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Чехословацкий математический журнал, т. 16 (91) 1966, Прага 

SEMIGROUPS CERTAIN OF WHOSE SUBSEMIGROUPS HAVE 
IDENTITIES 

MARIO PETRICH, Pennsylvania 

(Received March 9, 1965) 

KoLiBiAROVA [4; 5; 6] and VOROB'EV [10; 11] have estabUshed certain characteriza­
tions of semigroups S having one of the following properties: (a) every subsemigroup 
of S has an [left] identity, (/?) every [principal] left ideal of S has an [left] identity. 
We characterize the semigroups S having one of the following properties: (y) every 
[cyclic, finitely generated] subsemigroup of iS has an [left, right] identity, (ô) every 
[principal, finitely generated] left ideal has an [left, right] identity, and in addition 
impose the uniqueness condition on one-sided identities. 

Section I is a preliminary one. In it we establish certain connections between the 
maximal semilattice homomorphic image Yof a semigroup S which is a union of groups 
and the set E of idempotents of S. Specifically, we obtain the conditions on such 
a semigroup, in terms of the elements of E, in order that S be, e.g., a semilattice of 
right groups, or that У be a linearly ordered set. Section II deals with the problems 
stated in (y) above. We begin with the weakest of such conditions and then systema­
tically impose more stringent ones. This keeps the proofs of single theorems relatively 
short and makes the dependence of all the conditions involved more transparent. In 
section III we perform a similar analysis, this time considering the problems stated 
in ((5) above. In it we also obtain some characterizations of inverse semigroups in 
terms of identities of principal one-sided ideals. 

The analysis performed cannot be applied to semigroups satisfying analogous 
conditions for (two-sided) ideals. For, as BRÜCK ([1], Theorem 8.3, p. 48) has shown, 
every semigroup S can be embedded in a simple semigroup S* with identity. In S* 
every ideal trivially has an identity (actually there is only one ideal, namely S). 
It is obvious that the structure of S* may be very comphcated. All the semigroups of 
section II and some of section III (precisely those all of whose [principal, finitely 
generated] one-sided ideals have a one-sided identity on the same side) are unions of 
groups whose idempotents form a semigroup satisfying certain conditions (those of 
section II are periodic). The structure of such semigroups was described by FANTHAM 
|[3] and for a special case (idempotents commute) by CLIFFORD (see [2], Theorem 4.11, 
p. 128). The remaining cases of semigroups in section III are all regular semigroups 
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whose idempotents form a semigroup sat̂ "sfying certain conditions. The structure of 
these semigroups is little known except in the case of inverse semigroups. In the 
whole discussion, two factors are of fundamental importance: Clifford's theorem 
(stated below) and the notion of the maximal semilattice decomposition of a semi­
group (discussed in detail in [8]). 

Our results contain all the principal results in the papers mentioned above; we 
obtain most of them as corollaries to stronger statements. There is one exception 
here, namely, our results do not agree with certain statements in [5]. In fact, 
Theorems 2, 3, and 4 of [5] are incorrect as stated (consider the bicyclic semigroup); 
as a consequence the statements (concerning A): I, II, and IV (p. 13 — 14) are also 
incorrect. Furthermore, the word "unique" is omitted in the introduction of the 
paper and in both the Russian and the German summaries. In the papers cited, the 
authors have estabhshed certain additional properties of the semigroups in question. 
We have refrained from giving any extra properties of these semigroups except in a few 
instances when these properties followed directly from the statements established. 

We follow the notation and terminology of Clifford and Preston [2]. Throughout 
the whole paper, S denotes an arbitrary semigroup, -E the set of its idempotents, 
Y the maximal semilattice homomorphic image of -S [8], unless expressly stated other­
wise. The elements of Y are denoted by lower case Greek letters, and to a e У the 
corresponding N-class of S (that is, the complete inverse image of a) is denoted 
by N^. The term "finitely generated" is abbreviated to f.g. and "linearly [well] ordered 
set" by l.o.s. [w.o.s.]. The statements that may be obtained by the "left-right" 
duality are omitted. Square brackets are used for alternative readings and for the 
reference to the bibliography. 

