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YexocaoBaukuii MaTeMaTHueckuii xypuai, 1. 15 (90) 1965, Ilpara

AN EXTENSION OF POPOV’S METHOD
FOR VECTOR-VALUED NONLINEARITIES

VAcLAV DOLEZAL, Praha
(Received December 3, 1964)

The article presents some sufficient conditions for stability in large of
certain types of nonlinear vector integro-differential equations.

1. Consider the equations
(L1) oft) = =(t) + j Kt — ) f(o(e)) dt — 7E(1)
(12) £ = S(o(0), 120

with a given initial condition £(0), where o(t), z(t), &(t), f(o) are real n-vectors,
k(t) and y real n x n matrices.

We shall assume that ||z(t)| and |[k(z)| are bounded on every finite interval <0, T
and that there is a y > 0 such that | f(c,) — f(0,)| < uo, — o] for any pair of
n-vectors oy, 6,. Then obviously (1.1), (1.2) possess a uniquely determined solution
o(t), &(t) for given z(1), &0).

Theorem 1.1. Let k() possess a derivative almost everywhere for t 2 0 such that

(13) 1€@]. [K@O] = € exp (—at)

with « > 0, and let y be a symmetric positive definite matrix; let z(t) possess a second
derivative almost everywhere for t = 0 such that

(1.4) Iz 2@l [270] = Zexp (- p1)
with some Z and a fixed p > 0. Moreover, let f( o) satisfy the conditions:

a) There is a real scalar function U(c) possessing continuous first partial de-
rivatives everywhere such that f(c) = grad U(o), i.e. for the i-th component of f(o),

(13) fo) = 2%,

Jo;

=12,..,n.
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b) There are numbers hy > 0 and h, such that

(1.6) hlo|* < f(e)o, [f(o)] < halo]
for every .

Let h > h3hi' and k(o) = [§ k(t) exp (—iwt)dt, —0 < < o0; if there is
a q > 0 such that the matrix

(1.7) Alw) = (1 + ing) k(w) — (R~ + qy)

fulfills the condition Re 7 A(w) n < 0 for every real w and every constant n-vector 1,
then there are functions S(x, y) and K(x, y) continuous everywhere and vanishing
at the origin x = y = 0 such that

(1.8) lo(@®] = s [€ON), ¢@] = Kz [)]), ¢z 0,
where o(t), &(t) is the solution of (1.1), (1.2) corresponding to z(t), £(0). Moreover,
we have o(t) > 0, &(t) > O as t > .

Proof. First of all, from (1.6) we get easily hy|o] < [|f(o)] < hal|o|. hy|o|* <
< f'(0) o < hyo|* and

(1.9) f@)o = k7 f(0)]* 2 hs]o]?

with hy = h™'(hh, — h3) > 0.

Next, according to assumption a), the curvilinear integral (72 f'(s) ds is independent
of the path joining points ¢, and o, and equals U(a,) — U(a,). Thus, for a given &
take a line-segment joining the origin with ¢ as the integration path; then s = Ao,
0 < 1 =£1,ds = gdA, and consequently,

U(o) — U(0) = J () (o) 271 ..
0 .
Making use of (1.6), we get immediately
(1.10) ol £ Ue) — U(0) S Bhalo]?.

Now, let o(t), &(f) be the unique solution of (1.1), (1.2) corresponding to z(t), £(0);
obviously, both ¢(¢) and &(r) have a continuous derivative for ¢t = 0. Choosing
a T > 0 define the vector functions

(1.11) fi(t) = f(o(t)) for 0Lt T,
=0 elsewhere , v
(1.12) wq(t) = ot) + y&(t) — z(t) for 0<t<T,
- f Ut = O f(o(@) de for t> T,
= 00 for t<O.
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It can be easily verified that wi(t) exists everywhere in (0, o0) except at t = T and
that due to (1.3) both wy(t) and wi(t) possess Fourier transforms w(w), (wi(t)),

respectively. At the same time, we have (wi(f)) = iw wy(w), since w,(0) = 0 by (1.12).
Moreover, defining k(t) = 0 for ¢ < 0, we have from (1.11), (1.12),

(1.13) wal(t) = f K1 = 1) fule) de

for every t. Hence, by the convolution theorem [5], (1.13) yields
(1.14) wi(®) = k(w) fr{w),

where f7{) is the Fourier transform of f().
Next define the number ¢(T) by

(1.15) o(T) = f}r‘{wr — h™'fr + q(wy — of2)} dr.

