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SOLUTION IN LARGE OF CONTROL PROBLEM
%= (A(1 — u) + Bu) x

JAN KUCERA, Praha

(Received November 8, 1965)

Some notations used in this paper. The Euclidean n-dimensional space is denoted
by E,, its elements are written as matrices of n rows and one column. ¢;€E,, i =
= 1,2,..., n, is that point which has the i-coordinate equal to one and the others
equal to zero. We denote by ¢;; the Kronecker symbol equal to one if i = j and to
zero if i & j. If x € E,, then we use the norm ||x|| = Y'|x;| which induces the norm

n

of n-by-n matrix A = (a;;) equal to |A| = max ) |a;j].
j i=1

The dimension of a (finite dimensional) vector space V one writes dim V. The symbol
{x1, X3, ..., X,} denotes the linear hull of the elements x, x,, ..., x, of a given linear
space. If 9 is a linear space, then MM < < N means that M is a linear subspace of N.

The set of all elements p € P, which have a property P(p), is denoted by E(p € P;
P(p)). The symbol O(t), t — 0, represents a quantity, depending on t, which can be
majorised by c|t|, where ¢ > 0 is a sufficiently large constant, if ¢ tends to zero.

If M is a given set, then M is its adherence. Empty set one writes 0. If ¢ is an one-
to-one mapping, then ¢ ! is an inverse mapping. We use the sings N, U to represent
respectively the intersection and the union of sets. All measures and integrals, which
occur later on, are meant in the Lebesgue sense.

The space of all n-by-n matrices one writes €,. If A, Be €,,and A, A,, ..., A, €€,
we denote [A, B] = BA — AB, [A;, Ay, ... A] =[AL[As .., [A-n A ]

We shall often meet the matrix [A, A,, ..., A,], where A, = A, =... =

= A,_;. If there will be no danger to be mistaken then we shall write it briefly
[AL A, Al =[AT'A,]
The zero matrix is denoted by 0 and the unit matrix by E. A nonsingular matrix A
possesses an inverse A~'. The “‘bracket operation” [A, B] possesses the following
properties: [A, B] + [B, A] = 0,[A, + A,, B] = [A,, B] + [A;, B],[A,B,C] +
+ [B,C, A] + [C,A,B] =0, [A,B,C,D] + [B,C, D, Al + [C, D, A, B] +
+ [D. A, B, C] = [[A, C],[B, D]].
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Definition i. A connected set S < E, is called an r-dimensional manifold if for
each x € S there exists an open non-empty set G < E, and an one-to-one mapping ¢
of G into S such that the following properties are satisfied:

1) x € ¢(G),

2) ¢(G)is open in S,

3) the functional matrix 6(/)/65 exists for all & € G, is continuous and has rank r
on G.

We often also say that the manifold S is given in an environ of the point x by the
mapping ¢.

If we have already an r-dimensional manifold S < E,, then the set S is called
r-dimensional closed manifold. And finally, the set S = E, that contains only one
element, one calls O-dimensional closed manifold.

Let us have an r-dimensional manifold S, given by a mapping ¢, then every vector

7o

- .,
0 fe=p-1(0)

where n € E,, x €S, is called the tangent vector to the manifold S at the point x. The
set of all tangent vectors to S at x is an r-dimensional vector space which we denote
by T(x) and call tangent space to S at x.

It is obvious that the present definition of the dimension of a manifold and of
a tangent space is independent on the choise of the mapping ¢.

The set S = E, cannot be the adherence of two manifolds S,, S, with different
dimensions p, g. If it would be so, then §p = §q = S. Let us suppose S,n S, =
=0=S-S,5S,=S—S,>8S,=S. This is impossible as S, is open in S. So
let be xeS,nS,, then there exist homeomorphisms ¢,y of G, < E,, G, = E,
onto ¢(G,) = S, ¥(G,) = S, respectively. Let ¢ > 0 be so small that the open
sphere K < E,, with centre at x and radius ¢, has empty intersection with (S — S,) n
N (S — S,) and further that (K n S) = (¢(G,) N ¥(G,)) Then the open set ¢~ '(K N
N S) = E, is homeomorphic with the open set  “'(K N S) = E,and p = gq.

Definition 2. 9l < < €,. The mapping which assigns to every point x € E, the
vector space B(x) = E(Ax; A € ) is called linear distribution created by . As we
will not investigate other distributions than linear, we will further omitt the adjective
linear. Sometimes we write By to underline that B has been created by . If it holds:
A, BeU =[A,B]e¥, then A is called involutive. If for given distribution By
there exists an involutive space B < < €, such that By = By, then By is also called
involutive.

Example. One distribution can be created by different matrix-spaces. Even there
are non-involutive matrix-spaces which create an involutive distribution. If we have
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two matrix-spaces U , which create the same distribution B, then the intersection
A, N A, need not create B. To demonstrate it, let us put:

S R NER R (R
(oDl > (D)
Then An® - {(‘1’ —;>}

A, B are involutive and €, D are not. It holds By = By = B = By + By o,
while the spaces U, B, €, D are different each other.

Example. The set E(k; 3 dim ®B(x) = k) may but need not contain all non-negative

xeEn

integers k < n. Let us put

1100...0 1 010...0,
0120...0 001...0
0013...0 B=1|..........
A= 000 1
0000 ... (n—1) 1000 ...0

and write B = By, [A,B;] =B, i=1,2,..., A ={A, B,B,,....B,_}.

Then U is involutive and create a distribution 8B for which holds: if (x, ¢;) # 0,
(x,e)=0, j=i+1, i+2..,n, then B(x)={e; e, ..., e}, i =12 ..n
Here the symbol (x, e;) means the scalar product.

1. SOLUTION OF EQUATION x € B(x)

Let B be a given distribution in E, and w € E,. In this paragraph we will find
a necessary and sufficient condition for the existence of a solution of an equation

(1.1) xeB(x), x(0)=ow,

and present the explicit form of that solution. What is to be understood as a solution
of (1.1) is said in the following two definitions.

Definition 1.1. Each vector-function x, defined on an interval <0, T), 0 < T £ oo,
locai-absolutely continuous, which satisfies the conditions: 1) x(0) = w, 2) if there
exists dx(?)/dt, then dx(t)/dt € B(x(t)), is called a solution of (1.1).
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Definition 1.2. Let B be a distribution and S < E, be a manifold. If for each
x € S holds T(x) = B(x), where T(x) is the tangent space to S at x, then S is called
an integral manifold of the distribution 8.

Lemma 1.1. Let A <= < &, be involutive. Let us have a local-absolutely integrable
matrix-function A(t), t 2 0, and a matrix B e . Suppose that A(t)e U for all
t 2 0. Let us denote by X(t) that fundamental matrix of the equation x = A(r) x,
for which X(0) = E.