We say that a partially ordered set T is downward well-ordered if every non-empty 
subset of T has a greatest element ([2], exerc. 6, p. 129). If the maximal semilattice 
homomorphic image Y of S, as a partially ordered set, is linearly ordered, we say 
that S is a linearly ordered set of TV-classes of S; these may belong to some special 
classes of semigroups, e.g., right groups, so we say that S is a l.o.s. of right groups. 
If in such a case every AT-class of S consists of a single element, we say that S (itself) 
is linearly ordered. The meaning of phrases "S" is a downward w.o.s. of right groups" 
etc. is clear. If e is an idempotent of S, H^ denotes the maximal subgroup of S having e 
as its identity; hence if S is the union of groups, S = \J H^. Note that H^ is contained 
in a single iV-class of S. ^^^ 

Throughout the whole paper, the words "finitely generated" (f.g.) may be replaced 
by "with at most two generators". The proofs of statements containing "f.g." are 
arranged so as to contain the proof of this fact. For example, in the proof of Theorem 
5, we implicitly prove the following implications: b) implies c) and c) implies a), where 

a) every f.g. subsemigroup of S has a left identity; 
b) every subsemigroup of S having at most two generators has a left identity; 
c) 5 is a l.o.s. of periodic right groups. 

Note that a) implies b) trivially. 
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In our investigations the following result is fundamental (see [2], Theorem 4.6, 
p. 126). 

Theorem (Clifford). S is a semilattice of completely simple semigroups if and 
only if S is a union of groups. 

This theorem will be referred to as "Clifford's theorem". By 4.2 of [8], the semilat­
tice in question is the maximal semilattice decomposition 7of S, that is, the completely 
simple semigroups mentioned coincide with iV-classes of S; we will use this fact 
without explicit mention. The following lemma will be quite useful. 

Lemma 1. Let S be a union of groups. If, for every N-class N of S, E n N is 
a subsemigroup of S, then E itself is a subsemigroup. 

Proof. By Clifford's theorem and the remark above, every A^-class N of S is 
completely simple. By the hypothesis, the set of idempotents £ n iV of iV is a sub-
semigroup, and thus E n N is a, rectangular band by Lemma 1 of [7]. 

Now let e,fEE; then ef e Hg, fe e H^ for some g, he E. Further, e e N^, feNß for 
some a, ß e Y 3ind thus ef,feeN^ß. Consequently g, he E n N^ß which implies 
g = g hg since E n N^ß is a rectangular band. Since H g and Hf^ are groups, ef = efg, 
fe = feh and there exist x e Hg, y e H^ such that efx = g, fey = h. Consequently 

ef = efg = ef{efx) = (efe) (efx) = efeg = e{feh) g = efe{fey) g = 

= efef{fey) g = efefhg = ef{efg) hg = efef{ghg) = efefg = 

= efef = (eff. 

Definition. S is said to be a rectangular group if it is isomorphic to the Cartesian 
(direct) product of a rectangular band F and a group G, S ~ F x G. In such a case, 
clearly £ is a semigroup and E ^ F. 

Tlieorem 1. S is a semilattice of rectangular groups if and only if S is a union of 
groups and E is a subsemigroup of S. 

Proof. Since a rectangular group is a completely simple semigroup whose 
idempotents form a semigroup, necessity follows by Clifford's theorem and Lemma 1. 
Sufficiency follows from Clifford's theorem and Lemma 1 of [7]. 

Theorem 2. S is a semilattice of right groups if and only if S is a union of groups 
and for every e,feE, efe = fe. 

Proof. Necessity. Theorem 1 imphes that S is a union of groups and that E is 
a subsemigroup. If e,fe E, then both ef andfe are contained in the same iV-class AT 
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of s. It follows from the hypothesis that N is a right group. Consequently E n N is 
a right zero semigroup which implies (e/) (fe) = fe, that is, efe = fe. 

