Czechoslovak Mathematical Journal

Jan Kučera

Solution in large of control problem $\dot{x}=(A u+B v) x$

Czechoslovak Mathematical Journal, Vol. 17 (1967), No. 1, 91-96

Persistent URL: http://dml.cz/dmlcz/100763

Terms of use:

© Institute of Mathematics AS CR, 1967

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SOLUTION IN LARGE OF CONTROL PROBLEM
 $\dot{x}=(\mathrm{A} u+\mathrm{B} v) x$
 Jan Kučera, Praha

(Received November 19, 1965)

Let us have an equation

$$
\begin{equation*}
\dot{x}=(\mathrm{A} u+\mathrm{B} v) x, \quad x(0)=\omega \tag{1}
\end{equation*}
$$

where A, B are given n-by- n matrices, ω is a vector, written as a column, from an n-dimensional Euclidean space E_{n} and $u, v \in M$, which is the set of all measurable functions on $\langle 0, \infty)$ values of which lie in the interval $\langle-1,1\rangle$. The functions from M are called controls.

If we have two n-by- n matrices A, B, we denote by $\mathfrak{2 l}(\mathrm{A}, \mathrm{B})$ the smallest linear space of n-by- n matrices which has the following two properties:

1) $A, B \in \mathfrak{W}(A, B)$,
2) $\mathrm{P}, \mathrm{Q} \in \mathfrak{A}(\mathrm{A}, \mathrm{B}) \Rightarrow(\mathrm{QP}-\mathrm{PQ}) \in \mathfrak{H}(\mathrm{A}, \mathrm{B})$.

Finally, for every vector $x \in \mathrm{E}_{n}$ we denote by $\mathrm{V}(x)$ a vector space formed by all vectors $\mathrm{P} x$, where $\mathrm{P} \in \mathfrak{A}(\mathrm{A}, \mathrm{B})$. One calls the mapping V distribution.

In the paper [1] we investigated the equation

$$
\begin{equation*}
\dot{x} \in \mathrm{~V}(x), \quad x(0)=\omega, \tag{2}
\end{equation*}
$$

where we considered as a solution of (2) every absolutely continuous function $x(t)$, $t \geqq 0$, with the property: if $\mathrm{d} x(t) / \mathrm{d} t$ exists, then $\mathrm{d} x(t) / \mathrm{d} t \in \mathrm{~V}(x(t))$, satisfying the initial condition $x(0)=\omega$.

In [1] it was proved that all points of E_{n} which can be linked with ω by a solution of (2) form a manifold S_{ω} dimension of which is equal to $\operatorname{dim} \mathrm{V}(\omega)$. In this paper we will prove that that every point $x \in \mathrm{~S}_{\omega}$ lies also on a solution $x(t, u, v, \omega)$ of the equation (1), where the controls u, v are piecewise constant and acquire only the values $-1,1$.

Notation. For $x \in \mathrm{E}_{n}$ we use the norm $\|x\|=\sum\left|x_{i}\right|$, which induces the norm for an n-by- n matrix $\mathrm{A}=\left(a_{i j}\right)$ to be equal to $\|\mathrm{A}\|=\max _{j} \sum_{i}\left|a_{i j}\right|$. The dimension of a (finite-dimensional) vector space V one writes $\operatorname{dim} V$. The symbol $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ represents the linear hull of elements $x_{1}, x_{2}, \ldots, x_{k}$ of some linear space. By $O(t)$, $t \rightarrow 0$, we denote a quantity, depending on t, which can be majorised by $c|t|$, where c is a positive constant, if t tends to zero. For n-by- n matrices we use the "bracket" operation: $\left[\mathrm{A}_{1}, \mathrm{~A}_{2}\right]=\mathrm{A}_{2} \mathrm{~A}_{1}-\mathrm{A}_{1} \mathrm{~A}_{2}$,

$$
\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{k}\right]=\left[\mathrm{A}_{1},\left[\mathrm{~A}_{2}, \ldots\left[\mathrm{~A}_{k-1}, \mathrm{~A}_{k}\right] \ldots\right]\right] .
$$

The zero-matrix and unit-matrix are denoted by 0 and E, respectively. The A^{-1} is an inverse to a non-singular matrix A. The solution of (1) which corresponds to given controls $u, v \in M$ and satisfy the initial condition $x(0, u, v, \omega)=\omega$, one denotes by $x(t, u, v, \omega)$. Finally, we denote by $M_{0} \subset M \times M$ the set of all piecewise constant functions $(u, v) \in M \times M$ values of which are only $(\pm 1,0),(0, \pm 1)$.