Then it holds X~ (1) BX(r) e 9, 1 = 0.

We prove it in two steps: 1) Let A € % be a constant matrix, then e”*Be* € 2.

i,j= Ol'_]'

Bt — 3 (S prpas - s Z(—l) ( )A'BA" =

=Y L[AA . ABJeu.
kzo k! ————
k
2) Let T > 0. If A(r) is piecewise constant on <0, 7', then our statement is already
proved by successive use of the first step. Let us choose a sequence of piecewise
constant matrices A(1), A,(7), ..., 1€<0, T), which have all their values in 2 and
which tend asymptotically to A(t) on <0, T. Let X, be the fundamental matrix of the
equation % = A,x, for which X,(0) = E, k = 1,2,... Then X(1) — X(1) =
= o A7) (Xi(r) = X(1)) dr + [5(Au(x) — A(0)) X(r) dr, [ X(1)]| = [[E[| exp [5]A(1)] dz.
As X(1) is bounded on <0, T), it holds lim [§ (A,(t) — A(t)) X(t) dt = 0 uniformly
k— o
on <0, T). The asymptotic convergence of [A,[, k = 1,2, ... implies
sup exp [o]|Ax] dT = K < oo. If we denote b, max ”j'o (Ak 1) — A7) X

we get the approximation || X, (1) — X(1)]| < by. exp [O]]A,‘(r)“ dt £ K. b, 10, T,
where lim b, = 0

k— 0

Now it holds X; '(1) B X, (1) e, k = 1,2, ....1€<0, T, lim X; (1) B X,(r) =
k= oo
= X"'(1) B X(r) e .

Lemma 1.2. Let A <= < &, be involutive and create the distribution B. Let x € E,,
AeW, i=1,2,... k y=erter | oMx where t,, i =1,2,...,k, are real
numbers.

Then dim B(y) = dim B(x).

Proof. Let Qe A and B(x) = {P,x, P,x, ..., Px}, where P, e, i = 1,2,...,r
For brevity we denote @ = e*"1e?2"2 | e It holds Qy = Qdx = (¢~ 'QdP) x.
According to lemma 1.1 ¢ 'Q®e A and ¢ 'Qdxe {Px,P,x,....,Px} =Qye
€ {®P,x, ®P,x, ..., PP,x}. This implies dim B(y) < dim B(x).

If we change the signs of all numbers t;; i = 1, 2, ..., k, we get the inverse inequality.
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Lemma 1.3. Let A <= < &, be involutive and create the distribution B. Let x € E,,
dim B(x) = r.

Then x is contained in an r-dimensional integral manifold S of the distribution B.

Moreover, if %(x) = {P;x, P,x,...,P,x}, where P,eU, i =1,2,....r, then S
can be given in an environ of x by the mapping

(1.2) O(tyy tyy oo t,) = 1P Py teG,

where G < E, is an open set which contains the origin.

Proof. If dim B(x) = 0, then the statement is trivial, so let be dim B(x) = r > 0.
Obviously x = ¢(0). Let us show that there is ¢ > 0 such that the mapping ¢ is
one-to-one on the set G, = E(te E,; [t] < e).

If it is not so, there would exist two sequences t', ¢ ..., t!, 7%, ..., such that
>0, >0, 1% £ o) = o(r*), k = 1,2,... Let us put * — 7 =4* k=
=1,2,..., then it holds 0= () — o(*) = (P, 4% + P45 + ... + PA})x +
+ 0([[4*]) - o(| & + [*]).

1

lim —— [[(P,4% + P44 + ... + P,4¥) x| = 0.
ko [ 44

The vectors P;x, i = 1, 2, ..., r, are linearly independent so that it holds

min [(Py4, + Pyd, + ...P4,)x| > 0.
4#0 “A”

This contrary proves the univalency of ¢ on G,.

The functional matrix d¢/dt is continuous on E, and at ¢ = 0 has the rank equal
to r. So we can choose ¢ > 0 so small that the matrix d¢/dt has its rank equal to r
forall te G,.

It remains to show that ¢(G,) is an integral manifold of ®B. Obviously P; ¢(t) €
e B(e(?), i = 1,2,...,r, t€E,. According to lemma 1.1

a_(/) — eplhel’zlz
ot;

= el fimttimipeRisiticn [ oTPig() e B(p(1)); i=1,2,...,r, teE,.

P,

Picttizip Piti | gPriry =

IR 4

So we have got {dp[dt,, 0p[dt,, ..., dp[ot,} = B(ep(t)), t e E,. For t € G, there must
hold the equality {d¢[dt,, 0p[ot,, ..., 0p[dt,} = B(p(t)), because we have chosen
the set G, so that on G, the rank of the matrix 6(p/6t is equal to r and according to
lemma 1.2 dim B(¢(t)) = r for t € E,. This proves the equality.

Lemma 1.4. Let B be an involutive distribution. Let the point x € E, is contained
in two integral manifolds S, , of B.
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Then there exists an integral manifold S of B which is contained in the intersec-
tion S; N S, and contains the point x.

Proof. If dim B(x) = 0, then the statement is trivial. So we assume dim B(x) =
=r > 0. Let B be created by an involutive space A = = €,; B(x) = {Pyx, P,x, ...,
»Px}, P,e, i =1,2,...,r Let the manifold S; be given by the formula (1.2).
It will do to show that S; and S; have a common r-dimensional submanifold which
contains the point x.
Let us choose 4 > 0 so small that if ||y —x| < 4, then the vectors P,y, P,y, ...,
.., P,y are linearly independent. Let the neighbourhood of x in S; be given by
a mapping Y(z), ||7]| < &, ¥(0) = x. Let § > 0 is already chosen so small that the
inequality |z < o implies |[y(z) — x| < 4.

If S; ; have not a common submanifold, then there exists a sequence 74, 7, ...,
such that ||7]| <6, Y(t)¢Ss, k=1,2,..., 7, > 0. The sequence Ty, 75, ... has
a partial sequence (let us denote it again by ty, 75, ...) such that there exists

11m 7/||te| = Q. Then there exists a diferentiable rectificable curve 7 = 7(9),

9 € (0 95>, such that 7(0) = 0, [(9)]| < & for 3 €<0, $,), d7/d9|,_, = @, and such
that there is a sequence 9, > 9; > 9, > ... > 0 which satisfies (9,) = 7,, k = 1,2,.
For the curve I';(9) = y(1(9)), 9 e (0, .9(,), it holds:

dry(9) _ oy de
ds "d9 ds

(1.3) = kz1 P(9) P.T4(9) 3e<0,9,>.