Sufficiency. The hypothesis implies that £ is a semigroup and thus S is a semilattice 
of rectangular groups by Theorem 1. It follows that for any e.feEnN, where Л̂^ 
is an iV-class of S, efe = e and by the hypothesis, efe = fe. Consequently fe = e, 
that is to say, £ n iV is a right zero semigroup and thus N is a right group. 

Corollary 1 ([2], exerc. 8(b), p. 129). A band T is a semilattice of right zero 
semigroups if and only if for all e,fe T, efe = fe. 

Corollary 2 (cf. § 4.2 of [2]). S is a semilattice of groups if and only if S is a union 
of groups and the elements of E commute. In such a case, Y and E are isomorphic 
semilattices. 

Remark. Under the hypothesis of Theorem 2, every right ideal of S is two-sided. 
In fact, every iV-class of S is right simple and hence, by 4.4 of [8], every right ideal 
of 5 is a union of iV-classes and is thus a two-sided ideal. Consequently every left or 
right ideal of S satisfying the hypothesis of Corollary 2 above is two-sided. 

Theorem 3. S is a l.o.s. of completely simple semigroups if and only if S is a union 
of groups and for any e,feE, either e E efS or f efeS. 

Proof. Necessity. First note that every N-class is completely simple. Let e,fEE; 
then eeN^, f^Nß. Suppose that a S ß (ordering of the semilattice У); the case 
Д < a is treated analogously. Then efe e N^, and we have e e H^^, efe e Hj^ for 
some Jf-classes Я^д, Hj^ of N^. Complete simplicity of N^ yields efe = e{efe) e G 
G HiJij,fla ^ Я;д. Letting и be the inverse of efe in Я,^, which is a group, we 
obtain efeu = e. But и e H^^ implies eu — и whence efu = e. 

Sufficiency. By Clifford's theorem it suffices to show that Y is linearly ordered. 
For any N-classes Â ^ and Nß of 5, let eeN^, feNß be idempotents. Then e e efS 
implies a S ß a n d / e / e S implies ß ^ oc. 

The following propositions follow easily from the results already proved. 

Proposition 1. S is a l.o.s. of rectangular groups if and only if S is a union of 
groups and for any e,feE, either efe = e or fef = f. 

Proposition 2. A band T is a l.o.s. of rectangular bands if and only if for any 
e,fe T, either efe — e or fef = f. 

Proposition 3. S /5 a l.o.s. of right groups if and only if S is a union of groups and 
for any e,fe E, either ef — f or fe = e. 
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Proposition 4. Ä band T is a Lo.s. of right zero semigroups if and only if for any 
e,feT, either ef = f or fe = e. 

Proposition 5. S is a Lo.s. of groups if and only if S is a union of groups and E 
is linearly ordered. 

II 

We now turn to the study of semigroups all of whose [cyclic, f.g.] subsemigroups 
have an [left, unique left] identity. 

Theorem 4. Every cyclic subsemigroup of S has an an identity if and only if S" 
is a semilattice of periodic completely simple semigroups. 

Proof. Ncessity. Let x e S; then <x> has an identity e. Hence e = x"^ for some 
natural number m, and thus x"""̂ ^ = xe = x. Theorem 7 of [9] implies that <x> is 
a group, and <x> consists of n elements x, x^, ..., x""^ if n is the smallest natural 
number for which x" = e. By Chfford's theorem, 5 is a semilattice of periodic 
completely simple semigroups. 

Sufficiency. It follows that S is a union of periodic groups and hence a union of 
finite cychc groups. Consequently every cyclic subsemigroup of S is contained in 
a finite cychc group and is thus itself a finite cyclic group. 

Theorem 5. Every f.g. subsemigroup of S has a left identity if and only if S is 
a Lo.s. of periodic right groups. 

