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Yexoc/I0BaUKH MaTeMaTHYecKnii xkypuas, 1. 16 (91) 1966, Ilpara

SEMIGROUPS CERTAIN OF WHOSE SUBSEMIGROUPS HAVE
IDENTITIES

MaARrIO PETRICH, Pennsylvania

(Received March 9, 1965)

KOLIBIAROVA [4;5; 6] and VOROB’EV [ 10; 11] have established certain characteriza-
tions of semigroups S having one of the following properties: () every subsemigroup
of S has an [left] identity, () every [principal] left ideal of S has an [left] identity.
We characterize the semigroups S having one of the following properties: (y) every
[cyelic, finitely generated] subsemigroup of S has an [left, right] identity, (5) every
[principal, finitely generated] left ideal has an [left, right] identity, and in addition
impose the uniqueness condition on one-sided identities.

Section I is a preliminary one. In it we establish certain connections between the
maximal semilattice homomorphicimage Yof a semigroup S whichis a union of groups
and the set E of idempotents of S. Specifically, we obtain the conditions on such
a semigroup, in terms of the elements of E, in order that S be, e.g., a semilattice of
right groups, or that Y be a linearly ordered set. Section II deals with the problems
stated in (y) above. We begin with the weakest of such conditions and then systema-
tically impose more stringent ones. This keeps the proofs of single theorems relatively
short and makes the dependence of all the conditions involved more transparent. In
section III we perform a similar analysis, this time considering the problems stated
in () above. In it we also obtain some characterizations of inverse semigroups in
terms of identities of principal one-sided ideals.

The analysis performed cannot be applied to semigroups satisfying analogous
conditions for (two-sided) ideals. For, as BRuck ([ 1], Theorem 8.3, p. 48) has shown,
every semigroup S can be embedded in a simple semigroup S* with identity. In S*
every ideal trivially has an identity (actually there is only one ideal, namely S).
It is obvious that the structure of S* may be very complicated. All the semigroups of
section II and some of section III (precisely those all of whose [principal, finitely
generated ] one-sided ideals have a one-sided identity on the same side) are unions of
groups whose idempotents form a semigroup satisfying certain conditions (those of
section 1I are periodic). The structure of such semigroups was described by FANTHAM
[3] and for a special case (idempotents commute) by CLIFFORD (see [2], Theorem 4.11,
p. 128). The remaining cases of semigroups in section III are all regular semigroups
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whose idempotents form a semigroup satisfying certain conditions. The structure of
these semigroups is little known except in the case of inverse semigroups. In the
whole discussion, two factors are of fundamental importance: Clifford’s theorem
(stated below) and the notion of the maximal semilattice decomposition of a semi-
group (discussed in detail in [8]).

Our results contain all the principal results in the papers mentioned above; we
obtain most of them as corollaries to stronger statements. There is one exception
here, namely, our results do not agree with certain statements in [5] In fact,
Theorems 2, 3, and 4 of [5] are incorrect as stated (consider the bicyclic semigroup);
as a consequence the statements (concerning A): L, II, and IV (p. 13—14) are also
incorrect. Furthermore, the word “unique” is omitted in the introduction of the
paper and in both the Russian and the German summaries. In the papers cited, the
authors have established certain additional properties of the semigroups in question.
We have refrained from giving any extra properties of these semigroups except in a few
instances when these properties followed directly from the statements established.

We follow the notation and terminology of Clifford and Preston [2] Throughout
the whole paper, S denotes an arbitrary semigroup, -E the set of its idempotents,
Y the maximal semilattice homomorphic image of S [8], unless expressly stated other-
wise. The elements of Y are denoted by lower case Greek letters, and to o€ Y the
corresponding N-class of S (that is, the complete inverse image of a) is denoted
by N,. The term “finitely generated” is abbreviated to f.g. and “linearly [well] ordered
set” by lLo.s. [w.o.s.]. The statements that may be obtained by the “left-right”
duality are omitted. Square brackets are used for alternative readings and for the
reference to the bibliography.