As the vectors P,I"((9), k =1,2,...,r, $€<0, %>, are continuous and linearly
independent and as the vector-function dy/dt.dt/d$ is continuous on <0, 9,
too, the coefficients pk(9), k=1,2,..., r are also continuous functions on <0, 3,).

Now let us take a curve I',(9) = @(#(9)), 9 € <0, 3,), where the function #(9) has
a continuous derivative on <0, 95> and #(0) = 0, otherwise let it be in the mean-
while arbitrary.

dFZ(S) 6(p dt c oPit oPs-1t _Ps-1t —Pst dr
—= Looes tsmipetemtle-t | oTHIN (). — =
19 e SZ (e ) I'5(9) 5

- zl <2 a(1) pk> rz(s)%‘ - (Z a1) )P:J‘z( ).

k=1

The functions a,; k, s = 1, 2, ..., r, are entire functions of the argument ¢ and it
holds a;(0) = 6, k, s = 1,2, ..., r. If we now put

r

dt,
n(®» =3 a’“(t)'a—é’ k=1,2,...,r,

s=1

we get a system of equations from which we can calculate the derivatives dts/d9
s=1,2,...,r, in an environ of the origin in E,, and we get another system which
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has obviously a unique solution satisfying the initial condition #(0) = 0. So there
exists § > 0 such that on <0, 3> the vector-functions I’y , solve the linear system of
equations (1.3) and satisfy the initial condition I';(0) = I',(0) = x. Hence the both
functions are on <0, §) identical, what is the sought contrary.

We have proved that there exists a neighbourhood G < E, of the origin in E,
such that Y(G) < S;. Let G be so small that the ranks of the matrices 0y[d1, dp[dT
are both equal to r for all t € G. Then there exists a neighbourhood G, < G of the
origin in E, such that the equation y(tr) — ¢(1) = 0 has the unique solution © = 1(¢)
for te G,. And the set Y(t(Gy)) = ¢(Gy) is the sought common r-dimensional
submanifold of the manifolds S,, S;.

Lemma 1.5. Let B be a distribution in E, and let each point x € E, be contained
in an integral manifold S, of B. Then B is involutive.

Proof. Let us put A = E(AeC,; Axe B(x) for all xeE,), choose x € E, and
A, Be . The point x is contained in a manifold S,. According to lemma 1.4 it
holds e B'e 4By € S for sufficiently small real ¢. This implies

lim t"z(e‘me_meme“ — E)x =[A,B] xeT(x)

t—0

and [A, B] x € B(x). As it holds for each x e E,, itis [A, B] e A.

Lemma 1.6. Let A =< €, be involutive and create the distribution B. Let for
matrices B, C € €, be Bx € B(x), Cx € B(x) for all x € E,.
Then [B, C] x € B(x) for all x€E,.

Proof follows immediately from the proof of lemma 1.5.

Supplement to definition 2. Let B be an involutive distribution. Let us form the
space

(1.4) A = E(AeC,; Axe B(x) for all xeE,)

Then according to lemma 1.6 the space 2 is involutive. So by (1.4) we can uniquely
to each involutive distribution B determine the involutive space A = = §, such
that B = By,

The definition of being involutive for a given distribution might be now given as
follows: A given distribution % is called involutive iff the space (1.4) is involutive.

Theorem 1.1. Let B be a distribution inE,. Let usdenote Z, = E(x € E,; dim B(x) =
= r), r=20,1,..., n, and take one connected component Z of a set Z,.

Then each x € Z is contained in a unique r-dimensional integral manifold S,,
of the distribution B, which is maximal in the sense of inclusion of sets, if and only
if B is involutive.
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Moreover, if B is created by an involutive space A < < €,, B(x) = {Px, Ppx, .. ..
P}, Pieq, i =1,2,...,r, then the integral manifold S, is given by the
mapping (1.2).

Proof. 1) The necessity follows from lemma 1.5. 2) Let B be involutive. Then
according to lemma 1.3 each point x € Z is contained in an integral manifold of 2.
Let us choose a new topology in Z like in [2]. That topology consists of all sets
which can be represented as unions of integral manifolds of B. Then the sought
manifold S, is that component of Z which contains the point x.

The supplement is an immediate consequence of lemma 1.3.

Theorem 1.2. Let B be an involutive distribution in E, and we€E,. Then the
integral manifold S, is the set of all points x € E, for which there exists a solution
x(t) of the equation (1.1) and T > 0 such that x = x(T).

Proof. 1) From the proof of lemma 1.4 it follows that all points lying on a solution
of (1.1) are contained in S,,.

2) Let x € S,,, then x can be linked up with w by a finite chain of integral manifolds
S, i=1,2,..., k, given by the formula (1.2), ®€S;, $;nS;4; +0, i=1,2,....
..., k — 1, x € S;. And obviously if we have two arbitrary points x, , € Sy, then there
exists a solution x(7) of the equation % € B(x), x(0) = x,, and a number T > 0 such
that x(T) = x,. This completes the proof.

2. CONTROL PROBLEM

In this paragraph we will investigate the equation
(2.1) ;‘ x(f) = (A(L — u(t) + Bu(i) x(1), x(0)=w. 120,
t

where A, Be €,, w € E, and u is a measurable function on <0, oo), values of which
lie in €0, 1) for all t = 0.

The matrices A, B e €, will be fixed. As the matrix B — A will appear very
frequently we shall consistently denote it by C.

The set of all functions measurable on <0, o), values of which lie in {a, b>, a < b,
we denote by M(a, b). The function u € M(0, 1) one call the control. The solution
of (2.1), which corresponds to a given control u € M(0, 1), we denote by x(, u).
And at last we denote by X(7) the fundamental matrix of (2.1) for which X(0) = E.
Here we do not indicate explicitely the dependence of X(t) on the control u, because
it will be still clear what control will be dealt with.

Definition 2.1. The smallest linear involutive space of n-by-n matrices, which
contains the matrices A, B, we denote by U (or by (A, B)) and the distribution
created by A we denote by V.
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Definition 2.2. By B (or by B(A, B)) we denote the smallest linear space, of n-by-n
matrices, which contains the matrix C and with each P € 8B contains also both matrices
[A, P] and [B, P].

The distribution created by B we denote by 7.

Lemma 2.1. B(A, B) is involutive.

Proof. Let us call the matrix P € €, elementary of grade p, if there exists a sequence
of matrices P,,Pz, ..., P,_y, where P, = Aor P, =B,i=1,2,..., p — 1such that
P =[P,,P,...,P,_{,C]. We do not care that an elementary matrix could have
different grades

Evidently B is the linear hull of all elementary matrices. To prove the involutivity
of B, it is sufficient to show that if there are given elementary matrices P, Q, with
grades p, g, respectively, then the matrix [P, Q] is a linear combination of elementary

" matrices of grades less or equal to p + g¢.