Proof. Necessity. By Theorem 4, S is a semilattice of periodic completely simple 
semigroups N^, a e 7. If 7 is not linearly ordered, then there exist a, ß e Y such that 
aß Ф (Â, aß Ф ß. Let a e N^, b e NßhQ arbitrary, and let T = <a, b) . Let e be a left 
identity of T. Then e eNy for some y e 7; the equations ea = a, eb = b imply a ^ y, 
ß -^ y, respectively. Since T Ç iV̂  u iV̂^ u N^ß and by the hypothesis aß < a, 
aß < ß, we must have either y = a or y = jö since ее T. But if, e.g., y = a, then 
jÖ ^ a, a contradiction since a and ß were assumed to be incomparable. 
Consequently 7 must be linearly ordered. 

It remains to show that each iV-class of S is a right group. It thus suffices to show 
that a completely simple semigroup T all of whose subsemigroups generated by at 
most two elements have left identities, is a right group. This follows immediately 
from a simple calculation in Tif Tis represented in the form .#(G; / , Л; P) (see [2], 
chapter 3). 

Sufficiency. Let T = (a^, aj,..., a„y with a^ e S, i = 1,2,..., n. Then a^ e N^. for 
some ai e 7, and we may suppose (and do) that a^ ^ â , i = 1, 2 , . . . , n. Further 
aie H^. for some е ^ е £ , i = 1, 2 , . . . , n. Each N^. is a right group and hence the 
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idempotents of N^. form a right zero semigroup. If â  = â  then e^e^ = ê . By 
Proposition 3, either e^ei = ei or eie^ = e^. Hence if â  < a^, then е^е^еЫ^.,, 
e^ E N^^, and N^. ф N^^, which implies that ê ^̂  ф e^. Thus ê e,- = ê , and we obtain 
for any 1 ^ i ^ n 

Since Hgj is periodic, a'1 = e^ for some m and thus ^̂  G T. Consequently e^ is a left 
identity of T. 

Remark. From the proof of sufficiency, it follows that any ei such that â  e Я^.,, 
Oil = a^, is a left identity of T. Conversely, these are all the left identities of T. For 
let e be a left identity of T. Then in particular ee^ = e^ and thus eeN^^. Further, 
e E Tn N^^ implies e = a^ß\a^ß\ ... CL\"^ for some üß. E {a^, «2, ..., a„} n N^^ and 
some ki, г = 1, 2, ..., m, with 1 g m ^ п. Since ee^^ = ep^ and ciß^eß^^ = üß^, we 
have e = <з̂ 1а!̂ 2 -•• ^fc ^ /̂?m' where Cß^EN^^, which proves the assertion. Con­
sequently the set of all different e,- with ÜIEH^., a^ = a^, constitutes the set of all 
left identities of T. Hence their number is at most n. 

Corollary. The following conditions on S are equivalent: 

a) every f.g. subsemigroup of S has an identity; 
b) every f.g. subsemigroup of S has a unique left [rightly identity; 
c) S is a Lo.s. of periodic groups. 

Proof. The equivalence of a) and c) follows from Theorem 5 and its dual. Item a) 
obviously implies b). Suppose that every subsemigroup of S with at most two 
generators has a unique left identity; the case of "right" is dual. By Theorem 5, S is 
a Lo.s. of periodic right groups N^, ОСЕ Y If a E H^, b E HJ- where e,fEN^, then the 
semigroup <а, Ь> has both e and / as its left identities by the remark following 
Theorem 5. By the hypothesis, e = f and consequently H^ = N^, i.e., N^ is a group 
and c) holds. 

Theorem 6. Every subsemigroup of S has a left identity if and only if S is 
a downward w.o.s. of periodic right groups. 

Proof. Necessity. By Theorem 5, S is a Lo.s. of periodic right groups iV ,̂ a e 7. 
Let Л be a non-empty subset of Y. Let T = (J ^al then Tis a semigroup since У is 

cceA 

linearly ordered. Let e be a left identity of T. Then cENß for some ß E Ä. If x G T, 
where x e Ny, then ex = x implies ß '^y. Consequently j5 is a maximal element of A 
and У is well-ordered downward. 