Definition. The matrix $\mathrm{P} \in \mathfrak{H}(\mathrm{A}, \mathrm{B})$ which can be represented as $\mathrm{P}=\left[\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{p}\right]$, where $\mathrm{P}_{i}= \pm \mathrm{A}$ or $\mathrm{P}_{i}= \pm \mathrm{B}, i=1,2, \ldots, p$; one calls elementary of grade p.

It was proved in [1] that the space $\mathfrak{M}(\mathbf{A}, \mathrm{B})$ is the linear hull of all elementary matrices.

Lemma 1. Let $\mathrm{P} \in \mathfrak{A}(\mathrm{A}, \mathrm{B})$ be an elementary matrix of grade p. Then it exists a sequence $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{r}$, where $r=3.2^{p-1}-2$, which is formed only by matrices $\mathrm{A},-\mathrm{A}, \mathrm{B},-\mathrm{B}$, such that it holds

$$
\begin{equation*}
\prod_{i=1}^{r} e^{\mathrm{P}_{i} t}=\mathrm{E}+\mathrm{P} t^{p}+O\left(t^{p+1}\right), \quad t \rightarrow 0 \tag{3}
\end{equation*}
$$

Proof. For $p=1$ it is obviously $e^{\mathrm{P} t}=\mathrm{E}+\mathrm{P} t+O\left(t^{2}\right)$. Let (3) hold for an integer $p>0$, then we can write

$$
\prod_{i=1}^{r} e^{\mathrm{P}_{i} t}=\mathrm{E}+\mathrm{P} t^{p}+\mathrm{Q} t^{p+1}+O\left(t^{p+2}\right) .
$$

The matrix-function $\left(\prod_{i=1}^{r} e^{\mathrm{P}_{i} t}\right)^{-1}$ is entire and it holds

$$
\left(\prod_{i=1}^{r} e^{\mathbf{P}_{i} t}\right)^{-1}=\mathrm{E}-\mathrm{P} t^{p}+\mathrm{R} t^{p+1}+O\left(t^{p+2}\right)
$$

where $\mathrm{R}=\mathrm{P}^{2}-\mathrm{Q}$ for $p=1$ and $\mathrm{R}=-\mathrm{Q}$ for $p>1$.
We can now write

$$
\left(\prod_{i=1}^{r} e^{P_{i} t}\right) e^{\mathrm{A} t}\left(\prod_{i=1}^{r} e^{\mathrm{P}_{i} t}\right)^{-1} e^{-\mathrm{A} t}=\left(\mathrm{E}+\mathrm{P} t^{p}+\mathrm{Q} t^{p+1}+O\left(t^{p+2}\right)\right)
$$

$$
\begin{gathered}
\left.\left(\sum_{k \geqq 0} \frac{1}{k!} t^{k} \mathrm{~A}^{k}\right)\left(\mathrm{E}-\mathrm{P} t^{p}+\mathrm{R} t^{p+1}+O\left(t^{p+2}\right)\right) \sum_{k \geqq 0} \frac{1}{k!}(-t)^{k} \mathrm{~A}^{k}\right)= \\
\mathrm{E}+[\mathrm{A}, P] t^{p+1}+O\left(t^{p+2}\right), \quad t \rightarrow 0
\end{gathered}
$$

The formula for the number of the multiplicators follows immediately from the construction.