We say that a partially ordered set T is downward well-ordered if every non-empty
subset of T has a greatest element ([2], exerc. 6, p. 129). If the maximal semilattice
homomorphic image Y of S, as a partially ordered set, is linearly ordered, we say
that S is a linearly ordered set of N-classes of S; these may belong to some special
classes of semigroups, e.g., right groups, so we say that S is a l.o.s. of right groups.
If in such a case every N-class of S consists of a single element, we say that S (itself)
is linearly ordered. The meaning of phrases ““S is a downward w.o.s. of right groups”
etc. is clear. If e is an idempotent of S, H, denotes the maximal subgroup of S having e
as its identity; hence if S is the union of groups, S = |J H,. Note that H, is contained
in a single N-class of S. o<k

Throughout the whole paper, the words “finitely generated” (f.g.) may be replaced
by “with at most two generators”. The proofs of statements containing “f.g.”” are
arranged so as to contain the proof of this fact. For example, in the proof of Theorem
5, we implicitly prove the following implications: b) implies c) and c) implies a), where

a) every f.g. subsemigroup of S has a left identity;

b) every subsemigroup of S having at most two generators has a left identity;

c) Sisalo.s. of periodic right groups.

Note that a) implies b) trivially.

187



In our investigations the following result is fundamental (see [2], Theorem 4.6,
p. 126).

Theorem (Clifford). S is a semilattice of completely simple semigroups if and
only if S is a union of groups.

This theorem will be referred to as “Clifford’s theorem”. By 4.2 of [8], the semilat-
tice in question is the maximal semilattice decomposition Y of S, that is, the completely
simple semigroups mentioned coincide with N-classes of S; we will use this fact
without explicit mention. The following lemma will be quite useful.

Lemma 1. Let S be a union of groups. If, for every N-class N of S, E N is
a subsemigroup of S, then E itself is a subsemigroup.

Proof. By Clifford’s theorem and the remark above, every N-class N of S is
completely simple. By the hypothesis, the set of idempotents E n N of N is a sub-
semigroup, and thus E N N is a rectangular band by Lemma 1 of [7].

Now let e, f € E; then ef € H,, fe € H,, for some g, h € E. Further, ee N,, f € N for
some o, f €Y and thus ef, fee N,;. Consequently g, he En N, which implies
g = ghg since E N N, is a rectangular band. Since H, and H, are groups, ef = efg,
fe = feh and there exist x € H,, y € H, such that efx = g, fey = h. Consequently

It

ef = efg = ef(efx) = (efe) (efx) = efeg = e(feh) g = efe(fey) g =
efef(fey) g = efefhg = ef(efg) hg = efef(ghg) = efefg =

efef = (ef).

Definition. S is said to be a rectangular group if it is isomorphic to the Cartesian
(direct) product of a rectangular band F and a group G, S = F x G. In such a case,
clearly E is a semigroup and E =~ F.

Theorem 1. S is a semilattice of rectangular groups if and only if S is a union of
groups and E is a subsemigroup of S.

Proof. Since a rectangular group is a completely simple semigroup whose
idempotents form a semigroup, necessity follows by Clifford’s theorem and Lemma 1.
Sufficiency follows from Clifford’s theorem and Lemma 1 of [7].

Theorem 2. S is a semilattice of right groups if and only if S is a union of groups
and for every e, f € E, efe = fe.

Proof. Necessity. Theorem 1 implies that S is a union of groups and that E is
a subsemigroup. If e, f € E, then both ef and fe are contained in the same N-class N
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-of S. It follows from the hypothesis that N is a right group. Consequently E n N is
a right zero semigroup which implies (ef ) (fe) = fe, that is, efe = fe.

Sufficiency. The hypothesis implies that E is a semigroup and thus S is a semilattice
of rectangular groups by Theorem 1. It follows that for any e, fe E n N, where N
is an N-class of S, efe = e and by the hypothesis, efe = fe. Consequently fe = e,
that is to say, E n N is a right zero semigroup and thus N is a right group.

Corollary 1 ([2], exerc. 8(b), p. 129). A band T is a semilattice of right zero
semigroups if and only if for all e, f € T, efe = fe.

Corollary 2 (cf. § 4.2 of [2]). S is a semilattice of groups if and only if S is a union
of groups and the elements of E commute. In such a case, Y and E are isomorphic
semilattices.

Remark. Under the hypothesis of Theorem 2, every right ideal of S is two-sided.
In fact, every N-class of S is right simple and hence, by 4.4 of [8], every right ideal
of S is a union of N-classes and is thus a two-sided ideal. Consequently every left or
right ideal of S satisfying the hypothesis of Corollary 2 above is two-sided.