Since fT(t) vanishes outside <0, T'), bounds — o0, co may be written in the latter
integral; thus we have by Parseval’s equality [5],

® \ 1 ®© ‘/\_/
oT) =f Fte di = —j A do.
—o 2 ) -,
Furthermore, since o(7) is real, we have by (1.14),

(L16) o) =5 [ Refithy — 1 + alioisy —37)} do =
= 0| R+ ioa) o) = (71 4y o

Hence, by the assumption of the theorem, o(T) < 0. Invoking (1.11), (1.12), we
have from (1.15), v

(1.17) JTf‘(a){o —y& —z = h7' flo) + q(0" — v — z' — yf(0))}dt £ 0,

and consequently, by (1.12),

(1.18) Ff‘(a){a — h™' f(o)} dt + fré"yé dt + qrf‘(a) o'dt <

= fTi"(Z + qz') At =
= &(T) («(T) + q2(T)) ~ 0) (=(0) + 4=/(0)) f £() (2 + q2") dt <

st +a)z + SO (L +q)z+ B (1 + 9z sup Hﬁ(t H
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On the other hand, by (1.9),
T T
I (o) {oe — h™" f(o)} dt = h3f [o(n)|?dt = 0.
0 0
Moreover, since y is symmetric,
T
J £Y9E dt = 38(T) &(T) — 38(0) 8(0)

0

At the same time, since y is positive definite, there is a 4 > 0 such that

&(1)94(T) z u|&(T)|*-

Finally, we have

f o) = [ 1) ds

a(0)

where the latter integral is taken along the trajectory o(f) between points o(0) and
o(T).
Introducing these relationships into (1.18) and making use of (1.10) we get

(1.19) hsflla(t)ll2 dt + Ju§T)* + dahi[o(T)]* =

< €O (1 + ) Z + &y] - [0 + 3ah2[a(0)]* +
+ 1+ + q){:(gg)l!é(t)!l < Mo + M, sup le®)]
with
Mo = [EO)] (1 + @) Z + 3y] . [€O)* + 2aha(Z + [7] - [€(0)])?
My=(1+pYHY(1+4qg)Z

However, (1.19) implies that $ul|&(T)||> < M, + M, sup ”f(t)“ and as this in-
1e(0,

equality is true for any T > 0, [[&(¢)| must be bounded in (0 ). Putting M, =
= sup ”é(t “ we have 1uM3 < M, + M,M,, and consequently,
t20

(1.20) M, £ u” (M, + (M} + 2uM,)'?) = K(Z, |&0)]),
where K(x, y) has the properties stated in the theorem.
On the other hand, (1.19) implies that
1gh lo(T)|* £ Mo + MK(Z, [£0)]).
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so that

(1.21) lo®)]l = s(z. €O

for every t = 0, where S(x, ) has again the properties given in the theorem.
Furthermore, by (1.1), (1.2),

(1.22) o'(t) = z'(t) + ‘Ek'(t — 1) f(o(x)) dt + k(0) f{a(t)) — 2f(o(t)).

From this it follows by the above estimates that
(1.23) lo'(®)] £ M5, t=0.

Finally, again from (1.19), h; [7 ||o(1)]|* dt £ My + MK, ie. [§ oX(t)dt < M
for i =1,2,...,n,0(t) being the i-th component of o(z). From this and (1.23),
however, we have ¢(t) - 0 as t - oo. Actually, assuming conversely that ¢,(t) does
not converge, we can find a 6 > 0 and a sequence ¢; < t, < t3 < ..., t; > oo such
that |a,~(tk)| > 6 for k = 1,2, ...; then by (1.23) there is an interval I, with length
8/M containing t, such that o (t)| > &/2forevery t €I, k = 1,2, ... Then, of course,
we have for any integer N > 0, [ ¢7(1) dt = 6>N/4M,, which is a contradiction.
Hence, o(f) > 0 as t > co.

Moreover, due to assumption (1.3) we have

J ;k(t — 1) f(o(e)) de

t
< Chzf e "9 o(z)|| dr - 0
0

as t — oo; consequently, from (1.1), y&(f) - 0, and since y is a regular matrix,
&(t) > 0 as t — oo. Hence, Th. 1.1 is proven.

The assumptions of Th. 1.1 may be modiﬁed as follows:

Theorem 1.2. Let (1.3) and (1.4) be satisfied, and let y be symmetric positive
definite. Moreover, let f(o) fulfill condition a) of Th. 1.1 and the condition

(1.24) f(6)e>0

for every ¢ + 0. Let k(w) have the same meaning as in Th. 1.1. If there isa q = 0
such that the matrix

(1.25) Alw) = (1 + iog) k(o) — q7

fulfills the condition Re i Z(w) n < 0 for every real w and every constant vector n,
then the assertion of Th. 1.1 is true.