If p + g = 2, then [P, Q] = 0, and the statement is obvious. Let us assume that
our statement holds for all elementary matrices which have the grades p, q, where
p + g < r. Now, let matrices P, Q have the grades p, g, respectively,and p + g = r.
If p = 1,then obviously [P, Q] is elementary. If p > 1, then, without loss of generality,
let be P = [A, R], where R is elementary of grade p — 1.

[P, Q] = [[A, R], Q] = [A, [R.Q]] + [R, [Q. A]].

The matrix [R, Q] is a linear combination of elementary matrices of the grades at
most p + q — 1. As [A, Q] is elementary and R has its grade less then p we get by
means of the mathematical induction with respect to p that also [R, [Q, A]]is a linear
combination of elementary matrices of grades less or equal to . This completes the
induction with respect to r.

Lemma 2.2. A,BeC,; 7,,7,€E;y; +7,. Let M = <= €, be the smallest linear
space with the properties:

1) CeM

2)PeM=[A +yC,PleMi=12
Then M = %(A B).

Proof. PeM = [A, P] = (1/(y2 — 71) (y2[A + 7,C, P] — 7, [A + y,C, P]) e M,
[B,P] = (]/(Vz =) (2 = ) [A + G, P] — (v, — DA +7,C P])eMm.

Lemma 2.3. A(A, B) = {A, B(A, B)}, V(x) = {Ax, ¥(x)} for all x € E,.

Proof follows immediately from the proof of lemma 2.1.

Definition 2.3. w € E,, T = 0. Then the set of all points x € E, for which there
exists such u € M(0, 1) that x = x(T, u) (x(t, u) is a solution of (2.1)), we denote
by & ,(T) and we write U Vw(t) = S, )

te{(0,T
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Lemma 2.4. The sets &,(T), S,(T) are compact and connected for all we€E,,
T=0.

Proof. 1) S,(T) is bounded. Denote « = max “A + uCi,, then for every solution

ue{0,1
of (2.1) it holds ||x(1, u)|| < |e| + « [} |x(r, u)[|>dr = |x(1, u)|| < [loof . e*".

2) S,(T) is compact. Let a sequence x; € S,(T), i = 1,2, ... be given. Then there
exist 1;€¢0, T) and u; € M(0,1), i = 1,2,... such that x; = x(1;,u;), i = 1,2, ...
There is a convergent subsequence of t,, t,, ... Let its limit be ¢, and let us suppose,
without loss of generality, that already ¢, 1,, ... is convergent to t,. The sequence
x(t, u;), t € 0, ty), is uniformly bounded due to boundeness of S,(T) and uniformly
continuous. So there exists a subsequence (let it be again the original sequence) that
converges uniformly to a function x(z), 1 € <0, to).

The sequence uy, u, ... is bounded in the space LZ(O, to) of all square-integrable
functions on €9, t,) and we can choose from it a subsequence (let it be again u,, u,, ...)
weakly convergent (in L,(0, 1,)) to a function u € L,(0, ;). Let us show that u e
e M(0, 1). If ¢ > 0, denote y the characteristic function of the set Q = E(1 € 0, t,);
u(t) > 1 + &). Then p(Q) = [ ufr) x(r)dr, i = 1,2, ..., u(Q) = f& u(z) x(r)dr =
2 (1 + &) u(Q) = u(Q) = 0. In the same way we can prove that u(t) = 0 almost
everywhere on <0, #,).

It holds: |ff (u;x; — ux) dt| < [§& ux; — x)dt| + |f& (u; — u)xde| >0

©(A + u,C)x;dt - [ (A + uC) x dt = x(t, u) — w. We have got x(1) = x(1, u)
for t € <0, 1o, hence x(1,) = x(to, u) € S,(T). The proof of the compacteness of & (T)
is similar.

3) S,(T) is obviously connected. We prove that also &,,(T) is connected.

Let x(T, u), x(T.v)e &,(T), then the set E(x(T, u(l — 2) + vi); 140, 1)) is
connected, included in &,(T) and includes both points x(T; u), x(T; v).

Let us fix § (0, 4), u e M(3, 1 — §) and put in (2.1) instead of the control u the
control u + gv, where ve M(—1, 1), e € <0, 5). Obviously u + eve M(0, 1) and we
get -

(2.2) % =(A+ Cu)x + eCox, x(0)=ow.

The solution of (2.2) is an analytic function of the parameter &.

(2.3) x(t, u + ev) = xo(t, v) + ex,(1, v) + e2x,(1, 0) + ...
(2.4) Xo = (A + Cu)xy, x0(0,0) =,
(2'5) )'(,‘=(A+Cu)xk+Cvx,‘_‘, xk(O, U)=0, k=1,2,...

Let us put « = max [A + Cu| and estimate |x,(z, o), k=1,2,...
ue{0,1)

Ixo(t, 0)]| < [0 . &=t
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bl =l el Bl = e o) = 41 [/ 670 e ] a

0

ﬁ
ate. o) < o] e et k=0.1.2,...

It + )] < Y it o)] < o] - e eiex,
k=0

Thus the serie (2.3) is locally uniformly absolutely convergent. We can write
T
(2.6) (T, 0) = X(T) f X1(4) Cxoft, 0) oft) dt =
0
T
- X(T) J X~1(1) CX(t) o(t) dt o
0 .

Lemma 2.5. The set K(T), T > 0, of all vectors (2.6), where ve M(—1,1), is
convex and symetric with the centre at origin.

Proof follows immediately from (2.6).
Lemma 2.6. The linear hull of K,(T) is identical with the linear hull of the vectors
(2.7) X(T)X (1) CX(H)w, te0, T).

Proof. By integration of (2.7) we cannot leave the linear hull. On the contrary let
us fix t € {0, T) and put

o (7) = {1} for Jre(t —a, t + oy n {0, T)}’ 2> 0
0 |[te0, Ty — {t — o, t + a)
Then
T
lim (22)~" X(T)J‘ X" Hr) CX(r) vfr) dr w =
x—0+ 0
= o(t) X(T) X~ (1) CX( o .
where

(1)

It

1 t+0,t=*T
L for .
3 t=0o0rt=T
Lemma 2.7. Let T > 0,u; € M(0, 1) for all 2€ <0, Ay, A9 > 0.If u; - uq asympto-
tically on €0, T», A — 0, then X(t, u;) — X(t, uo) uniformly on <0, T).

