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SOLUTION IN LARGE OF CONTROL PROBLEM
x = (Au + By) x

JAN KUCERA, Praha

(Received November 19, 1965)

Let us have an equation
(1) % =(Au +Bv)x, x(0)=o,

where A, B are given n-by-n matrices, w is a vector, written as a column, from an
n-dimensional Euclidean space E, and u, v € M, which is the set of all measurable
functions on <0, o) values of which lie in the interval {(—1, 1>. The functions
from M are called controls.

If we have two n-by-n matrices A, B, we denote by QI(A, B) the smallest linear
space of n-by-n matrices which has the following two properties:

1) A, Be (A, B),
2) P,Q e %U(A, B) = (QP — PQ) e A(A, B).

Finally, for every vector x € E, we denote by V(x) a vector space formed by all
vectors Px, where P € (A, B). One calls the mapping V distribution.

In the paper [1] we investigated the equation
(2) xeV(x), x(0)=o,

where we considered as a solution of (2) every absolutely continuous function x(¢),
t 2 0, with the property: if dx()/dt exists, then dx(¢)/dt € V(x(t)), satisfying the initial
condition x(0) = w.

In [1] it was proved that all points of E, which can be linked with @ by a solution
of (2) form a manifold S,, dimension of which is equal to dim V(w). In this paper we
will prove that that every point x €S, lies also on a solution x(t, u, v, co) of the
equation (1), where the controls u, v are piecewise constant and acquire only the
values —1, 1.
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Notation. For x € E, we use the norm ||x| = Y |x;|, which induces the norm for
an n-by-n matrix A = (a;;) to be equal to ||A|| = max Y |a;|. The dimension of
i

a (finite-dimensional) vector space V one writes dim V. The symbol {xi, x5, ..., X,
represents the linear hull of elements xy, x,, ..., x, of some linear space. By O(1),
t — 0, we denote a quantity, depending on ¢, which can be majorised by c]tl, where ¢
is a positive constant, if ¢ tends to zero. For n-by-n matrices we use the “bracket’
operation: [A;, A,] = A,A; — A(A,,

[Ap Ao A = [Ar [As o [Arer A T].

The zero-matrix and unit-matrix are denoted by 0 and E, respectively. The A™! is
an inverse to a non-singular matrix A. The solution of (1) which corresponds to given
controls u, ve M and satisfy the initial condition x(0, u, v, ) = w, one denotes
by x(1, u, v, w). Finally, we denote by M, « M x M the set of all piecewise constant
functions (u, v) € M x M values of which are only (%1, 0), (0, +1).

Definition. The matrix P € (A, B) which can be represented as P = [Py, P,, ..., P,],
where P, = +Aor P, = +B,i = 1,2,..., p; one calls elementary of grade p.

It was proved in [1] that the space (A, B) is the linear hull of all elementary
matrices.

Lemma 1. Let P € (A, B) be an elementary matrix of grade p. Then it exists
a sequence P,, P,, ..., P,, wherer = 3 .27~ — 2, which is formed only by matrices
A, — A, B, —B, such that it holds
(3) : [Te’* =E + P* 4+ O(t**"), t—0.
i=1

Proof. For p = 1itis obviously ¢ = E + Pt + O(t*). Let (3) hold for an integer
p > 0, then we can write

-

T =E + PP + Qi** + 0(tP*?).
1

-
1]

The matrix-function ( [T €)™* is entire and it holds
' i=1

([Te""™"' = E — Pt* + RP*! + O(1**?),
i=1

where R = P> —Qforp=1and R = —Qforp > 1.
We can now write

(1—[ ePn) eA!( 1—[ ePn)—-l e—Az = (E'+' PP + Qtp+1 + O(tp+2)) . &
i=1 i=1

92



1
(Y = FAY(E ~ Pe 4 R+ 0(7* 7)Y L (=i AY) =
k>0 k! k>0 k!

E +[A P]17*t + O(1P*2), t-0.