Proof: From the continuity of f(¢) we have f(0) = 0. Furthermore, [|f(c)| > 0
for ¢ + 0. Analogously as in the proof of Th. 1.1 we get

(1.26) U(e) — U(0)> 0 for o +0.
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Define vector functions fy(t), wy(t) again by (1.11), (1.12). Then (1.13), (1.14) are
true. Instead of (1.15) put

~

(1.27) oT) = J Tfr‘{wr + q(wy — of7)} dt.

0

Using the same procedure as before we conclude that o(T) < 0, and from this the
inequality

(1.28) JTf‘(a) o dt + 3E(T)y4(T) + q(U(e(T)) — U(0)) <

M, + M, sup [¢(0)],
te(0,T)

IIA

where M,, M, are again continuous functions of Z and [|¢(0)|, which vanish for
= |&0)] = 0 and are independent of T.

From (1.28) we conclude that ||&()]| < K(Z, [|£(0)]) for every ¢ = 0, where K has
the required properties.
On the other hand, substituting (1.2) into (1.1) and integrating by parts, we obtain

(129) ) =0+ | Kt — ) () dt = 92(1) =
= 2(t) + (KO0) — 7) &(t) + k(1) &0) + J Kt = 1) &) de .

Hence,
(130) o] =z +(C+ p]) K + C[E0)] + «7'CK = S(Z, [4(0)]) -

Furthermore, let H = sup [ (o)

llell =S

(1.31) le'()] £Z+ o 'CH + CH + |y| H= M,.

; then we have by (1.22),

Finally, from (1.28) we get [§ f'(¢) 6 dt £ M, + M,K, ie.,
(132) j (o) o dt < M,
0

which together with (1.30), (1.31) implies that o(t) > 0 as t - c0. As a matter of
fact, assume conversely that there is a 6 > 0 and a sequence t; < ¢, < t3 < ...,
t; > oo such that |o(t,)| > 6. Since |o|* = o'0, we have ||o] . [o|’ = o', and
consequently, ||o]'| < [o’| for o % 0. Consider a point t,; then for |t — t;| < §/2M,
we have by the mean-value theorem, |a(f)|| = |o(#;)]| + [|o(&)|’ (r — ;) with & lying
between #; and t, and at the same time, ||o(¢)| (¢ — t;)| < 6/2. Consequently,
lo(t)]] > 8/2 on an interval I, with length 6/M, which contains ¢, Putting now
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n= inf f'(6)o, we have by (1.24), n > 0. Hence, for any integer N > 0,
lloll >3/2 -
¢ f'(6) o dt = Nnd/M,, which contradicts (1.32), Q.E.D.

From this we conclude in the same manner as in the proof of Th. 1.1 that &(f) —» 0
as t —» 00. Thus, Th. 1.2 is proven.

The proofs of the previous theorems suggest that the requirements on f(¢) may be
relaxed as follows:

Theorem 1.3. Let k() fulfill condition (1.3) and let y be a symmetric positive
definite matrix; further, let z(t) satisfy the inequalities
(1.33) [z [0 = Z exp (—p1)
with a fixed B > 0. Let f(c) be a continuous vector function which satisfies the
in equalities (1.6) with some hy> 0, h,. If there is a h > h3h{ ' such that the matrix
(1.34) A*() = k(w)— h™1
(with k(w) having the meaning given in Th. 1.1) fulfills the condition Re 7* A*(w)n <
< 0 for any real w and n, then the assertion of Th. 1.1 is true.

Proof: Here again (1.9) is true; defining f(z), wr(z) by (1.11), (1.12), the equality
(1.13) holds. Putting

T
oT) = J Silwr = ),
0
we obtain by Parseval’s equality that o(T) < 0, and consequently,
T T T
~['f‘(o') {o — h™' f(o)} dt + J EVyE dt éj EVzdt.
0 0 0
Arranging this inequality as in the proof of Th. 1.1, we get
r
(135) Iy j Io(0}* 0t + 3ule(r)|> = M5 + MF sup [0
0 te(0,T

where Mg, M7 depend continuously on Z, [£(0)], vanish at the origin and are in-
dependent of T. From (1.35) we get immediately |&(1)| < K*(Z, |¢(0)])). From (1.30)
it follows then that [|a(¢)]| = S*(Z, |£(0)]).