Sufficiency. Let T be a subsemigroup of S, and let A = {(XEY\N^r\ Т ф П}-
Then Л is a non-empty subset of У and hence contains a maximal element ß. If 
xENß n T, then xeH^ for some cENß. Since Nß is periodic, so isH^and hence 
e = x" e T for some n. Let у e T; then у EN^ for some у E A.lî у = ß, then ey = у 
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since Ny is a right group. Suppose that y < /?. We have yeHj. for some / e iV .̂ By 
Proposition 3, either ef = f or fe = e. Since fe eN^, ее Nß and у < ß, the second 
alternative is impossible. Hence у = fy = efy = ey and e is a left identity of T. 

Corollary. The following conditions on S are equivalent: 

a) every subsemigroup of S has an identity; 
b) every subsemigroup of S has a unique left [^right^ identity; 
c) S is a downward w.o.s. of periodic groups. 

Ш 

In this section we perform an analysis similar to the one in the previous section 
by considering semigroups all of whose [principal, f.g.] left ideals have [one-sided, 
unique or not] identities. We start with some auxiliary statements. 

Lemma 2. The following conditions on an element a of S are equivalent: 

a) a is regular; 
b) R{a) [b(a)] has an idempotent generator; 
c) jR(a) [b(a)] has a left [^right^ identity. 

Proof. Items a) and b) are equivalent by Lemma 1.13, p. 27, [2]. If a) holds, then 
a = axa for some x e S, and ax [xa] is a left [right] identity of jR(a) [L(fl)], and c) 
holds. If c) holds and e is a left [right] identity of R(a) [L(a)], then e = xa = 
= (ex) al^e = ax = a^xej] for some x e SK Thus a — a(ex) ci\ci — a(xe) cx\ where 
ex G S and a) holds. 

Corollary 1. Every principal right \lcft\ ideal of S has a left [^right^ identity if 
and only if S is regular. 

It is easy to see that if a is regular, then e is an idempotent generator of R{a) [L(a)] 
if and only if e is a left [right] identity of R(a) [L(a)] (and is of the form ax [xa] for 
some X e S). 

Corollary 2. The following conditions on an element a of S are equivalent: 

a) a is regular and a = axa = aya implies ax = ay; 
b) R{a) has a unique idempotent generator; 
c) R(a) has a unique left identity. 

Corollary 3. The following conditions on an element a of S are equivalent: 

a) a is regular and a = axa = aya implies xax — y ay; 
b) jR(a) and L(a) both have unique idempotent generators; 
c) R{a) has a unique left identity and L(^a) has a unique right identity; 
c) a is regular and has a unique inverse. 
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Proof. Item a) is equivalent to: a is regular and a == axa = aya implies ax = ay, 
xa = ya. Hence the equivalence of a), b), and c) follows from Corollary 2 and its 
dual. Item a) implies d) directly. Suppose that d) holds and that a = axa = aya. 
By Lemma 1.14, p. 27, [2], both xax and y ay are inverses of a so that xax = y ay. 

Corollary 4. Every principal right ideal of S has a unique left identity and every 
principal left ideal of S has a unique right identity if and only if S is an inverse 
semigroup [cf. Theorem 1. 17, p. 28, [2]). 

Theorem 7. Let S be a regular semigroup. Then E is a band which is a semilattice 
of left zero semigroups if and only if for all a, x, y E S, a = axa = aya implies 
ax = ay. 

Proof. Necessity. By the dual of Corollary 1 to Theorem 2, for any e,feE, 
efe = ef. Hence if a = axa = aya, then ax, ay E E and thus {ax) {ay) {ax) = 
= {ax) {ay). Consequently ax = ay. 