The formula for the number of the multiplicators follows immediately from the
construction.

s
Lemma 2. Let P e A(A4, B),P = Y a.P, wherea; > 0,P, e U(A, B) is an elementary
i=1
matrix of grade p;, i = 1,2, ..., s. Let us put p = max p; and denote by F (1) the

matrix (3) which corresponds to the matrix P, i = 1,2, ..., s. Then it holds:

s
(4) E(t) = [[ Fda/Pi7) = E + Pt? + O(**"), t >0
s s
Proof. H Fi(a}/PitP/Pi> — H(E + aPt? + O(t(p/ps)(m+1))) =
i=1 i=1

N
=TI(E + aPy® + O(t"*")) = E + Pr* + O(**").
i=1

s
Lemma 3. Let Pe A(A, B), P =) a,P, where a; >0, and P,e A(A, B) is an

i=1
elementary matrix of grade p;, i = 1,2, ...,s. Let us put p = max p,. Then there

exists a constant K > 0 such that for all ¢ > 0, a (0, 1) there exists (u, v) € M,

and a constant Te(0,K .&'"F) such that for the solution x(t,u,v, ) of (1) it
holds

(5) (T, u, v, w) — o] <.
Proof. For P = 0 lemma is trivial. Let us further assume P # 0. Let us take
a positive integer m and put

ia/m)P .
x; = e®mPy  i=0,1,...,m,

m

Vo=, Yiig= <E + 5P>yi, i=0,1,...(m—1)
Then it holds: “yo - xOH =0, [|yi+1 - xi+1ﬂ = H(E + (afm) P) y; - e(a/m)Pxi" =<
<(1+ )P [or— o] + @ Im AP ™17 . 16 we put 5 = max [e%a.
(0,1
then [Ix,“ Sxi=1,2,...,m,
(6)

[V = x| < % L3 [p? emie (1 + of P [m)" — 1

o[ P|/m

< % a||P]|/m e FemuPl
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Now we put z, = w. Let us have already defined the points z,, z, ..., z;, i < m.
In lemma 2 the matrix-function (4) was constructed so that it exists a constant K; > 0,
dependent only on the matrix P, such that it holds

[F(t) — (E + Pi?)| < Ky . #7*", 1e<0,1).
Furthermore according to lemma 2 for every te€<0, 1) there exists (u, v)e M,
S
such that F(f) z; = x(3(t), u, v, z;), where §(t) =Y (3.27""" — 2) a}/P'?/Pi If we

i=1
put t = (a/m)"'? and z;,; = x(K1), u, v, z;), we get

. 1+(1/p)
Ziv1 “<E+EP> ZiH, =K, <ﬁ) p”ZiU'
m | m

Thus we have defined all points zy, z4, ..., z,, by mathematical induction.

It holds:
| &
ziea] = lz00s — (E 42 p) 2+ ‘(E + 11») :
| U

s (ko (Z) 7 e 2R fed < (1 s IPD) e <
< (14 20 IR ol < 10 o

So all points z;, i = 0, 1, ..., m, are contained in the sphere ||z|| < e*®* 1P|

Further it holds:
|
Ziei— (E+ 2P (E+2P)z - (E+ 2P}y,
m i ‘ m m

‘. <%>”“”’)e’('(‘+”P”)”wﬂ 4 (1 4 _:_1 ”p”) R

O el s (G) o EIEE S <

If we now put together the estimates (6), (7), we get |z,, — x,,]| < K,(a/m)"”.
Now let us choose m so that K,(o/m)'/? < & £ Ky(af(m — 1))'/?. Then (5) holds
and we get the estimate for T

N o 1/pi o 1/p Py
T<mY@3.27"' = 2al/Pi[=) =mK;(—) <mK;.— =
i=1 m m K,

14
<(1+a(%Y )k, S < k.o 7.
€ K,

. &
Lemma is proved. :

=

\

)

“Zi+1 - y,'+1” = . +

<

IIA
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Theorem. Let R, resp. S,, be the set of all points x € E, which can be linked
with o by a solution of the equation (1), resp. (2). Then R, = S,,.