Theorem 3. S is a l.o.s. of completely simple semigroups if and only if S is a union
of groups and for any e, f € E, either e € efS or f € feS.

Proof. Necessity. First note that every N-class is completely simple. Let e, f € E;
then eeN,, fe N, Suppose that o < f (ordering of the semilattice Y); the case
p < « is treated analogously. Then efee N,, and we have eec H;;, efec H;, for
some #'-classes H;;, H;, of N,. Complete simplicity of N, yields efe = e(efe) e e
e H,H; H;, < H;,. Letting u be the inverse of efe in H;,, which is a group, we
obtain efeu = e. But u € H;, implies eu = u whence efu = e.

Sufficiency. By Clifford’s theorem it suffices to show that Y is linearly ordered.
For any N-classes N, and Ny of S, let ee N,, f€ N, be idempotents. Then e € efS
implies « < f and f € feS implies f < a.

The following propositions follow easily from the results already proved.

Proposition 1. S isa lLos. of rectangular groups if and only if S is a union of
groups and for any e, f € E, either efe = e or fef = f.

Proposition 2. A band T is a lL.o.s. of rectangular bands if and only if for any
e, fe T, either efe = e or fef = f.

Proposition 3. S is a l.o.s. of right groups if and only if S is a union of groups and
for any e, f € E, either ef = f or fe = e.
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Proposition 4. A band T is a l.o.s. of right zero semigroups if and only if for any
e, fe T, either ef = f or fe = e.

Proposition 5. S is a l.o.s. of groups if and only if S is a union of groups and E
is linearly ordered.

11

We now turn to the study of semigroups all of whose [cyclic, f.g.] subsemigroups
have an [left, unique left] identity.

Theorem 4. Every cyclic subsemigroup of S has an an identity if and only if S
is a semilattice of periodic comgletely simple semigroups.

Proof. Ncessity. Let x € S; then {x) has an identity e. Hence e = x™ for some
natural number m, and thus x"*! = xe = x. Theorem 7 of [9] implies that {x) is
a group, and {x) consists of n elements x, x2, ..., x"~ ! if n is the smallest natural
number for which x* = e. By Clifford’s theorem, S is a semilattice of periodic
completely simple semigroups.

Sufficiency. It follows that S-is a union of periodic groups and hence a union of
finite cyclic groups. Consequently every cyclic subsemigroup of S is contained in
a finite cyclic group and is thus itself a finite cyclic group.

Theorem 5. Every f.g. subsemigroup of S has a left identity if and only if S is
a l.o.s. of periodic right groups.

Proof. Necessity. By Theorem 4, S is a semilattice of periodic completely simple:
semigroups N,, « € Y. If Y is not linearly ordered, then there exist o, f € Y such that
af # o, off # f. Let ae N,, b e Ny be arbitrary, and let T = {a, b). Let e be a left
identity of T. Then e € N, for some y € Y; the equations ea = a, eb = b imply « < 7,
B < vy, respectively. Since T< N,U Ny U N,; and by the hypothesis aff < a,
off < B, we must have either y = « or'y = f since e e T. But if, e.g., y = a, then
B < a, a contradiction since o and B were assumed to be incomparable.
Consequently Y must be linearly ordered.

It remains to show that each N-class of S is a right group. It thus suffices to show
that a completely simple semigroup 7 all of whose subsemigroups generated by at
most two elements have left identities, is a right group. This follows immediately
from a simple calculation in Tif T'is represented in the form .#(G; I, A; P) (see [2],
chapter 3).

Sufficiency. Let T = {ay, a5, ..., a,y with a;€ S, i =1,2,..., n. Then a; e N,, for
some a; € Y, and we may suppose (and do) that o, = «;, i = 1,2, ..., n. Further
a;,€ H,, for some e;€E, i =1,2,...,,n Each N,, is a right group and hence the:
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idempotents of N,, form a right zero semigroup. If «; = a; then e;e; = e;. By
Proposition 3, either eje; = e; or e;e; = e;. Hence if «; < ay, then ee, eN,,
e; €N,,, and N,, #+ N,,, which implies that e;e; + e;. Thus e,e; = e;, and we obtain
foranyl1 <i<n

e1a; = es(ea;) = (ee) a; = ea; = a;.

Since H,, is periodic, af = e, for some m and thus e; € T. Consequentiy ey is a left
identity of T.