The remaining part of the proof follows from inequalities (1.31) and [ [[o(1)[> dt <
< M3

The assumptions of Th. 1.3 on the behavior of f(¢) may also be modified as in
Th. 1.2. We have

Theorem 1.4. Let k(t), z(t), y fulfill the conditions in Th. 1.3. Let f(c) be a con-
tinuous vector function satisfying the inequality f'(c)o > 0 for o + 0. If the
matrix k(w) satisfies the condition Re ij* k(w) n < 0 for every real w and every 1,
then the assertion of Th. 1.1 is true.
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The proof follows the same pattern as that of Th. 1.3 and Th. 1.2 and therefore
is omitted.

Note 1. Theorems 1.3 and 1.4 do not require f(o) to be a gradient, thus imposing
obviously the weakest restrictions on f(o). On the other hand, condition a) in Th. 1.1
is satisfied, if the components f|(o) of f(o) fulfill the condition f{(c) = ¢ (o), @; being
a continuous scalar function, i = 1, 2, ..., n. Also, (1.6) are evidently true, if h,o7 <
< ¢{0;) 0; < hyo} with some hy; > 0, h,, i = 1,2 ..., n. Similarly, ¢(s;)a; > 0
foro; +0,i=1,2,..., nimply (1.24). (See also [2]).

Note 2. It can be easily verified that (1.1), (1.2) describe the behavior of any
physical system, which consists of a linear subsystem with constant elements
governed by the time-domain transfer-matrix y — k(z), and a non linear one,
governed by the equation n = f(o). If, particularly, conditions of Th. 1.4 are satisfied,
then both the linear and nonlinear system are dissipative, i.e. unable to produce
energy.

2. In this part the system

t

(2.1) o(t) = z(t) + | k(t — <) f(o(x)) dv — a &(t) — bn(t),

(2.2) &ty =n(t), n'(t) = f(a(t))

with initial conditions £(0), n(0), where o(r), &(t), n(t), z(¢), f(o) are real-valued
n-vectors and k(t), a, b real n x n matrices, will be considered. As in part 1. we shall

assume that conditions guaranteeing the existence and uniqueness of a solution
o(1), &(t), n(t) are satisfied.

Theorem 2.1. Let k(1), z(t) fulfill the condition(1.3) and (1.4), respectively, given
in Th. 1.1 and let a be a symmetric positive definite matrix; furthermore, let f(c)
satisfy conditions a), b) in Th. 1.1, and let k(w) have the usual meaning.If there is
a positive definite matrix & (not necessarily symmetric and with || however small)
such that the matrix

(2.3) Alw) = ivk(w) — b + ¢

satisfies the condition Re v A(w)v < 0 for every real w ane every v, then there are

functions S(x, Vs v), K(x, v, v), E(x, , v) continuous everywhere and vanishing at the

origin such that for a solution o(t), &(t), n(t) of (2.1), (2.2) corresponding to initial

conditions &(0), n(0) we have '

@4 o] = Sz [0, [)]), @] = K(z, [£0)
Ino) = £, [€0)], [(0)])

for every t = 0. Moreover, we have o(t) — 0, &(t) — 0, n(t) > 0 as t — 0.

SUOIE
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Proof: First note that estimates (1.10) are true. Since o(t) has a derivative, we
have from (2.1), (2.2),

25)  o(t) = 2() + f ;k’(t — 1) f(o(x)) dt + (KO) — b) f(o(t)) — an(t).

Choosing a T > 0 put

(2.6) f2(t) = f(o(t) for 0<1<T,
=0 elsewhere ,
walt) = o'(t) — (&) — (k(0) — b)f(o(t)) + an(t) for 0<t<T,
_ J "t = 7) f(o(2) de for t> T,
= 00 - for t<O.

Obviously, both fT(t) and w,(t) possess Fourier transforms; moreover, it can be easily
verified that

27) walt) = j " Kt = 1) fule) de

—~~

where we define k'(f) = 0 for ¢ < 0. Thus, by the convolution theorem, wr = (K')fy-
But (k') = iwk — k(0) so that we have

(23) wi(w) = (io k(o) — k(0)) f1(w).
Next, put
(2.9) o(T) = j "F0) (o + an — ) dt.

Using (2.6), Parseval’s equality and (2.8) we get
(2.10)

? \ 1 ° v fT —
o(T) =J friwr + (K(0) — b) fr} dt = EJ Re fy {wr + (k(0)) — b) fr} do =

=17 ReZyA@) - 9frdo g — 1| Refiefrdw <0.
21 ) — o 21 ) _

Since ¢ is positive definite, there is a number x« > 0 such that Re fTT‘EfT = «frfr
Hence,

(2.11) o1 s - = j :fr‘fr do <0.
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Thus, from (2.9) we have by (2.2),

a(T) T T
(2.12) f(s)ds + f n"'an dt <f nVz' dt,

a(0) 0 0

the trajectory o(¢) being the integration path in the first integral.