Moreover, each point from R, can be linked with w by a solution of (1) which
corresponds to some piecewise constant controls u, ve M, values of which are only
-1, 1.

Proof. Evidently every solution of (1) is also a solution of (2), hence R, = S,,.
We prove the inverse inclusion in two steps: 1) Let us choose x € S,,, then there exists
a solution x(t), t = 0, of (2) and a number T = 0 such that x = x(7).

Let dim V(w) = r, then according to [1] every point y €S, is contained in an
r-dimensional manifold S, given by a mapping

o(t) = e Py 1eG,

where G < E, is some neighbourhood of the origin and matrices P;e (A, B,)
i =1,2,...,r, are such that V(y) = {P,y, P,y, ..., P,y}. The set ¢(G) is open in S,,.

Thus the compact set E(x(t), t € (0, T')) can be covered by a finite number of such
manifolds. If we choose two points x; , € ¢(G), then according to lemma 3 for every
& > 0 there exists (u, v) € M, and a number ¢, > 0 so that for the solution x(¢, u, v, x,)
of (1) it holds: [x, — x(to, u, v, x,)| < &

If we repeat this procedure we get that for every ¢ > 0 it exists (u,, v,) € M, and
a number 1, so that for the solution x(t, u,, v,, ®) of (1) it holds: |x(t,, u,, v,, ) —
—x|| <e

2) Let us choose elementary matrices Q; € (A, B) with grades ¢, i = 1,2,...,r,
so that V(x) = {Q;x, Q,x, ..., Q,x}. To every matrix Q; it corresponds the matrix-
function (3), let us denote it by F(¢), i = 1,2, ..., r. Now we take the mapping

(8) Yty tyy o t,) = Fi(t1/7) . Fo(6572) . F(117) x

t=(ty, t5...,1,)*€E,.

Then the functional matrix 6(///6t[,=0 exists and has the vectors Q,x, i = 1,2, ..., r,
as columns. So the rank of dy[dt|,—, is equal to r.

We choose so small open environ G < E, of the origin that the rank of oy(t)/dt
is equal to r for all ¢ € G. Then the set (G) is an open environ of x in S,. From the
step 1) it is obvious that it exists t, € G and ¢ > 0 so that x(f,, u,, v, ®) = Y(t,).
And from (8) immediately follows that there exists (i, §) € M, and 7 > 0 such that
the solution x(¢, @, B, Y(t,) of (1) passes through the point x.

3) Let us take the matrices A; = A + B, B, = A — B, instead of the matrices
A, B. The matrices A,, B, create the same space U(A,, B;) =A(A, B) and hence
the same distribution V and the same manifold S,,.

Au+Bv=A(u+v).32+By(u—v).%+=Au, + B, .
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In the first two steps we have proved that for every point x € S, there exists
(uy, v;) € My and a number ¢, > 0such that if we denote by y(7, uy, vy, o) the solution
of the equation

y= (Alul, + val) ¥y, y(O, Uy, Uy, a)) =w,

itis x = y(ty, uy, vy, ®).

If we now put u = u; + v, v = u; — vy, then u, v are piecewise constant, have
only the values —1, 1 and it holds x = y(t,, uy, vy, @) = x(ty, u, v, ).

This completes the proof.
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Pe3rome

PEINEHUE B LIEJIOM YPABHEHUS VIIPABJIEHUS
x = (Au + Bv) x

SH KYYEPA, (Jan Kucera), IIpara
B paborte mokazaHO 4TO paBHBI MHOXecTBa R, wWiu S, BCEX TOUYEK, B KOTOpHIE
BO3MOXHO IONACTh M3 MJAHHOW HAYaJIbHOM TOYKM @ MO HEKOTOPOM DPEIICHUIO

ypasuenus (1) wiu (2). B kaxayro Touky u3 R, BO3MOKHO TONACTH TPH IIOMOILH IO
YaCThsIX MOCTOSIHHBIX YIIPABICHUM U, v, KOTOPBIE KMCIOT TOJILKO BeTM4MHBI 1, —1.
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