Lemma 2. Let $\mathrm{P} \in \mathfrak{A}(A, \mathrm{~B}), \mathrm{P}=\sum_{i=1}^{S} a_{i} \mathrm{P}_{i}$, where $a_{i}>0, \mathrm{P}_{i} \in \mathfrak{A}(\mathrm{~A}, \mathrm{~B})$ is an elementary matrix of grade $p_{i}, i=1,2, \ldots$, s. Let us put $p=\max p_{i}$ and denote by $\mathrm{F}_{i}(t)$ the matrix (3) which corresponds to the matrix $P_{i}, i=1,2, \ldots, s$. Then it holds:

$$
\begin{equation*}
\mathrm{F}(t)=\prod_{i=1}^{S} \mathrm{~F}_{i}\left(a_{i}^{1 / p_{i} i} t^{p / p_{i}}\right)=\mathrm{E}+\mathrm{P} t^{p}+O\left(t^{p+1}\right), \quad t \rightarrow 0 \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Proof. } \prod_{i=1}^{S} \mathrm{~F}_{i}\left(a_{i}^{1 / p_{i}} t^{p / p i}\right)=\prod_{i=1}^{S}\left(\mathrm{E}+a_{i} \mathrm{P}_{i} t^{p}+O\left(t^{\left(p / p_{i}\right)\left(p_{i}+1\right)}\right)\right)= \\
& =\prod_{i=1}^{S}\left(\mathrm{E}+a_{i} \mathrm{P}_{i} t^{p}+O\left(t^{p+1}\right)\right)=\mathrm{E}+\mathrm{P} t^{p}+O\left(t^{p+1}\right) .
\end{aligned}
$$

Lemma 3. Let $\mathrm{P} \in \mathfrak{A}(\mathrm{A}, \mathrm{B}), \mathrm{P}=\sum_{i=1}^{s} a_{i} \mathrm{P}_{i}$, where $a_{i}>0$, and $\mathrm{P}_{i} \in \mathfrak{A}(\mathrm{~A}, \mathrm{~B})$ is an elementary matrix of grade $p_{i}, i=1,2, \ldots, s$. Let us put $p=\max _{i} p_{i}$. Then there exists a constant $K>0$ such that for all $\varepsilon>0, \alpha \in\left(0,1>\right.$ there exists $(u, v) \in M_{0}$ and a constant $T \in\left(0, K . \varepsilon^{1-p}\right)$ such that for the solution $x(t, u, v, \omega)$ of (1) it holds

$$
\begin{equation*}
\left\|x(T, u, v, \omega)-e^{\alpha \mathbf{P}} \omega\right\|<\varepsilon \tag{5}
\end{equation*}
$$

Proof. For $P=0$ lemma is trivial. Let us further assume $P \neq 0$. Let us take a positive integer m and put

$$
\begin{gathered}
x_{i}=e^{(i \alpha / m) P} \omega, \quad i=0,1, \ldots, m \\
y_{0}=\omega, \quad y_{i+1}=\left(\mathrm{E}+\frac{\alpha}{m} \mathrm{P}\right) y_{i}, \quad i=0,1, \ldots,(m-1)
\end{gathered}
$$

Then it holds: $\left\|y_{0}-x_{0}\right\|=0,\left\|y_{i+1}-x_{i+1}\right\| \leqq\left\|(\mathrm{E}+(\alpha / m) \mathrm{P}) y_{i}-e^{(\alpha / m) \mathrm{P}} x_{i}\right\| \leqq$ $\leqq(1+(\alpha / m)\|\mathrm{P}\|)\left\|y_{i}-x_{i}\right\|+\left(\alpha^{2} / m^{2}\right)\|\mathrm{P}\|^{2} e^{(\alpha / m)\|\mathrm{P}\|}\left\|x_{i}\right\|$. If we put $x=\max _{\tau \in\langle 0,1\rangle}\left\|e^{\tau \mathrm{P}} \omega\right\|$, then $\left\|x_{i}\right\| \leqq x, i=1,2, \ldots, m$,

$$
\begin{equation*}
\left\|y_{m}-x_{m}\right\| \leqq x \frac{\alpha^{2}}{m^{2}}\|\mathrm{P}\|^{2} e^{(\alpha / m)\|\mathrm{P}\|} \frac{(1+\alpha\|\mathrm{P}\| / m)^{m}-1}{\alpha\|\mathrm{P}\| / m}<\chi \alpha\|\mathrm{P}\| / m e^{(\alpha+\alpha / m)\|\mathrm{P}\|} \tag{6}
\end{equation*}
$$