Sufficiency. We first show that £ is a semigroup. Let e,fEE and let a be an inverse 
of ef. Then 

ef=^{ef){ae){ef) = {ef)a{ef) 

which implies {ef) {ae) = {ef)a by the hypothesis. Hence 

(l) a = a{ef)a = a{efa) = a{efae) = {aefa)e = ae, 

and thus a = aefa = afa. It follows in particular tha t / a e E and hence 

fa = {fa) {fa) {fa) = {fa) {faf) {fa) 

which, again by the hypothesis, implies {fa) {fa) = {fa) {faf), that is, fa = faf. 
Consequently 

a = afa = a{faf) = af 

whence, using (1), 

ef = {ef) a{ef) = {ef) {af) {ef) = {ef) a{fef) = {ef) {ae) {fef) = {efaef) {ef) = 

= efef = {efY , 

that is to say, £ is a semigroup. Consequently 

ef={ef){ef){ef) = {ef)e{ef) 

which implies {ef) {ef) = efe, and thus efe = ef. The dual of Corollary 1 to Theorem 
2 now implies that £ is a semilattice of left zero semigroups. 

Corollary 1. Every principal right ideal of S has a unique left identity if and 
only if S is regular and E is a band which is a semilattice of left zero semigroups. 
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Corollary 2. Let S be a regular semigroup. Then E is a semilattice if and only if 
for all a, X, y e S, a = axa = aya implies xax = y ay. 

This Corollary and Corollary 3 to Lemma 2 together imply the well-known fact 
that a semigroup is an inverse semigroup if and only if it is regular and its idempotents 
commute. 

Theorem 8. The following conditions on S are equivalent: 

a) every principal left ideal of S has an identity; 
b) every principal left ideal of S has a left identity; 
c) S is a semilattice of right groups. 

Proof. Item a) trivially impUes b). Suppose that b) holds. Let a e S and let e be 
a left identity of L(a). Then e = xa for some x e S^ and consequently 

(l) (xa) [ya) = ya 

for all y e S^. If x ф S, then e = xa = a and thus a = a^. Suppose that xeS. 
Applying to X the argument by which formula (l) was obtained, we find и e S^ such 
that (их) (ух) = ух for all у e S^. From (l) we have (xa) a = a and thus a = xa^; 
analogously x = ux^. Hence 

a = xa'^ = (wx^) fl^ = (их) (xa'^) = uxa = u(xa) (xa) = (их) (ax) a = axa . 

Thus in any case, we have a e Sa^ n aSa, and Theorem 4.3 (D), p.. 122, [2] implies 
that S is a union of groups. For eeE there is t; e S^ such that for all y e S^, (ve)(ye) = 
= ye (cf. (l)). Hence (ve) e = e, that is, e = ve, which implies eye = ye. In particular 
for any / e £, efe = fe and thus by Theorem 2, S is a semilattice of right groups, 
that is to say, c) holds. 

Suppose now that c) holds. By Theorem 2, S is a union of groups and for any 
e,feE, efe = fe. Let a E S with a e Я^; we wish to show that e is an identity of L(a). 
We have a = ea — ae and thus a is a right identity of L(a); it remains to show that 
for any X e S, xa = e(xa). Hence let x e -S with x e Hf. If a e N^ and x e Np, then 
ef, xe e N^p. Since N^p is a right group arid efis idempotent, efis a left identity of N^p, 
Consequently 

exe = e(fx) e = (ef) (xe) = xe , 

and thus 

exa = e(fx) a = (efef) (xa) = (efe) (fx) a = (fe) xa = (fex) (ea) = f(exe) a = 

= f(xe) a = (fx) (ea) = xa . 

Remark. It follows from a) that the left identity in b) is unique and from c) that 
every principal right ideal has a left identity (S being regular; see Corollary 1 to 
Lemma 2). 
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Corollary. The following conditions on S are equivalent: 

a) every principal left ideal and every principal right ideal of S has an identity; 
b) every principal left ideal of S has a left identity and every principal right 

ideal of S has a right identity; 
c) S is a semilattice of groups. 

Theorem 9. Every f.g. right ideal of S has a left identity if and only if S is regular 
and E is a band which is a l.o.s. of right zero semigroups. 