Here X(t,u;) is the fundamental matrix-function of equation (2.1), where u
is replaced by u;, and X(0, u,) = E. :

Proof is contained in the second part of the proof of lemma 1.2.
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Lemma 2.8. T > 0, 6€(0, 1), u e M(8, 1 — ). Let the function u be not constant
on 0, T (not equivalent with a constant function), then

(2.8) _ V(T u)) < er K(T).

Proof. According to lemma 2.6 the vectors (2.7) are contained in U r. K,(T).
r=1

For almost all 1€ <0, T) has the function [{ u(t)dt the derivative equal to u(t).
Let G = <0, T be the set where it is not true. Let us take ¢, € (0, T) — G, then we
can write X(T) X~ (1) CX(tj 0 = X(T) X7 '(#,) (X(t1) X~ '(1) CX(1) X~ '(1,)) X(1,) -
. X7XT) x(T; u). Let us, for brevity, denote X(t) X~ '(#,) = Y(¢) and divide the proof
into two parts. In the first, resp. second, part we show that the linear hull L, resp. L,,
of matrices Y '(t) CY(¢), resp. X(T) X~ *(t) CX(r) X" '(T), where ¢ ranges through
entire <0, T, contains the space B(A, B).

1) For t =t; we get Ce L. Let all elementary matrices from %(A, B) of the
grades equal at most to (k — 1) (the definition of the elementary matrix and its grade
is given in the proof of lemma 2.1) belong to ‘L. The matrix-function Y satisfies the
equation Y = (A + uC) Y, Y(t;) = E and for t € (t;; T) we can write

Y(t)=E+J (A + u(t,) C)dr, + ... +

ty <ty <t

+j (A + u(e;) ) ... (A + u(ry) C) dry ... de, +

1 <t <..<13<t

+ J (A + u(ry) C) ... (A + u(tys1) C) Y(tpr1) drgsq ... dry
<tk 1<..<T <t

(%Y"(t) — —Y (9 (% Y(z)) YHi) = —Y (i) (A + u(t) C) .
Y~ '(t,) = E,

Y“‘(t):E—J (A + u(r,) C)dr, + ... +

t1 <t <t

+(—1)kj (A + u(z) ) ... (A + u(t,) C) dry ... de, +
<t <..<t1<t

+ (—1)k+1f Y (101) (A + u(tey 1) ©)....
o (A + u(ry) C)driyy ... d1,
Y1) CY(1) = C + j [A + u(e,) C. Cdr, +

ty<t <t
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+ j [A + u(r;) C, A + u(r,) C,C]dr,dry + ... +
t1<ta<t1<t

+ J [A+u(t)C, ..., A+ u(r,) C, Cldr, dr_y ... d1y +
1 <t<..<r11<t
+ O((t — t,)*" Y eL.

If we subtract from the matrix Y !(#) CY(¢) the first k addend, then according to
the induction assumption we do not leave Land we get

j [A + u(t) C, oo A + u(t) C, Cl dry.... dry + O((t — 1, ) e L.
t1 <t <..<11<t

Let us multiply the left side by (¢t — ;)" and tend ¢ — ¢,, then we get
[(A + u(t)) C)*C][k! e L.

We can take another point t, € €0, T) — G for which u(t,) = u(t,) and by the
same procedure we get [(A + u(t,) C)*CleL, k =0,1,2,... Thus according to
lemma 2.1 it holds B(A, B) = L.

2) For t = T we get X(T) X" (T) CX(a) X~ '(a) = CeL,. Let us, for brevity,
denote X(t;) X"'(a) = Z, then we can write X(T) X '(r) CX(t) X™X(T) =
=Z7 'Y () CY(t) Z, t e <0, T).

Let us choose t,e<0, T, then [A, Z7'Y " '(t,) CY(t,) Z] = [27'(ZAZ™") Z,
Z7'Y 7Y (t,) CY(t0) Z] = Z7'[ZAZ™", Y '(t,) CY(to)] Z. According to lemma 1.1
it holds ZAZ™' € (A, B) and thus in accordance with the first part of this proof we
get [ZAZ™', Y7 !(1,) CY(to)] € L, [A, Z7'Y 7 (t,) CY(to) Z] € L,. In the same way
we get [B, Z7'Y 7 !(t,) CY(t,) Z] € L,.

This concludes the proof.

Example. The assumption in lemma 2.8 that the control u is not constant is.
necessary. Let us put

0 00 200
A={-1 00|, C=(200]), u(t)=1%.
0-10 020

We shall show that then (2.8) will not hold for all T > 0.
It holds

000
[A,C]=[A+13C,C]=(200],
000
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000
[A,A,C]={000], [A+1C A+1CC]=[AC],

200
o\ [0 0\|
V(o) =<|o ], o}, | 0],
W, 0 W,
eT 00 efw,\ /0 0
AT =10 10|, ¥ (e 0) =l e"w, |, [eTw, |, [0
0 01 , 0 eTw,

If w, # 0, then for all T = 0 it holds dim ¥"(e***97w) = 3. For 1€ <0, T) we
get X(T)X71(t) CX(t) XTY(T) = e~ AFEOUDCA+IOC=D - C 4 f ((r = T)[r).
[(A+3C)C]=C+ (T = 1)[A, C]. o
Thus it holds
zrx (T) = {Co [A, Clw}, dim iHK,,(T) = 2.

Lemma 2.9. T > 0, 6 (0, 1), u e M(6,1 — 6). Then
(2.9) K(T) = ¥ (x(T, u)) .

Proof. According to lemma 2.6 the set K,(T) is contained in the linear hull L of
the vectors (2.7) and from lemma 1.1 it follows L = ¥"(x(T, u)). '

Lemma 2.10. T> 0, 5 €(0, %), u e M(, 1 — 5). Let us denote by F(x(T, u)) the
set of all possible limits (if they exist),

lim g % = X(Tw)
ke [x = x(T, u)

where x, € & (T), x, + x(T,u), k = 1,2,...,a € E, x, > x(T, u).
Then

(2.10) K/(T) =« 7(x(T, u)).
Proof is evident from (2.3).

Lemma 2.11. Let x(t, u) be a solution of (2.1), then dim ¥ (x(t, u)) = dim ¥"(w),
t=0.

Proof. According to theorem 1.1 it holds dim V(x(t u)) = dim V(w), t
So it is sufficient to prove the equivalence

Aw e ¥ (w) < Ax(t, u) e 7" (x(t, u))
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Let us fix ¢+ = 0, then it holds Awe 7 (w) = X !(t) AX(t) w € ¥"(w) = such A;e
€B(A,B) and a;eE;, i=1,2,...,r, exist that X ') AX(t)w = Y a;A ;0 =

i=

 aiX(0) -

__/-\
i -
Q

= Ax(t 1) = AX() @ = X() X7'0) AX() @ = X() ¥, a;A
CAXTN) x(t, u) = Ax(1, u) e ¥ (x(1, u)).