Now, expressing the first integral in (2.12) by U(s) and estimating by (1.10), the
second one by the primitive function 4n'(t) a n(t) = v|n(¢)||> with v > 0, and in-
tegrating by parts the third one, we get the inequality

(2.13) hy[o(T)|? + v[u(T)[* < 3h:[0(O)]* + 3]a] . [n(0}]* +
+ Z[n(0)] + Z(1 + ﬁ“)‘ig’g)lln(t)ﬂ -

Taking into account that |o(0)] < Z + |a|| . [£0)]| + |B] - [#(0)] by (2.1), we
immediately conclude from (2.13) that

214) ] = EZ [O), [1O). o] = sz, [60)] [()])

for every t = 0, where the functions E, S possess the properties given in the theorem.
Since a is a regular matrix it follows from (2.1) by (2.14) that

B

(219) 0] < (2. [, [nO)] . 12 0.

Moreover, by (2.2), |&(t)]| £ E, and ||o’(1)] £ M, from (2.5).
Next, referring back to (2.9), we have

(2.16) —o(T) = — f:f‘a’ dr — er‘an dr + ij‘z’ dt =
= —U(o(T)) + U(s(0)) + 4(n'(T) an(T) — n'(0) a n(0)) +
+ n(T) 2(T) = 1(0) 2/(0) — J :,,‘ Zdt <
= %(Ila(f)llz + [o@)]) + Ha] (In(DI* + [1ON) + Z([n(T)] + [n(O)]) +
+ ﬂ*’zteig%ﬂn(t)” < hoS® + |a|| E? + 2ZE + B7'ZE = M,
where M, is independent of T: Thus, by (2.11),

(2.17) M, 2 —o(T) = 2£j fofrdo >0
TJ -
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for any T > 0. Consequently, by Parseval’s equality,

0<:<J fifrdt < My, i, by(26),

(2.19) <[ 1t o = o,

for any T > 0. Since | f(o)|| Z hy| o], we have [§ [o(1)]|> dt < M5 so that in view
of (2.14) and the inequality |o’(r)| < M, we easily conclude as before that o(f) —> 0
as t — c0.

Thus, summarizing we have |&(1)| < K, [|€'(1)] < E, [€(¢)]| £ M; and &'(t) > 0
as t — oo. (The last two relationships follow from (2.2)). From this, however, we
get n(t) = &'(t) > 0 as t > co. As a matter of fact, assume conversely that &'(f) > 0
is not true, i.e. that there is a component &(t) of &'(¢), a 6 > 0 and a sequence t; <
<t, <ty <...,t; > oosuch that |€,"(t,-)| > §fori = 1,2, ... Choose an index i and
consider first the case that &(t;) > &; then there is a ¢} such that &(t) > /2 for
t; <t < tf and &(tf) = 8/2. Such a 1} really exists as in the opposite case we would
have &(f) > §/2 for every t 2 t;, and consequently,

5(1) — &t)) = f t_:,;(r) dr > g(t — 1),

which would contradict the assumption [ék(t)] < K. Thus, we have
o
ék(fik) - fk(ti) > ’Z‘(IT - 1),

and since the left hand side does not exceed 2K, we get
(2.19) 1 —t; < 4K/5 .
Furthermore, by the mean-value theorem there is a t; with ¢; < 7; < t} such that
, &lt) — &ty
it = )= D),

so that ]Zf,’(('c)] > g‘tf‘ - t,-l_l, ie. by (2.19),

(2.20) |&(x)| > 6%/8K .

Repeating the whole consideration for the case that —&(t;) > 6, we conclude that
(2.20) is again true. Hence, we have found a sequence 7, < 7, < T3 < ..., T; > 00
such that (2.20) is true for i = 1,2, 3, ..., which contradicts the fact that £"(¢) — 0.
Thus, &'(tf) - 0 as t — . .