Remark. From the proof of sufficiency, it follows that any e; such that a;e H,,,
o; = ay, is a left identity of T. Conversely, these are all the left identities of T. For
let e be a left identity of T. Then in particular ee; = e; and thus e e N, . Further,
ee TA N, implies e = ajiaj ... ay" for some a; €{ay,ay,...,a,} "N, and

some k;, i =1,2,...,m, with 1 £ m < n. Since eey, = e, and ap e; = a;, , We
have e = ajlaj’ ... ay" = e, , where e; €N, which proves the assertion. Con-
sequently the set of all different e; with a; e H,,, «; = a,, constitutes the set of all

left identities of T. Hence their number is at most n.

Corollary. The following conditions on S are equivalent:

a) every f.g. subsemigroup of S has an identity;
b) every f.g. subsemigroup of S has a unique left [right] identity;
) Sisa lLo.s. of periodic groups.

Proof. The equivalence of a) and c) follows from Theorem 5 and its dual. Item a)
obviously implies b). Suppose that every subsemigroup of S with at most two
generators has a unique left identity; the case of “right” is dual. By Theorem 5, S is
a l.o.s. of periodic right groups N,, a € Y. If ae H,, b e H; where e, fe N,, then the
semigroup <a, by has both e and f as its left identities by the remark following
Theorem 5. By the hypothesis, e = f and consequently H, = N,, i.e., N, is a group
and c) holds.

Theorem 6. Every subsemigroup of S has a left identity if and only if S is
a downward w.o.s. of periodic right groups.

Proof. Necessity. By Theorem 5, S is a l.o.s. of periodic right groups N,, a € Y.
Let A be a non-empty subset of Y. Let T = |J N,; then T'is a semigroup since Y is

acA

linearly ordered. Let e be a left identity of T. Then ee N, for some fe A. If xe T,
where x € N, then ex = x implies § = y. Consequently f8 is a maximal element of 4
and Y is well-ordered downward. '

Sufficiency. Let T be a subsemigroup of S, and let 4 = {0 € Y[ N,n T4+ [}
Then A is a non-empty subset of Y and hence contains a maximal element . If
xeNyn T, then xe H, for some ee Ny. Since N, is periodic, so is H, and hence
e = x"e T for some n. Let y € T; then ye N, for some ye 4. If y = §, then ey = y
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since N, is a right group. Suppose that y < . We have y € H, for some f € N,. By
Proposition 3, either ef = f or fe = e. Since fee N,, ee Ny and y < f, the second
alternative is impossible. Hence y = fy = efy = ey and e is a left identity of T.

Corollary. The following conditions on S are equivalent:

a) every subsemigroup of S has an identity;
b) every subsemigroup of S has a unique left [right] identity;
c) S is a downward w.o.s. of periodic groups.

oI

In this section we perform an analysis similar to the one in the previous section
by considering semigroups all of whose [principal, f.g.] left ideals have [one-sided,
unique or not] identities. We start with some auxiliary statements.

Lemma 2. The following conditions on an element a of S are equivalent:

a) a is regular;
b) R(a) [L(a)] has an idempotent generator;
¢) R(a) [L(a)] has a left [right] identity.

Proof. Items a) and b) are equivalent by Lemma 1.13, p. 27, [2]. If a) holds, then
a = axa for some x € S, and ax [xa] is a left [right] identity of R(a) [L(a)], and c)
holds. If c) holds and e is a left [right] identity of R(a)[L(a)], then e = xa =
= (ex) a[e = ax = a(xe)] for some x € S'. Thus a = a(ex) a[a = a(xe) a] where
ex e S and a) holds.

Corollary 1. Every principal right [left] ideal of S has a left [right] identity if
and only if S is regular.

It is easy to see that if a is regular, then e is an idempotent generator of R(a)[L(a)]
if and only if e is a left [right] identity of R(a) [L(a)] (and is of the form ax [xa] for
some x € S).

Corollary 2. The following conditions on an element a of S are equivalent:

a) a is regular and a = axa = aya implies ax = ay;
b) R(a) has a unique idempotent generator;
¢) R(a) has a unique left identity.