The inverse implication we get if we take the matrices — A, —B instead of the
matrices A, B.

Theorem 2.1. T > 0, w € E,, dim ¥ (w) = q. Then & ,(T) is a closed, g-dimensional
integral manifold of the distribution ¥".

Proof. Let us choose x € & ,(T) and ¢ > 0. Then there exist 6 € (0, ) and a non-
constant control u € M(8, 1 — §) such that it holds ||x — x(T, u)| < e.

According to lemma 2.11 dim ¥"(x(T, u)) = ¢q and from lemma 2.8 it follows
that there exist such functions v;e M(—1,1), i = 1,2, ..., q, that ¥"(x(T, u)) =
= {x{(T; vy), x,(T, v), ..., (T, v,)}, where x,(T,v;), i =1,2,...,q, are vectors

(2.6).
1 5) ,

The function
represents a mapping of the open set G < E, into #,(T), has continuous partial
derivatives of first order with respect to 9, i = 1,2,...,q, which are for 3 =0
solutions of the equation

q
(2.11) x(T,u+_Zl.9,.v,~); SEG=E<SEEq;

ggi__( A+ u C)_—J,-Cvx(tu) ?ﬁ =0; i=12,...,9g
dr d9; 09, 09il,=0
Hence, the matrix dx/69[3=0 has as its columns the vectors x,(7, 9;), i = 1,2,..., ¢,

and in an environ of the point 3§ = 0 has the rank g.

Thus the set % ,(T) is the adherence of a union of a system of g-dimensional
integral manifolds of the distribution ¥". Let S; , be two manifolds of this system.
Let us choose points x(T, u;) €S, i = 1,2, where the controls u;, i = 1,2 are so
chosen that for every 4 € €0, 1) the function u,(1 — 1) + u,4 is not constant. Then
the curve

(2.12) (T uy (1 — 2) + uzd), Ae0,1),

links both points x(7; u;), i = 1,2, and each point of (2.12) is contained in a
g-dimensional integral manifold of the distribution ¥, that is contained in .%,(T).

According to theorem 1.1 the theorem is proved.
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Theorem 2.2. T > 0, w € E,, dim V(w) = r. Then S,(T) is a closed r-dimensional
integral manifold of the distribution V.

Proof. At first let us again show that S,(T) is an adherence of a system of r-
dimensional integral manifolds of the distribution V. We shall distinguish two cases:

1) dim V(w) = dim ¥"(w). Then the statement follows immediately from theorem
2.1. '

2) dim V(w) > dim ¥"(w). Let us choose x € S,(T) and ¢ > 0, then there exist
6€(0, %), 1€(0, T) and a non-constant continuous on <0, T control u € M(5, 1 — J)
so that [|x — x(t, u)|| < e. If we choose functions v;e M(—1,1),i =1,2,...,r — 1,
like in theorem 2.1, where we have t instead of T, then the function

r—1
(2.13) x(t,u + Y, %),
=1
lf =t <4 =min(, T—1), 9eG= EI:SeE,_l; Is| < Ll 5],
r —
is a mapping of the open set (1 — 4, ¢ + 4) x G < E, into S,(T). The function (2.13)

has all properties as the function (2.11) has and moreover

dx(t, u)

” = (A + u(7) C) x(t, u) .

8$=0

Hence, the functional matrix of the mapping (2.13) has at the point t = ¢, $ = 0
the rank r.

Now, let us take two integral manifolds S, , of the distribution V, which are
contained in S,(T). We choose points x(t, u;) €S;, i = 1,2, so that t,€(0, T),
the control u; is continuous on <0, T), i = 1, 2, and the function u,(1 — 1) + u,4
is not constant on <0, min (t,, t,)>. Let for example be 7, < t,, then we link both
points x(t;, u;) with the curve, composed of the following arcs:

x(ty, uy(1 = 2) + uyd), 2e€<0,1>, x(t,uy), telty,t).

The theorem is proved.

3. CASE OF 1-DIMENSIONAL MANIFOLD & (T)

In this paragraph we show that every point on a 1-dimensional manifold yw(T)
can be reached by a piecewise constant control u € M(0, 1) and we describe the points
at which u is discontinuous. In the whole paragraph we shall have fixed matrices
A, BeG,
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Lemma 3.1.

(3.1) —(A Uk =y (’i‘>(—1)f-l [(A + uC)~1 C] (A + uC)-

i=1

k=0,1,2,...

Proof by the mathematical induction.

Lemma 3.2.
d A+uC ( 1) i A+uC
(32) L (;0( RIS c]) At
Proof.
dopre _y L —(A Fup=Y ¥ i( >(_1)*—1 [(A +uC)~' C].
du kzok!d k=0 i=1 k!

O ) ,r%' (=1) "' [(A + uC)™" C](A + uC) =

[(A + uC)* C] e***¢

(=1
=L

we use the new index s = k — i.

+ 1)'

Lemma 3.3. T > 0, u € M(0, 1), w € E,, dim ¥"(w) > 0. Then the set

(3.3) - E(te<0, T); Cx(t, u) = 0)
is finite.

Proof. Let there exist a sequence t;,1,,1t,,... t;,€0, TY, t, >ty t; *t,,
Cx(t;, u) = 0, i = 1,2,... Let us denote x(t,, u) = X,. Evidently Cx, = 0. Let us
suppose CA"x, = 0, r =0, 1,...,(k — 1). Without loss of generality let us suppose
that there exists an infinite number of those terms t; in the sequence t,, t,, ... for
which ¢; > t,. Crossing to a subsequence we can assume that t; > t, holds for all
i =1,2,... Then t, < Tand we can write for t € (t,, T

to<ty <t

(3.4) x(t,u) = x4 + J‘ (A + u(ty) C) xodry + ... +

+j (A + u(t))C)... (A + u(r,) C) xo dt ... d7y +
to<t< <t1<t

+ j (A + u(t;)) C) ..o (A + u(tis 1) C) X(tis 1 #) ATy ... dr

to<tk+1<..<11<t .
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If the number of those terms of the sequence ty, t,, ..., for which t; > t, holds, is
finite, then t, > 0 and for t < t, we would have to change the signs of the inequalities

in (3.4) and to alternate the signs of the integrals.
If we putin (3.4) t = t,, i = 1,2, ..., and multiply it by the matrix

1 1
0= (T—t—o)"CX(ti’ u) = m

we get

J CAkx, dry ... dt, +
to<tg<..<11<t{

_ 1
(t: = to)f

J (A + u(t) ©) oo (A + u(tess) ©) X(tes 1o 1) dTa s ...
to<tk+1<..<11<{¢§
1 k
codry = ECA xo + O(t; — to) -

Thus we have found out that it holds CA*x, = 0 for all integers k.
Now, let us rewrite the equation (2.1) into the following form:

t=A+uC)x=B+(u-1)C)x, x(0)=o0.