Finally, starting from (2.1) and using the fact that a is a nonsingular matrix we
obtain &(f) - 0 as t > oo; hence, Th. 2.1 is proven.
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3. In this part the vector equation
G.1) olt) = =(1) + J Kt — ©) f(o(t)) de |
0

where o(t), f(o), z(t) are real n-vectors, k(t) a real n x n matrix will be considered.
Assuming again that conditions guaranteeing the existence and uniqueness of
a solution of (3.1) are satisfied, we have the following assertion:

Theorem 3.1. Let k() fulfill condition (1.3), z(t) condition (1.33); furthermore,
let f(o) satisfy conditions a), b) in Th. 1.1 and let h > h3h{'. If there is a ¢ > 0
such that the matrix

(3.2) Alw) = (1 + iwg) k(w) — h™'I

with k(w) having the usual meaning fulfills the inequality Reij* A(w)n < 0 for
every real w and every n, then there is a continuous function S(x) vanishing at
x = 0 such that

(33) lo®)] = 8(z), t=zo0,
where o(t) is a solution of (3.1). Moreover, we have 6(t) — 0 as t — oo.

Proof: Choosing a T> 0 put

f(t) = f(a(t)) for 0<t<T,
=0 elsewhere,

or(t) = o(t) for 0St<T,
=0 elsewhere,

z¢(t) = =(t)

= — jrk(t — 1) f(o(r)) dr

0

=0

for 0Zt<T,
for t> T,

elsewhere;

then we have a.(t) — z4(t) = [%,, k(t — 1) f+(7) dr, and conscquently, 67 — z; =
= kfy. Defining o(T) by

(3.4) oT) = ij‘(o) {6 —z—h""'f(o) + q(¢’ — 2')} dt,

we easily obtain by Parseval’s equality that o(T) < 0, Following the pattern of pre-
vious proofs we conclude from (3.4) that

(33 taom) + s [ o] o <
< 1qh,[o(0)]* + p712Z(1 + q) hy sup lo(®)] -
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From this, however, we have immediately (3.3). Taking then the first derivative of
(3.1) and making use of (3.3), we get [[o'(f)| < M. From [§ [o(r)]* dt £ M’ we
conclude that o(t) -0 as t — oo which finishes the proof.

Note 3. The assertion of Th. 3.1 remains true if condition b) is replaced by f'(c) o >
> Oforo = 0 and ||f(0)| < o], and the matrix (3.2) by A'(w) = (1 + iwg) k(w).
The proof of this follows from Th. 3.1 applied on an equation obtained from (3.1)
by substitution f(c) = g(c) — ¢o, where &¢ > 0 is sufficiently small; its idea is the
same as that used in [6], pp. 56.

4. In this part we shall consider certain systems related to (1.1), (1.2) and (2.1),
(2.2) and (3.1) on the one hand, and a relationship of the above results to the Liapu-
nov’s theory on the other.

Let the system
(4.1) x' = Ax + Bf(o), & =f(6), o=Cx —y¢,

where (%), &(t), f(o) are n-vectors, x(t) an m-vector, A a real constant m x m matrix
B a real constant m X n matrix, C a real constant n X m matrix, y a real constant
n x n matrix, with initial conditions x{0), £(0) be given.

From the first equation (4.1) we have

(1) = e**x(0) + f A9 Bf(o(1)) dr ;

0

substituting this into the second one, we get

0

42) oft) = Cer'x(0) + j " CeA Bf(o(e)) dr — 7 &(1) -

Hence, system (4.1) is equivalent to (4.2) with ¢’ = f(c), i.e. reduces to the system
(1.1), (1.2).

Thus, if every eigenvalue of A4 has a negative real part, the vector z(f) = Ce“'x(0)
satisfies condition (1.4) and the matrix k(t) = Ce*'B satisfies (1.3). Moreover, if
f(o) fulfills the conditions stated either in Th. 1.1 or Th. 1.2, we have f(0) = 0, and
consequently, (4.1) possesses the trivial solution x = 0, £ = ¢ = 0. Thus, we have
the assertion:

If the assumptions of any one of the theorems 1.1 to 1.4 are satisfied by k(t) de-
fined above, f(o) and v, then the trivial solution of (4.1) is stable in large, i.e. it is
stable and asymptotically stable, the corresponding stability regions being the
entire space.

Next, consider the system

(4.3) x' = Ax + Bf(o), & =n, n' =f(o), o=Cx—al— by
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with initial conditions x(0), £(0), #n(0), where (1), (t), o(t), f(o) are n-vectors, x(t)
an m-vector, and 4, B, C, a, b constant matrices of corresponding types. Expressing
again x(¢) from the first equation (4.3) and substituting it into the last one, we get

(4.4) olt) = Ce**x(0) + j e IBf (o)) dt — a &(1) — bn(r).

0
i.e. the equation (2.1). Thus, we have the assertion:

If all the eigenvalues of A have negative real parts and the matrices a, b, k(t) =
= Ce"'B together with f(o) fulfill the requirements given in Th. 2.1, then the trivial
solution of (4.3) is stable in large.