Now we put $z_{0}=\omega$. Let us have already defined the points $z_{0}, z_{1}, \ldots, z_{i}, i<m$. In lemma 2 the matrix-function (4) was constructed so that it exists a constant $K_{1}>0$, dependent only on the matrix P, such that it holds

$$
\left\|\mathrm{F}(t)-\left(\mathrm{E}+\mathrm{P} t^{p}\right)\right\| \leqq K_{1} \cdot t^{p+1}, \quad t \in\langle 0,1\rangle
$$

Furthermore according to lemma 2 for every $t \in\langle 0,1\rangle$ there exists $(u, v) \in M_{0}$ such that $\mathrm{F}(t) z_{i}=x\left(\vartheta(t), u, v, z_{i}\right)$, where $\vartheta(t)=\sum_{i=1}^{S}\left(3.2^{p_{i}-1}-2\right) a_{i}^{1 / p_{i} t^{p / p_{i}}}$. If we put $t=(\alpha / m)^{1 / p}$ and $z_{i+1}=x\left(\vartheta(t), u, v, z_{i}\right)$, we get

$$
\left\|z_{i+1}-\left(\mathrm{E}+\frac{\alpha}{m} \mathrm{P}\right) z_{i}\right\| \leqq K_{1}\left(\frac{\alpha}{m}\right)^{1+(1 / p)}\left\|z_{i}\right\|
$$

Thus we have defined all points $z_{0}, z_{1}, \ldots, z_{m}$ by mathematical induction.
It holds:

$$
\begin{gathered}
\left\|z_{i+1}\right\| \leqq\left\|z_{i+1}-\left(\mathrm{E}+\frac{\alpha}{m} \mathrm{P}\right) z_{i}\right\|+\left\|\left(\mathrm{E}+\frac{\alpha}{m} \mathrm{P}\right) z_{i}\right\| \leqq \\
\leqq\left(K_{1}\left(\frac{\alpha}{m}\right)^{1+(1 / \mathrm{p})}+1+\frac{\alpha}{m}\|\mathrm{P}\|\right)\left\|z_{i}\right\|<\left(1+\frac{\alpha}{m}\left(K_{1}+\|\mathrm{P}\|\right)\right)\left\|z_{i}\right\|< \\
<\left(1+\frac{\alpha}{m}\left(K_{1}+\|\mathrm{P}\|\right)\right)^{m}\left\|z_{0}\right\|<e^{\alpha\left(K_{1}+\|\mathrm{P}\|\right)}\|\omega\| .
\end{gathered}
$$

So all points $z_{i}, i=0,1, \ldots, m$, are contained in the sphere $\|z\|<e^{\alpha\left(K_{1}+\|\mathrm{P}\|\right)}\|\omega\|$.
Further it holds:

$$
\begin{gathered}
\left\|z_{i+1}-y_{i+1}\right\| \leqq\left\|z_{i+1}-\left(\mathrm{E}+\frac{\alpha}{m} \mathrm{P}\right) z_{i}\right\|+\left\|\left(\mathrm{E}+\frac{\alpha}{m} \mathrm{P}\right) z_{i}-\left(\mathrm{E}+\frac{\alpha}{m} \mathrm{P}\right) y_{i}\right\| \leqq \\
\leqq K_{1}\left(\frac{\alpha}{m}\right)^{1+(1 / p)} e^{\alpha\left(K_{1}+\|\mathrm{P}\|\right)}\|\omega\|+\left(1+\frac{\alpha}{m}\|\mathrm{P}\|\right)\left\|z_{i}-y_{i}\right\|
\end{gathered}
$$

$$
\begin{align*}
\left\|z_{m}-y_{m}\right\| \leqq K_{1} & \left(\frac{\alpha}{m}\right)^{1+(1 / p)} e^{\alpha\left(K_{1}+\|\mathbf{P}\|\right)}\|\omega\| \frac{(1+(\alpha \mid m)\|\mathbf{P}\|)^{m}-1}{(\alpha \mid m)\|\mathbf{P}\|}< \tag{7}\\
& <K_{1}\left(\frac{\alpha}{m}\right)^{1 / p} \frac{1}{\|\mathbf{P}\|} e^{\alpha\left(K_{1}+2\|\mathbf{P}\|\right)}\|\omega\|
\end{align*}
$$