By the same procedure we would find out that also CB'x, =0, k=0,1,2,...
Hence, according to lemma 2.2 it holds dim ¥"(x,) = 0 and from lemma 2.11 follows
dim 7" (w) = 0. We have got a contradiction.

Lemma 3.4. T> 0, x € E,, dim ¥'(x) = 1, u; < u,. Let us put g(9, 1) = e**%9x,
e lu,uyy, te0, T).
Then there exists an analytic function (3, t), defined on the set

G = E(% e uy, uy),te0, TY; Cyg(9,1) +0),
such that

(3.5) | "_9293_’) — (8, 1) Cg(8, 1), (9,0)eG.

Moreover, if there exists such 3¢ € {uy, u,) that Cg(3,, 1) # 0 for all t€(0, T,
then Y(9, t) > 0 for all t (0, T) and there exists lim t™' . (9, t) > 0.

t—=0+
Proof. In accordance with lemma 3.2 it holds
tk +1

ﬁgg;’ 2 :kgo(_ 1y m (A +5ey a0,
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According to lemma 2.11 it holds dim ¥"(g(9, t)) = 1 and thus
[(A + 9C)C]g(3,1)e{Cy(%, 1)}, k=0,1,2,..., (3, 1)eG.

Let us denote [(A + 9C)*C] = D(9), k = 0,1,2,... As the sequence of norms
[Di(9)], k = 0,1,2,... can be majorised by a geometric sequence with the quotient.

2 max [A +
Seluy,u2)
It holds:
e~ (A+s0) 99 ag —(A+8C)t2( ! ( )e(A+3C)t X _
9 (k + 1)
1
Z("' )k(k Y o~ (A+30) Dk(-9) SA+IO
tr+1
= —1) A3 — D/(3) x,
IO (B aPe®) s = o

o~ (A+30)1 5_9 = o-(A+30) (9, 1) Cg =
09
— U5, ) A cen 0 — (s, Y £ Do) x

r20 t

For 8 = 9, and for sufficiently small ¢ > 0 both sides of (3.5) are not zero. Let us
denote by f(t) one non-zero coordinate of the vector e~ 4*%9" (5g/a9), then we
get the equation

B(t) = ¥(90. 1) . B(t), te(0, ), t,=min(T, inf 7).

B(r)=0

>0

Let be Dy9)x =0; i=0,1,...,r —1; D(%) x + 0, then evidently lim ™'
(8o, 1) = 1/(r + 1) > 0. 20+
Let us take #; € (0, #,) so small that y(39,, t;) > 0, then
B(2) = B(ty) exp {[i,(1/(90, 1)) dt}, telty, 1), t, = min(T, )inf 7).
B'(r)=0 t>1t
It is not possible to be 1, < 1, as for t € {t,, 1,) it holds |B(t)| = |B(t,)| > O.
If it holds 1, < t,, then there is lim y(3,, t) = + oo, what is again impossible, as

t—>ty—
¥(3, t) is bounded on <t;, T). Thus it holds 7, = ¢,.
If it holds ¢, < T, then another coordinate f of the vector exp {—(A + 3,C) t}.
.(6g/63) has its derivative at the point ¢, different from zero and again it holds
B(t) = v(90, 1) . B(1), telt, —4,t5), ty=min(T, inf 1),
B(m=0

T>12

where 4 > 0is so small that #'(¢) + 0 on the interval {t, — 4, t,).
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This completes the proof.

Lemma 3.5. u, ,€<0,1>, t, , > 0, w € E,, dim ¥"(w) = 1. Let us put

x = e(A+uzC)tze(A+u1C)t1w .

Then it exists a piecewise constant control

u € M(min (u,, u,), max (uy, u,))
such that:
1) x = x(t; + t,, u),
2) if t is a point of discontinuity of the control u, then Cx(t, u) = 0.
Proof. The case u; = u, is trivial. Let be u; < u,. Let us denote by u, the control
given by the prescription:

uy(t) = ul} for {te 0, t,)

uo(t) = u, tedty,ty + 1.

Ifitist; e F = E(t€(0, t; + t,); Cx(t, up) = 0), then there is nothing to be proved.
So let be t, ¢ F. Without loss of generality we can assume that F = (. Then on some
open neighbourhood G of the set of all points x(t, uy), where t€ (0, i, + t,), it
holds xe G = Cx =+ 0.

Let us choose 4 € (0, 7, so small that for all 4, , = 0, 4, + 4, < 4, it holds

(A+u2C)4: e(A+u1C)(h +41)

e weG.

Let us put
f(‘l,', C) — e(A-leC)t e(A+u1C)(n+§—r) w; T, (:G <0’ A> ,

Then it holds:

(3.6) I {) (;r 9 _ (w,

— “1) AT 10t CA+uO(t+L=1) )

= (u2 _ ul) e(A+u2C)t Ce-(A+u1C)ff(T, {) .

The right side of (3.6) is for T = 0 different from zero. We can choose 4 so small
that of(z, {)[0t + 0 for 7, { € €0, 4). :
Let us further put

9(8,1) = A . Jelug,uyy, ted0,t; + t,).
According to lemma 3.4 we can define functions ¢, Y as follows:

f (1, {) _ 2g(9, 1)
ot

o(%, {) Cf (1, ), 5

= y(9,1)Cg(9,1).
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Then ¢ is analytic and different from zero on the set 7, { € €0, 4). As ¢(0,{) =
=u, — u; >0, { €0, 4), the function ¢ is positive. The function y is according
to lemma 3.4 analytic on the set of all (9, r) for which Cg($, {) % 0 and according
to the supplement to lemma 3.4 it is Y(uy, t) > O for t € (0, t; + A4).

Let us put K; = max ¢(t, {), where 1, { € (0, 4) and choose 4; > 0 so small that
Y(9,1) > 0for $euy, uy + 4,),telty, t; + 4>. Letus put K, = min (9, ), where
Selupuy + 4y), telty, ty + 4>, 1o = min (4, (K,[K,) 4y, (K3/Ky) (uy — uy))
and take the equation

ds _ ot Q)

= . 90,0 = uy, 0, 7>, 0,4 .
& P n + D) (0,0) =u;, 10,7, (€0, 4)

The function ¢ is defined on <0, 7,» and it holds

u; £ Hr, ) < uy +j Mdrgul + &1§min(u, + 4y, uy).
o W(%ty +0) K,

Hence, the solution 3 exists on the interval {0, 7,> for { € €0, 4.