Finally, it is obvious that the system
(4.5a) x' = Ax + Bf(s), o= Cx

reduces to (3.1); hence, Th. 3.1 may be applied.
Now, let us pay our attention to a relationship with the Liapunov’s theory.
Obviously, (4.1) is equivalent to the system

(4.5) x' = Ax + Bf(s), o = CAx + (CB —y)f(0).

In the following we shall assume that all eigenvalues of A have negative real parts
and y is symmetric. For the sake of brevity introduce the notation:

(4.6) Wi) = —Ce*B, N(iw) = j “y(t) exp (i) dt ,

G(iw) = N{iw) + (i)' y.

Furthermore, let 2 be the set of all real continuous n-vector functions f(c), which
are gradients and satisfy the condition

f‘(a)a> Q0 for o £0.
Then we have:

Theorem 4.1. If there is a positive definite matrix H and a p > 0 such that for
any f(c) € A the function

(4.7) V= x'Hx + 28(U(c) — U(0))

with f(o) = grad U(c) is a Liapunov function for (4.5), i.e. V' along the trajectory
is negative for x & 0 or ¢ =% 0, then there is number q > 0 such that

(4.8) ' Re ii'\(1 + iwg) G(iw)n = 0

for every real w and every 1.
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Observe that condition (4.8) coincides with the condition imposed on the matrix
A(w) in Th. 1.2, provided k(w) = —N(iw). (Compare also with 4.6 and 4.2).

Proof of Th. 4.1. Choose a symmetric positive definite n x n matrix h and specify
f(0) = ho. Then obviously f(c) € . Actually, we have f'(¢) ¢ = 6*ho > 0 for every
¢ # 0. Moreover, putting U(c) = 40'ho, we get

U(s) _ <ﬁ> ho, i=1,2,...n,

Jo; Jo;

and consequently, grad U(o) = ho = f(o).
Thus, we have
(4.9) V= x'Hx + Po‘ho,
and by (4.5) with f(o) = ho,
(4.10) V'=x'(H + H')x" + 2Bc'he’ =
= x\(H + H') Ax + x\{(H + H") Bh + 2BA'C'h} ¢ +
+ 2B6*h(CB — ) ho .
It can be easily verified that with
(4.11) 0 = (H+H)A (H+H)Bh ] [x
2BhCA | 2ph(CB = y) h o

we have V' = w'Qw. Since by assumption Q is negative definite, we obtain for any
complex vector w = 0 that

(4.12) Re #'0w < 0.
Consequently, expanding (4.12),
(4.13) Re {x'(H + H') Ax + X(H + H') Bho +
+ 6'2BhCAx + G 2Bh(CB — y) ho} < 0
forx £ 0orag % 0.
Define the m x n matrix M(iw) by

(4.14) M(io) = J A s

0

Then obviously
(4.15) io M(iow) = B + AM(iw) .
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Next, choose a constant n-vector n # 0, an @ and put x = M(iw)n, ¢ = h™'n.
Since ¢ #+ 0, we have from (4.13),

(4.16) Re 7 {M'(H + H') AM + M(H + H") B + 2BCAM +
+ 2B(CB —y)}n <O0.

Invoking (4.15) it follows that

(4.17) Re 7' {ioM'(H + H') M + io 26CM — 2By} n < 0.

Since 1'M'(H + H') Mn is real and § > 0, (4.17) yields

(4.18) Re 7'\ {ioCM — 3} n < 0.
On the other hand, from (4.6), (4.14) we have N(iw) = — CM(iw); consequently,
(4.19) Re i7'{io N(iw) + y} n = Re 7'{iw G(iw)} n > 0

for every w and n # 0.

Now we are going to show that there are constants K, > 0, K, > 0 such that
(4.20) Re 7'{io G(iw)} n = K, [n?,
(4.21) |Re 7" G(iw) n| < Ka||n|?
for every w and 7.

As a matter of fact, since [|W(f)| = K3 exp (—at) with « > 0, we have from (4.6),
[ N(iw)|| £ Kso™* for every w. At the same time,

|Re 77" Giw) n| = [Re {7 N(i@) 1 + (iw) ™" 7'yn}| =
= [Re 7' N(iw) n| < |n]* [N(iw)]| < o™ *Ks]ln]* -
Thus, (4.21) is established.
Next, the integration by parts yields

Jme—iwt v"(t) dt = _\»'(O) — iw v(O) + (ico)2 N(iw) .