Proof. Necessity. By Corollary 1 to Lemma 2, S is regular. Let e,feE, let R be 
the right ideal of S generated by e and / , and let ^ be a left identity of R. Then 
R = R(e) u i?(/) and thus either g e R[e) or g e R{f), that is, either g = ex or 
g = fy for some x, y e S^. If g = ex, then / = gf = exf which implies ef = f. If 
д = fy^ then e = ge = fye which implies/e = e. It follows that efef = ff = f = ef 
if ef — f and efef = eef = ef if fe = e. Thus £ is a semigroup and Proposition 4 
implies that £ is a l.o.s. of right zero semigroups. 

Sufficiency. Let R be the right ideal generated by the elements a^, a2, ..., «^ of S. 
Since S is regular, â  = a^x^ai for some x^, X2? • • -̂  -̂ и ^ 5̂» ^^^ thus a,x,- e E. Denote 
by E^. the iV-class ofE containing a^x-,. We may suppose that â  ^ â , i = 2, 3, ..., n. 
Let Ci = a^Xi; then е^е^еЕ^. since a^ ^ â . If â  = a^, then CiCi = e^ since E^. is 
a right zero semigroup. Suppose that â  < a^. By Proposition 4, either e,ei == e^ or 
eje^ = Ci. But é'̂ ej e E^., ê  G E^^ and â  < aĵ  imply that the first alternative is 
impossible. Thus in any case e^e-, = e^, which imphes 

a-, = a^x-ßi = Cia^ = е^е^а^ = e^a-, . 

Since also e^ = a^x^ e R, e^ is a left identity of i^. 

Remark. From the proof of sufficiency, it follows that if a,- = aiX-^i, a^Xi e E^., 
ai = «1, then fl^x,- is a left identity of R. Conversely, every left identity of R is of this 

n 

form. For let e be a left identity of jR. Since R = (J JR(<2,), we have e = a^y for some 
i = l 

1 ^ i ^ n and some у e S^; since e is idempotent, we may suppose that у eS. We 
thus have â  = ea-, = aija^ which proves the assertion. 

Corollary. The following conditions on S are equivalent: 

a) every f.g. right ideal of S has a left identity and every f.g. left ideal of S has-
a right identity; 

b) every f.g. right [/^/^] ideal of S has a unique left [^f^ight^ identity; 
c) S is regular and E is a linearly ordered semilattice. 

Proof. The equivalence of a) and c) follows from Theorem 9 and its dual. The 
equivalence of b) and c) follows easily from Theorem 9, its dual, and the remark 
preceding this corollary (cf. the proof of the corollary to Theorem 5). 
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Theorem 10. Every f-9- left ideal of S has a left identity if and only if S is a l.o.s, 
of right groups. 

Proof. Necessity. By Theorem 8, S is a semilattice of right groups N^, a e Y. The 
proof that Y is linearly ordered is analogous to the corresponding part of the proof of 
necessity of Theorem 5 and is omitted. 

Sufficiency. Let L be the left ideal generated by the elements of S. 
With the notation of the proof of sufficiency of Theorem 5, we obtain, as there, 
e^ai = ai for i = 1, 2 , . . . , n. As in the very last part of the proof of Theorem 8, we 
conclude that for any xe S, e^xai = xa,-. Let и be the inverse of a^ in H^^. Then 
e^ = uaiG L which then implies that ê  is a left identity of L since every element of L 
is of the form xa^ for some x e S^. 

Remark. A statement concerning the left identities of L analogous to the remark 
following Theorem 5 is valid here. 

Theorem 11. The following conditions on S are equivalent: 

a) every fg. left [^right]^ ideal of S has an identity; 
b) every f.g. left \right^ ideal of S has a unique left lright~\ identity; 
c) every f.g. left ideal of S has a left identity and every f.g. right ideal of S has 

a right identity; 
d) S is a l.o.s. of groups. 