If we now put together the estimates (6), (7), we get $\left\|z_{m}-x_{m}\right\|<K_{2}(\alpha / m)^{1 / p}$.
Now let us choose m so that $K_{2}(\alpha / m)^{1 / p}<\varepsilon \leqq K_{2}(\alpha /(m-1))^{1 / p}$. Then (5) holds and we get the estimate for T :

$$
\begin{gathered}
T \leqq m \sum_{i=1}^{S}\left(3 \cdot 2^{p_{i}-1}-2\right) a_{i}^{1 / p_{i}}\left(\frac{\alpha}{m}\right)^{1 / p_{i}} \leqq m K_{3}\left(\frac{\alpha}{m}\right)^{1 / p}<m K_{3} \cdot \frac{\varepsilon}{K_{2}} \leqq \\
\leqq\left(1+\alpha\left(\frac{K_{2}}{\varepsilon}\right)^{p}\right) K_{3} \cdot \frac{\varepsilon}{K_{2}}<K \cdot \varepsilon^{1-p} .
\end{gathered}
$$

Lemma is proved.

Theorem. Let R_{ω}, resp. S_{ω}, be the set of all points $x \in \mathrm{E}_{n}$ which can be linked with ω by a solution of the equation (1), resp. (2). Then $\mathrm{R}_{\omega}=\mathrm{S}_{\omega}$.

Moreover, each point from R_{ω} can be linked with ω by a solution of (1) which corresponds to some piecewise constant controls $u, v \in M$, values of which are only $-1,1$.

Proof. Evidently every solution of (1) is also a solution of (2), hence $\mathrm{R}_{\omega} \subset \mathrm{S}_{\omega}$. We prove the inverse inclusion in two steps: 1) Let us choose $x \in \mathrm{~S}_{\omega}$, then there exists a solution $x(t), t \geqq 0$, of (2) and a number $T \geqq 0$ such that $x=x(T)$.

Let $\operatorname{dim} \mathrm{V}(\omega)=r$, then according to [1] every point $y \in \mathrm{~S}_{\omega}$ is contained in an r-dimensional manifold S , given by a mapping

$$
\varphi(t)=e^{\mathbf{P}_{1} t_{1}} e^{\mathbf{P}_{2} t_{2}} \ldots e^{\mathbf{P}_{r} t_{r}} y, \quad t \in G,
$$

where $G \subset \mathrm{E}_{r}$ is some neighbourhood of the origin and matrices $\mathrm{P}_{i} \in \mathfrak{H}(\mathrm{~A}, \mathrm{~B}$, $i=1,2, \ldots, r$, are such that $\mathrm{V}(y)=\left\{\mathrm{P}_{1} y, \mathrm{P}_{2} y, \ldots, \mathrm{P}_{r} y\right\}$. The set $\varphi(G)$ is open in S_{ω}.

Thus the compact set $E(x(t), t \in\langle 0, T\rangle)$ can be covered by a finite number of such manifolds. If we choose two points $x_{1,2} \in \varphi(G)$, then according to lemma 3 for every $\varepsilon>0$ there exists $(u, v) \in M_{0}$ and a number $t_{0}>0$ so that for the solution $x\left(t, u, v, x_{1}\right)$ of (1) it holds: $\left\|x_{2}-x\left(t_{0}, u, v, x_{1}\right)\right\|<\varepsilon$.

If we repeat this procedure we get that for every $\varepsilon>0$ it exists $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in M_{0}$ and a number t_{ε} so that for the solution $x\left(t, u_{\varepsilon}, v_{\varepsilon}, \omega\right)$ of (1) it holds: $\| x\left(t_{\varepsilon}, u_{\varepsilon}, v_{\varepsilon}, \omega\right)$ -$-x \|<\varepsilon$.
2) Let us choose elementary matrices $\mathrm{Q}_{i} \in \mathfrak{H}(\mathrm{~A}, \mathrm{~B})$ with grades $q_{i}, i=1,2, \ldots, r$, so that $\mathrm{V}(x)=\left\{\mathrm{Q}_{1} x, \mathrm{Q}_{2} x, \ldots, \mathrm{Q}_{r} x\right\}$. To every matrix Q_{i} it corresponds the matrixfunction (3), let us denote it by $\mathrm{F}_{i}(t), i=1,2, \ldots, r$. Now we take the mapping

$$
\begin{align*}
\psi\left(t_{1}, t_{2}, \ldots, t_{r}\right) & =\mathrm{F}_{1}\left(t_{1}^{1 / p_{1}}\right) . \mathrm{F}_{2}\left(t_{2}^{1 / p_{2}}\right) \ldots \mathrm{F}_{r}\left(t_{r}^{1 / p_{r}}\right) x, \tag{8}\\
t & =\left(t_{1}, t_{2}, \ldots, t_{r}\right)^{*} \in \mathrm{E}_{r} .
\end{align*}
$$