Let us define the function h(t) = g(9(t, 7o), t; + 7o), T € €0, 7). Then it holds

dh(z) _ 3g(3(c, t0), t1 + 7o) 89(t, 79) _
dr 29 Lot

o(t, 10) Cg(9(1, 10), 1, + T0) =

= ¢(t, 79) Ch(zr) for 1€<0, 10 .
h(0) = g(3(0, 7o), t; + 7o) = g(uy, t; + 1) = eArmOm Ty = £(0, 14) .

Thus we have got h(t) = f(1, 1,) for T € €0, o). If we put T = 7, we get f(1q, 7o) =
= g(Nzo, T0)s t; + 7o) i-€.

e(A+uzC)ro e(A+u‘C)11 w = e(A+3(ro.ro)C)(11+ro) w .
If it is 9(q, 7o) = u,, then the proof is finished. If it is (7, 7o) < u, and if the set

E(te(0, t; + 1o); CelA+3(0mOr gy = ()

is empty, we get the original problem and we can repeat the whole procedure. So we
get (finite or infinite) sequences (let us write only the case of infinite sequences):

Uy, < 99 < 9y <%h...<uy, 19, T(sTy--; 1; >0, i=0,1,2,...
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such that either Y 7, = 1,, then x = A"+ where § =1im 9, or Y 7, =

iz0 i— o0 iz0
= 1 < t,. If in the second case the set

Fi = E(te(0,t, + £); Ce**¥ = 0)
is empty, we could use our procedure in the case

x = ATuO(12=7) LHA+ION+D)

If F; + 0, then there exists ¥ = max ¢ (Fy is according to lemma 3.3 ﬁnite). Then
teFy
we define u(t) = 3 for t € 0, ¥) and we get the original problem:

x = e(A+uzC)(tz—r) e(A+§C)(t1+t—-t) x(?, u) .

According to lemma 3.3 we must reach the point x after finite number of such steps
and the proof is finished.

Theorem 3.1. weE,, dim ¥ (w) =1, T>0, xe.L,(T). Then such piecewise
constant control u € M(0, 1) exists that it holds:

1) x = x(T, u),

2) u has a finite number of discontinuities. Moreover, if t € 0, T) is a point of
discontinuity of u, then Cx(t, u) = 0.

Proof. It exists such v e M(0, 1) that x = x(T; v). Let v, e M(0,1), k = 1,2, ...
be a sequence of piecewise constant on {0, T') controls such that v, — v asymptotically
on <0, T>. According to lemma 3.5 for each integer k it exists a piecewise constant
on <0, T control w; that has only such discontinuity-points ¢ at which Cx(t, w,) = 0
and it holds x(T; w,) = x(T, v,).

We can choose from the sequence w,, k = 1, 2, ..., such subsequence (let it be the _
original sequence) that converges asymptotically to a control w. Then according to
lemma 2.7 it holds

(3.7) x(t, w,) = x(t, w) uniformly on <0, T) ..

According to lemma 3.3 the set E(t € <0, T); Cx(t, w) = 0) is finite. Let us denote
itselements by t, i = 1,2, ..., t; <t, <ty...<t,.

Let us choose ¢€(0,4(t, — t,)) and put ¢ = min ||y — x(t, w)|, where ye

€E(xeE,;Cx=0),tet; +&t, — &).
Evidently ¢ > 0. According to (3.7) it exists such integer k, that for all k > k, it

holds [|x(t, w,) — x(t, w)| < o, where te{t, + ¢ t, — &). Thus the control wy,
k > ko, is on {t; + ¢ t, — &) constant. The limit w must be also constant on

621



(t; + & t, — &) forall e€ (0, 4(t, ~ 1,)). Hence, w is constant on (¢, t,), what was
to be proved.

Theorem 3.2. » € E,, dim ¥ (w) = 1, T > 0, x € &(T). Let the matrix C be regular.
Then there exists such constant control u € M(0, 1) that x = x(T, u).

The proof follows immediately from theorem 3.1, as the solution of the equation
Cx = 0Ois just only x = 0.

Example. Let us take

131 29,7
A=(010), C={00 0 ), weE;, w3=0
001 00 1
and for t € 0, T) put:
1 T—1)2-(2 1
ezt w1+2_'y2+ (1)2>+( ) ('}’2+ )wZ
Ft) = ATD qA*Or g _ T 4 4
(2]
0
e¥'wy + (e* — 1)—*—2”)2 + Ta)z
g(t) = (ATWTOT (T 4t
W
0

Evidently f(0) = g(0), f(T) = g(T).
If we take such w that satisfies the inequalities:

20y + y,0;, <0, 42w, + y,w,) + @, >0,

then it holds dim ¥ (w) = 1 and for T > 1 the first coordinate of the vector f, resp. g,
at first decreases and then increases, resp. still increases, on <0, T).

Hence, we cannot reach every point of .#,(T), where T > 1, by a constant control
at the time T.
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Pe3rome

PEIIEHHME B IIEJIOM VPABHEHMH:A VIIPABJIEHUA
x = (A(1 — u) + Bu)x

AH KYYEPA (Jan Kucera), INpara

B naunoii paGote uccneayercs MuoxectBo - (T) win S,(T) Becex To4ek, B KOTO-
pble BO3MOXHO MOMACTh W3 JaHHO! HAYaJIbHON TOUKH ( 10 PEIIeHHI0 ypaBHeHus (2.1)
3a maHHoe Bpemsi T WM BO BpeMs MeHuIe Wiy paBHo 7T. Jloxa3aHo B Teopemax 2.1
M 2.2 4TO 3TH MHOXECTBA SIBJISIOTCS 3aMBIKAHUEM HEKOTOPBIX MHOI000pa3uii,
KOTOpbIe JIOKANbHO 3aJaHbl oToOpaxeHusamu (2.11) u (2.13) wm ortobpakenuem
(1.2). Pa3sMepHOCTb 3TMX MHOTOOOpPAa3uil PaBHSETCS Pa3MEPHOCTU HEKOTOPOTO
pacnpezeneHus, KOTopoe BBeeHO B [2], B Ha4aIbHOM TOYKE w.

B tpethem maparpade uszyyaetcs Gosiee noapobHo ciyyait xoraa & ,(T) kpusas.
IToTtom g kaxayio u3 Touek &,(T) MOXHO MONACTH NMPH IOMOIIM MO YaCThAX MOCTO-
SIHHOTO YIIPAaBJICHUS U, TOYKU IEpepbiBa KOTOPOrO COOTBETCTBYIOT INMEPECEUCHUSIM
x(t, u) c mpocTpaHcTBOM pecHuit ypaBHenus (A — B) x = 0.
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