchBaeM & ~ 7. IIyctb F u G — mro6bie oto6paxenus 2° B 27 (1.e. X < P =
= F(X) = P u G(X) = P). MBI TOBOPUM, 4TO OHM SKBUBAJICHTHBI, CCJTH CYLIECTBYET
fTakoe, uto X < P Bcerna Bieuet 3a co6oit f(F(X)) = G(f(X)). Octobubie pe3yib-
TaThI:

Teopema 2. ITycmo card P = p = K. Ilycmo (&) — cucmema 6cex mex cucmem
T < 2%, umo & ~ T . Hycmsp card o(¥) # 1. Tozoa card ¢(¥) Z p.

-Teopema 4. ITycms card P = p = N,. Ilycms F € (2?". Tozoa mowmocme mno-
acecmea ecex omobpaxcenuii G, sxeusarenmuvix F, pasna 1 uau = p. Ilepsviii cayuail
umeem mecmo moavko moz20a, kozda F evinoansem oonospemenno u 1) X = P =
= F(X)e{P,X,P — X, 0} u2)ecru X ~ Ymo

F(X) = P= F(Y) = P
F(X) = X=FY)=Y
F(X)=P—X=F(Y)=P— Y
F(X)=0=F(Y)=0.
HenocpencTBeHHBIM CIIEACTBUEM TeopeMbl 4 s TomoJsorui Yexa (P, u) (T. e.
ue(),uXo X, up=0,X cYc P=uX c uY) SBIAACTCS yTBEPXNICHHE!
IIyctb (P, u) — Tomosioruyeckoe npocrpancrso Yexa, card P = p = No. Torma

MOIIHOCTh MHOXKECTBA TOMOJOrHYeCKuX pocTpaHcts (P, v), romeomopdubix (P, u),
paBHa 1 TOJIBKO B CIIy4ae, €CJIM BHIIOJIHEHO

nl XcP=uXe{X, P}
u2 (X, YcP; X~ Y;uX =X)=>uY=1Y

Wnaue, oHa GoJiblile WM paBHA p.
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