Corollary 3. The following conditions on an element a of S are equivalent:

a) a is regular and a = axa = aya implies xax = yay;

b) R(a) and L(a) both have unique idempotent generators;

¢) R(a) has a unique left identity and L(a) has a unique right identity;
c) a is regular and has a unique inverse.
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Proof. Item a) is equivalent to: a is regular and a = axa = aya implies ax = ay,
xa = ya. Hence the equivalence of a), b), and c) follows from Corollary 2 and its
dual. Item a) implies d) directly. Suppose that d) holds and that a = axa = aya.
By Lemma 1.14, p. 27, [2], both xax and yay are inverses of a so that xax = yay.

Corollary 4. Every principal right ideal of S has a unique left identity and every
principal left ideal of S has a unique right identity if and only if S is an inverse
semigroup (cf. Theorem 1. 17, p. 28, [2]).

Theorem 7. Let S be a regular semigroup. Then E is a band which is a semilattice
of left zero semigroups if and only if for all a,x,y€ S, a = axa = aya implies
ax = ay.

Proof. Necessity. By the dual of Corollary 1 to Theorem 2, for any e, f€ E,
efe = ef. Hence if a = axa = aya, then ax,ayeE and thus (ax) (ay)(ax) =
= (ax) (ay). Consequently ax = ay.

Sufficiency. We first show that E is a semigroup. Let e, f € E and let a be an inverse
of ef. Then

of = (&f) (ae) (&f) = (&f) alef)

which implies (ef) (ae) = (ef )a by the hypothesis. Hence

(1) a = a(ef)a = alefa) = a(efae) = (aefa)e = ae,

and thus a = aefa = afa. It follows in particular that fa € E and hence
fa = (fa) (fa) (fa) = (fa) (faf) (fa)

which, again by the hypothesis, implies (fa)(fa) = (fa) (faf), that is, fa = faf.
Consequently

a = afa = a(faf) = af
whence, using (1),
of = (¢f) alef) = (of) (@) (of) = (¢f) a(fef) = (ef) (ae) (fef) = (efaef) (ef) =
= efef = (ef)?,

that is to say, E is a semigroup. Consequently

of = () ef) (ef) = (¢f) e(of)

which implies (ef ) (ef) = efe, and thus efe = ef. The dual of Corollary 1 to Theorem
2 now implies that E is a semilattice of left zero semigroups.

Corollary 1. Every principal right ideal of S has a unique left identity if and
only if S is regular and E is a band which is a semilattice of left zero semigroups.
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Corollary 2. Let S be a regular semigroup. Then E is a semilattice if and only if
forall a,x,ye S, a = axa = aya implies xax = yay.

This Corollary and Corollary 3 to Lemma 2 together imply the well-known fact
that a semigroup is an inverse semigroup if and only if it is regular and its idempotents
commute. '

Theorem 8. The following conditions on S are equivalent:

a) every principal left ideal of S has an identity;
b) every principal left ideal of S has a left identity;
c) S is a semilattice of right groups.

Proof. Item a) trivially implies b). Suppose that b) holds. Let a € S and let e be
a left identity of L(a). Then e = xa for some x € S' and consequently

(1) (xa) (ya) =ya

for all yeS'. If x¢ S, then e = xa = a and thus a = a®. Suppose that x e S.
Applying to x the argument by which formula (l) was obtained, we find u € S' such
that (ux) (yx) = yx for all y e S'. From (1) we have (xa) a = a and thus a = xa?;
analogously x = ux?. Hence

a = xa* = (ux?) a® = (ux) (xaz) = uxa = u(xa) (xa) = (ux) (ax)a = axa .

Thus in any case, we have a € Sa® N aSa, and Theorem 4.3 (D), p. 122, [2] implies
that S is a union of groups. For e € E there is v € S* such that for all y € S', (ve) (ye) =
= ye (cf. (1)). Hence (ve) e = e, that is, e = ve, which implies eye = ye. In particular
for any fe E, efe = fe and thus by Theorem 2, S is a semilattice of right groups,
that is to say, c) holds.