Proof. In a) and b), we consider the case of left ideals; the case of right ideals is 
similar. The equivalence of a) and d) follows from Theorem 10 and the dual of 
Theorem 9, and the equivalence of c) and d) from Theorem 10 and its dual. Item a) 
obviously implies b). From Theorem 10 and the remark following it, we conclude 
that b) implies d) (cf. the proof of the corollary to Theorem 5). 

Theorem 12. Every right ideal of S has a left identity if and only if S is regular 
and E is a band which is a downward w.o.s. of right zero semigroups. 

Proof. Necessity. By Theorem 9, S is regular and £ is a band which is a l.o.s. of 
right zero semigroups (which are the iV-classes of E). Suppose that there is a set 
{^ajr=i <̂ f iV-classes of E with the property â  < â  + i for / = 1, 2, .... Let Ä = 

'= \J E^., let В be the right ideal of S generated by Ä, and let e be a left identity of B. 

Then Б = v4 и ÄS and hence e = gx for some g e Ä and x e S^. Thus g e E^. for 
some i and ge = e. Since also eg = g, it follows that e e E^.. But then for any 
/ e £ai + i5 ^f^E^. since â  < â  + i and thus ef ^ f contradicting the hypothesis that e 
is a left identity of B. Hence E must be a downward w.o.s. of right zero semigroups. 

Sufficiency. Let i? be a right ideal of S. If a e R, then a = axa for some x e S 
since S is regular. Hence axe E n R and thus the set С of all a in the maximal semilat-
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tice decomposition of E such that £^ n Я Ф П is not empty. By the hypothesis, 
С has a maximal element 7. The element у plays the role of â  in the proof of 
sufficiency of Theorem 9; the remainder of the proof is the same as there. 

Remark. A statement concerning the left identities of R analogous to the remark 
following Theorem 9 is valid here. 

Corollary. The following conditions on S are equivalent: 

a) every right ideal of S has a left identity and every left ideal of S has a right 
identity; 

b) every right \left^ ideal of S has a unique left [right^ identity; 
c) S is regular and E is a downward well-ordered semilattice. 

Proof. The proof is a straightforward modification of the proof of the corollary 
to Theorem 9. 

Theorem 13. Every left ideal of S has a left identity if and only if S is a downward 
w.o.s. of right groups. 

Proof. The proof is an easy adaptation of the proof of Theorem 10 (cf. also the 
proof of Theorem 12). 

Remark. It is easy to see that under the hypothesis of Theorem 13, the set 
(J Hf{ee E) is a right ideal of S and that all right ideals of S are of this form for 

fâe 
some eG E. 

Theorem 14. The following conditions on S are equivalent: 

a) every left [right^ ideal of S has an identity; 
b) every left [rightlj. ideal of S has a unique left [right^ identity; 
c) every left ideal of S has a left identity and every right ideal of S has a right 

identity; 
d) S is a downward w.o.s. of groups. 

Proof. The proof is similar to the proof of Theorem 11 (cf. also the proof of 
Theorem 12). 

Remark. It is easy to see that under the hypothesis d) of Theorem 14, the set 
\J Hf{e e E) is an ideal of S and that every left or right ideal of S is of this form for 

fâe 
some ее E. 
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Резюме 

ПОЛУГРУППЫ, д л я КОТОРЫХ НЕКОТОРЫЕ КЛАССЫ 
ПОДПОЛУГРУПП ИМЕЮТ ЕДИНИЦЫ 

МАРИО ПЕТРИЧ, (Mario Petrich), Пеннсылвания 

В работе исследуется строение полугрупп, которые имеют некоторое из 
следующих свойств: 1) Всякая подполугруппа (циклическая подполугруппа, 
подполугруппа с конечным числом порождающих элементов) имеет односран-
нюю единицу. 2) Всякий односторонний идеал (главный односторонний идеал, 
идеал, порожденный конечным числом элементов) имеет левую (правую) 
единицу. Исследуются тоже условия, при которых существует в упомянутых 
подмножествах только одна одностранняя единица. 
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