V]
Since v'(t) = —CA%e*'B, we have || [ e™ ™" v'(t)dt|| < Ka for every . Consequently,
(4.22) io N(io) = (0) > 0 as |o| » oo.
On the other hand, from (4.13) we have for x = 0, ¢ = h™15 + 0,

(4.23) Re7(CB — y)n < 0,
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Since (0) = — CB by (4.6), we have by (4.22),
(4.24) iw G(iw) = io N(iw) + y >y — CB=F,

which is a positive definite matrix in view of (4.23). Thus, there is a K5 > 0 such that
Re i1'Fn = K for any n with ||n]| = 1.

On the other hand, by (4.24) there is a P > 0 such that |iw G(iw) — F|| < K/2
for every || = P. Thus, for every || = P and n with |5]| = 1 we have

Re 77" io G(iw) n = Re 7j'Fn + Re '(iw G(iw) — F) 7

and

|Re 7'(i> G(iw) — F) n| < |iw G(iw) — F|| < Ks/2.
Hence,
(4.25) Re 77'io G(iw) n > Ks/2

for any |w| = P and || = 1.
Next, choose an w, € {—P, P); in view of (4.19) there is a K,,, > 0 such that

(4.26) Re 7' {iwy G(iwg)} 1 = K,,,

for any n with || = 1. Since the matrix iw G(iw) is continuous for every w, there is
a neighborhood I,,, of w, such that |iw G(iw) — iw, G(iw,)| < K,,/2 for any
wel, . But as

Re ij'io G(iw) n = Re if'iwy G(iwg) n + Re 7' {iw G(iw) — iwy G(iwe)}

and

[Re 71*{iw G(iw) — iwy Giwe)} n| < K,,/2
for any w €1, and || = 1, we have
(4.27) Re 7'io G(iw) n > 3K, , wel, , [n]=1.

The system of all intervals I, @, € { —P, P), however, covers {—P, P}; hence,
by Borel’s theorem, there is a finite subsystem with the same property. Combining
this result with (4.25) we conclude that there is a K; > 0 such that

Re 7'{iow G(iw)} n = K,

for any w and n with |[#]| = 1, i.e. that (4.20) is true. But from (4.20), (4.21) it follows
that there is a g > 0 such that (4.8) is true for every w and 5. Hence, Th. 4.1 is proven.

Observe that Th. 4.1 is true for y = 0 and that (4.5a) is equivalent to
(4.28) x' = Ax + Bf(c), ¢ = CAx + CBf(0),

ie. to (4.5) with y = 0; hence, Th. 4.1 appears also as a counterpart of Th. 3.1 con-
sidered for (4.28).
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Pe3ome

PACITPOCTPAHEHUE METOJA IIOIIOBA
HA BEKTOPHBIE HEJIMHEMHOCTU

BAILIJIAB JOJIEXKAJI (Véaclav Dolezal), ITpara

B craTbe BbIBEICHBI HEKOTOPbIE JOCTATOYHBIE YCIOBUS AJIs aGCOIOTHON YCTORYH-
BOCTH PELIEHHUS ONPE/EICHHBIX THIIOB BEKTOPHBIX MHTErpoaudpepeHraibHbIX ypas-
HeHu# Bosbreppa. Oxa3biBaercs, 4TO yCTOMYMBOCTh PELUECHHUS apaHTHPOBaHA BbI-
TOJIHEHMEM OIPENENIEHHOTO areBpanteckoro yCIoBHs, HAJIATAEMOTo Ha 06pa3 syipa
1o Dypse.

B nepBoit yacTu paboThl uccaeayercs cucrema ypasHenui (1.1), (1.2), Bo Bropoit
gactu cucrema (2.1), (2.2) u B Tperbeii yactu ypasaenue (3.1).

B 4eTBepTOIi YACTU [OKA3aHBI, BO-IIEPBBIX, IIPHIIOXKEHUS PE3YJIbTATOB K CUCTEMAM
ypaBurenuii (4.1), (4.3), (4.5a) 1, Bo-BTOPBIX, CBSI3b C TeOpHeil ycToitunBocTH JIsnyHo-
Ba. JloxaszaHa Teopema, yTBepXKIarollas, YTO €CIIH (4.7) sBiseTcs GyHkuuen Jlamy-
HOBa ISt BeeX cucTeM (4.5), To BBIIONHEHO yciuosue (4.8), paBHOCHWIBHOE JOCTATOY-
HOMY YCJIOBHIO YCTOWYMBOCTH, BbICKa3aHHOMY B Teopeme 1.2.
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