Suppose now that ¢) holds. By Theorem 2, S is a union of groups and for any
e,f€E, efe = fe. Let a € S with a € H,; we wish to show that e is an identity of L(a).
We have a = ea = ae and thus a is a right identity of L(a); it remains to show that
for any x € S, xa = e(xa). Hence let xe S with xe H,. If ae N, and x € Ny, then
ef, xe € N,4. Since N, is a right group and ef is idempotent, ef is a left identity of N,,.
Consequently

exe = e(fx) e = (ef) (xe) = xe,
and thus
exa = e(fx) a = (efef) (xa) = (efe) (fx) a = (fe) xa = (fex) (ea) = f(exe)a =
= f(xe) a = (fx) (ea) = Xxa.
Remark. It follows from a) that the left identity in b) is unique and from c) that

every principal right ideal has a left identity (S being regular; see Corollary 1 to
Lemma 2).
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Corollary. The following conditions on S are equivalent:

a) every principal left ideal and every principal right ideal of S has an identity’,

b) every principal left ideal of S has a left identity and every principal right
ideal of S has a right identity;

¢) S is a semilattice of groups.

Theorem 9. Every f.g. right ideal of S has a left identity if and only if S is regular
and E is a band which is a l.o.s. of right zero semigroups.

Proof. Necessity. By Corollary 1 to Lemma 2, S is regular. Let e, f€ E, let R be
the right ideal of S generated by e and f, and let g be a left identity of R. Then
R = R(e) U R(f) and thus either g € R(e) or g € R(f), that is, either g = ex or
g = fy for some x, ye S'. If g = ex, then f = gf = exf which implies ef = f. If
g = fy, then e = ge = fye which implies fe = e. It follows that efef = ff = f = ¢f
if ef = f and efef = eef = ef if fe = e. Thus E is a semigroup and Proposition 4
implies that E is a l.o.s. of right zero semigroups.

Sufficiency. Let R be the right ideal generated by the elements a, a,, ..., a, of S.
Since S is regular, a; = a;x;a; for some x, X5, ..., x, € S, and thus a;x; € E. Denote
by E,, the N-class of E containing a,;x;. We may suppose that oy = o, i = 2,3,...,n.
Let e; = a;x;; then eje; € E,, since oy = ;. If a; = ay, then eje; = e; since E,, is
a right zero semigroup. Suppose that «; < «,. By Proposition 4, either e;e; = e, or
eje; = e, But ee,€E,, e;€E,, and «; < a; imply that the first alternative is
impossible. Thus in any case e e; = e;, which implies

a;, = a;x;a; = e;a; = e;e;a; = e.d; .
Since also e; = a,;x, € R, ¢, is a left identity of R.

Remark. From the proof of sufficiency, it follows that if a; = a;x;a;, a;x; € E,,,
o; = oy, then a;x; is a left identity of R. Conversely, every left identity of R is of this
form. For let e be a left identity of R. Since R = U R(a;), we have e = a,y for some

i=1
1 £i < nand some y e S'; since e is idempotent, we may suppose that y € S. We

thus have a; = ea; = a;ya,; which proves the assertion.

Corollary. The following conditions on S are equivalent:

a) every f.g. right ideal of S has a left identity and every f.g. left ideal of S has
a right identity;

b) every f.g. right [left] ideal of S has a unique left [right] identity;

¢) S is regular and E is a linearly ordered semilattice.

Proof. The equivalence of a) and c) follows from Theorem 9 and its dual. The
equivalence of b) and c) follows easily from Theorem 9, its dual, and the remark
preceding this corollary (cf. the proof of the corollary to Theorem 5).
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Theorem 10. Every f.g- left ideal of S has a left identity if and only if S is a lL.o.s.
of right groups.

Proof. Necessity. By Theorem 8, S is a semilattice of right groups N,, o € Y. The
proof that Y is linearly ordered is analogous to the corresponding part of the proof of
necessity of Theorem 5 and is omitted.

Sufficiency. Let L be the left ideal generated by the elements ay, a,, ..., a, of S.
With the notation of the proof of sufficiency of Theorem 5, we obtain, as there,
eja; = a;fori =1,2,...,n. Asin the very last part of the proof of Theorem 8, we
conclude that for any x € S, e;xa; = xa;. Let u be the inverse of a, in H,,. Then
e; = ua,; € Lwhich then implies that e, is a left identity of L since every element of L
is of the form xa; for some x € S*.

Remark. A statement concerning the left identities of L analogous to the remark
following Theorem 5 is valid here. ’

Theorem 11. The following conditions on S are equivalent:

a) every f.g. left [right] ideal of S has an identity;

b) every f.g. left [right] ideal of S has a unique left [right] identity;

c) every f.g. left ideal of S has a left identity and every f.g. right ideal of S has
a right identity;

d) Sisa lLo.s. of groups.