Then the functional matrix $\partial \psi /\left.\partial t\right|_{t=0}$ exists and has the vectors $\mathrm{Q}_{i} x, i=1,2, \ldots, r$, as columns. So the rank of $\partial \psi /\left.\partial t\right|_{t=0}$ is equal to r.

We choose so small open environ $G \subset \mathrm{E}_{r}$ of the origin that the rank of $\partial \psi(t) / \partial t$ is equal to r for all $t \in G$. Then the set $\psi(G)$ is an open environ of x in S_{ω}. From the step 1) it is obvious that it exists $t_{0} \in G$ and $\varepsilon>0$ so that $x\left(t_{\varepsilon}, u_{\varepsilon}, v_{\varepsilon}, \omega\right)=\psi\left(t_{0}\right)$. And from (8) immediately follows that there exists $(\tilde{u}, \tilde{v}) \in M_{0}$ and $\tilde{t}>0$ such that the solution $x\left(t, \tilde{u}, \tilde{v}, \psi\left(t_{0}\right)\right.$ of (1) passes through the point x.
3) Let us take the matrices $A_{1}=A+B, B_{1}=A-B$, instead of the matrices A, B. The matrices A_{1}, B_{1} create the same space $\mathfrak{A}\left(A_{1}, B_{1}\right)=\mathfrak{H}(A, B)$ and hence the same distribution V and the same manifold S_{ω}.

$$
\mathrm{A} u+\mathrm{B} v=\mathrm{A}_{1}(u+v) \cdot \frac{1}{2}+\mathrm{B}_{1}(u-v) \cdot \frac{1}{2}=\mathrm{A}_{1} u_{1}+\mathrm{B}_{1} v_{1} .
$$

In the first two steps we have proved that for every point $x \in \mathrm{~S}_{\omega}$ there exists $\left(u_{1}, v_{1}\right) \in M_{0}$ and a number $t_{1}>0$ such that if we denote by $y\left(t, u_{1}, v_{1}, \omega\right)$ the solution of the equation

$$
\dot{y}=\left(\mathrm{A}_{1} u_{1}+\mathrm{B}_{1} v_{1}\right) y, \quad y\left(0, u_{1}, v_{1}, \omega\right)=\omega,
$$

it is $x=y\left(t_{1}, u_{1}, v_{1}, \omega\right)$.
If we now put $u=u_{1}+v_{1}, v=u_{1}-v_{1}$, then u, v are piecewise constant, have only the values $-1,1$ and it holds $x=y\left(t_{1}, u_{1}, v_{1}, \omega\right)=x\left(t_{1}, u, v, \omega\right)$.

This completes the proof.

References

[1] J. Kučera: Solution in large of control problem $\dot{x}=(\mathrm{A}(1-u)+\mathrm{B} u) x$. Czech. Math. J. 16 (91), 1966, 600-623.
[2] C. Chevalley: Theory of Lie Groups I, Princeton University Press, 1946.
Author's address: Praha 1, Žitná 25, ČSSR (Matematický ústav ČSAV).

Резюме

РЕШЕНИЕ В ЦЕЛОМ УРАВНЕНИЯ УПРАВЛЕНИЯ
 $$
\dot{x}=(\mathrm{A} u+\mathrm{B} v) x
$$
 ЯН КУЧЕРА, (Jan Kučera), ПІрага

В работе показано что равны множества R_{ω} или S_{ω} всех точек, в которые возможно попасть из данной начальной точки ω по некотором решению уравнения (1) или (2). В каждую точку из R_{ω} возможно попасть при помощи по частьях постоянных управлений u, v, которые имеют только величины $1,-1$.