Proof. In a) and b), we consider the case of left ideals; the case of right ideals is
similar. The equivalence of a) and d) follows from Theorem 10 and the dual of
Theorem 9, and the equivalence of ¢) and d) from Theorem 10 and its dual. Item a)
obviously implies b). From Theorem 10 and the remark following it, we conclude
that b) implies d) (cf. the proof of the corollary to Theorem 5).

Theorem 12. Every right ideal of S has a left identity if and only if S is regular
and E is a band which is a downward w.o.s. of right zero semigroups.

Proof. Necessity. By Theorem 9, S is regular and E is a band which is a l.o.s. of
right zero semigroups (which are the N-classes of E). Suppose that there is a set
{E,,}i~, of N-classes of E with the property «; < o;;; for i =1,2,.... Let 4 =

= U E,,, let B be the right ideal of S generated by 4, and let e be a left identity of B.
i=1 f

Then B = A U AS and hence e = gx for some ge 4 and x e S'. Thus g € E,, for
some i and ge = e. Since also eg = g, it follows that ee E,,. But then for any
feE,,, ef€E,since a; < a;,, and thus ef #+ f contradicting the hypothesis that e
is a left identity of B. Hence E must be a downward w.o.s. of right zero semigroups.

Sufficiency. Let R be a right ideal of S. If a € R, then a = axa for some xe€ S
since S is regular. Hence ax € E n R and thus the set C of all o in the maximal semilat-
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tice decomposition of E such that E, n R + [J is not empty. By the hypothesis,
C has a maximal element y. The element y plays the role of «, in the proof of
sufficiency of Theorem 9; the remainder of the proof is the same as there.

Remark. A statement concerning the left identities of R analogous to the remark
following Theorem 9 is valid here.

Corollary. The following conditions on S are equivalent:

a) every right ideal of S has a left identity and every left ideal of S has a right
identity;

b) every right [left] ideal of S has a unique left [right] identity;

c) S is regular and E is a downward well-ordered semilattice.

Proof. The proof is a straightforward modification of the proof of the corollary
to Theorem 9.

Theorem 13. Every left ideal of S has a left identity if and only if S is a downward
w.o.s. of right groups.

Proof. The proof is an easy adaptation of the proof of Theorem 10 (cf. also the
proof of Theorem 12).

Remark. It is easy to see that under the hypothesis of Theorem 13, the set
U H,(e€E) is a right ideal of S and that all right ideals of S are of this form for

SZe
some e€ E.

Theorem 14. The following conditions on S are equivalent:

a) every left [right] ideal of S has an identity;

b) every left [right] ideal of S has a unique left [right] identity;

c) every left ideal of S has a left identity and every right ideal of S has a right
identity;

d) S is a downward w.o.s. of groups.

Proof. The proof is similar to the proof of Theorem 11 (cf. also the proof of
Theorem 12).

Remark. It is easy to see that under the hypothesis d) of Theorem 14, the set
U H, (e € E) is an ideal of S and that every left or right ideal of S is of this form for

fZe
some e € E.
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Pe3iome

TTOJVYI'PVIIBI, OJIA KOTOPBIX HEKOTOPBIE KJTACCHI
NOANMOJAVIPYIIIT UMEKOT EAMHULBI

MAPUO TIETPUY, (Mario Petrich), ITenncoliBanus

B pabore wucciaeayercss CTpOeHHE MOJYTPYII, KOTOpPbIE MMEIOT HEKOTOpOe U3
CJICAYIOLUX CBOWCTB: 1) Besikast moamnosiyrpynna (uumuqecxaﬂ MOAMOJyrpynna,
TTO/IMOJIYTPYNA ¢ KOHEYHBLIM YHCIOM MOPOXKAAIONIMX JIEMEHTOB) HMEET OJHOCPAH-
HIOKO €AMHUILY. 2) Bestkuii 0 THOCTOPOHHMI MAeaT (maBHHﬁ OJIHOCTOPOHHUH H1eal,
Ueas, TOPOXAEHHbI KOHEYHBIM HYMCIOM BIEMEHTOB) MMEET JIEBYIO (npaBym)
eqununy. Mcerenyroress ToXe YCIOBUS, MPU KOTOPBIX CYILECTBYET B YIOMSHYTBIX
TOJMHOXECTBAX TOJBKO OJHA OJHOCTPAHHAA eAMHULA.
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