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SOLUTION IN LARGE OF CONTROL PROBLEM 
X = (Au + Bv) X 

JAN KUCERA, Praha 

(Received November 19, 1965) 

Let US have an equation 

(1) X = (Aw + Вг;) x , x(0) = œ , 

where A, В are given п-Ъу-п matrices, со is a vector, written as a column, from an 
w-dimensional Euchdean space E„ and u,veM, which is the set of all measurable 
functions on <0, oo) values of which lie in the interval < —1, 1>. The functions 
from M are called controls. 

If v/e have two п-Ъу-п matrices A, B, we denote by ^l(A, B) the smallest linear 
space of п-Ъу'П matrices which has the following two properties: 

1) A, Be^ l (A, B), 

2) P, Q G ^(A, B) => (QP - PQ) G ^Я(А, В). 

Finally, for every vector x G E„ we denote by V(x) a vector space formed by all 
vectors Px, where P G 9 I ( A , B ) . One calls the mapping V distribution. 

In the paper [ I ] we investigated the equation 

(2) X G V(x), x(0) - œ , 

where we considered as a solution of (2) every absolutely continuous function x(^), 
t ^ 0, with the property: if dx(f)/df exists, then dx(t)ldt e Y(x(t)), satisfying the initial 
condition x(0) = со. 

In [1] it was proved that all points of E„ which can be linked with со by a solution 
of (2) form a manifold S^ dimension of which is equal to dim V(co). In this paper we 
will prove that that every point x G S^ lies also on a solution x{t, u, v, œ) of the 
equation (1), where the controls м, v are piecewise constant and acquire only the 
values —1, 1. 
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Notation. For x e E„ we use the norm \\x\\ = Y]^i\' which induces the norm for 
an п-Ъу-п matrix A = (ац) to be equal to | |A| | = тах^ |а^^ | . The dimension of 

j i 

a (finite-dimensional) vector space F one writes dim V. The symbol {x^, X2, ... , x,,] 
represents the linear hull of elements x^, of some linear space. By 0{t), 
t --> 0, we denote a quantity, depending on f, which can be majorised by c\t\y where с 
is a positive constant, if t tends to zero. For пЛ>у-п matrices we use the "bracket" 
operation: [A^, A2] = A2A1 — A1A2, 

[Ai, A2, . . . , A J = [A„ [ A„ . . . [ A,„ „ A,] . . . ] ] . 

The zero-matrix and unit-matrix are denoted by 0 and E, respectively. The A~^ is 
an inverse to a non-singular matrix A. The solution of (l) which corresponds to given 
controls w, V e M and satisfy the initial condition x(0, w, v, со) = со, one denotes 
by x(t, u, V, со). Finally, we denote by MQ a M X M the set of all piecewise constant 
functions (u,v)e M x M values of which are only ( ± 1 , 0 ) , (0, ± 1). 

Definition. The matrix P e ЭД(А, В) which can be represented as P = [P^, P2, . . . , Pp], 
where P^ = ± A or P^ = ± B , i = 1, 2 , . . . , p; one calls elementary of grade p. 

It was proved in [1] that the space 9ï(A, В) is the linear hull of all elementary 
matrices. 

Lemma 1. Let P G 9 I ( A , B ) be an elementary matrix of grade p. Then it exists 
a sequence P^, P2, ..., P^, where г = 3 . 2^"^ — 2, which is formed only by matrices 
A, —A, B, — B, such that it holds 

(3) ^ n^^ ' ^ - E + P t ^ + 0(r^+^), ^ - ^ 0 . 

Proof. For p = 1 it is obviously e^^ = E + Ft + 0{t^). Let (3) hold for an integer 
p > 0, then we can write 

П e^'' = E + FtP + QtP^' + 0{tP-'^) . 
i = i 

r 

The matrix-function ( Y[ e^'^)~^ is entire and it holds 
i = l 

( f l /^^)- i = E - P^^ + Rt^"-' + 0(^^+^) , 

where R = P^ ~ Q for p = 1 and R = - Q for p > 1. 
We can now write 

1 = 1 i = l 
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• ( Z f, '̂A )̂ (E ^ Pr̂  + R p̂+i -b oit^-"^)) 5] - ( - 0 ' A') = 

The formula for the number of the multiplicators follows immediately from the 
construction. 

Lemma 2. Let P e ЩЛ, В), P = ;^ a,P ,̂ where a,- > 0, P^ e ЩА, B) is an elementary 

matrix of grade pi, i == 1, 2, ..., s. Ler us put p = max Pi and denote by F^t) the 
i 

matrix (3) which corresponds to the matrix P^, i = 1, 2, ..., s. Then it holds: 
s 

(4) F{t) - П Fi(aJ/^^f^/^^) = E + P^^ + 0{tP'-') , f -> 0 

Proof. [lF,(aJ/^^r^''^0 = П ( Е + ciiP^t^ + 0(t̂ /̂̂ ^>^̂ ^ + ̂ >)) = 
S 

- П ( Е + «iPi^'' + 0(rP^^)) = E + Pr^ + 0(t^+^). 

s 
Lemma 3. Let P G 2t(A, B), P = ^ a-P., w/iere â  > 0, awd P^ e 2l(A, B) is an 

elementary matrix of grade p^, i — 1, 2, ... , s. Let us put p — maxp^. Then there 
i 

exists a constant К > 0 such that for all s > 0, a e (0, 1> there exists (w, v) e MQ 
and a constant Te{0,K.£^~^) such that for the solution x[t,u,v,a}) of (l) it 
holds 

(5) \\x{Z u, V, со) - е^'^соЦ < a . 

Proof. For P = 0 lemma is trivial. Let us further assume P Ф 0. Let us take 
a positive integer m and put 

x, = e^^"''">^co, i = 0, 1 , . . . , m , 

Уо = 0), y^+i = ( E + - P j ^ i , i = 0, 1,..., (m - 1) 

Then it holds: \\уо - Xo\\ = 0, \\y,^, - x,^,\\ й ||(E + (a/m)P) j , - e^^^-^%\\ й 
^ ( 1 + (a/m)||P||) \\y, - хЛ + (ос^ЮЦРЦ' e(^'''">"'"||x,|l. If we put x = max ||e^^a)||, 

" те<0,1> 
then \\xi\\ S >c, г = 1, 2 , . . . , m, 

(6) 

m^" " «||P|/"i 
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Now we put ZQ == 0). Let us have already defined the points ZQ, Z | , ..., z ,̂ i < m. 
In lemma 2 the matrix-function (4) was constructed so that it exists a constant Ki > 0.> 
dependent only on the matrix P, such that it holds 

\\F{t) " (E + Pr^)|| й K^ . fP"-^ , f e <0, 1> . 

Furthermore according to lemma 2 for every Г e <0, 1> there exists (w, P) e М^ 
s 

such that F(r) ẑ  = x{9{t), u, v, z,-), where &{t) = Y{^ • ^""''^ ~ 2) aj^^4^^^\ If we 

put t = [ajmy^P and z^+i = x(^(r), w, t;, z^), we get 

E + ^ P b 
m 

' \ i + (i /p) 

Thus we have defined all points ZQ, Zj, ..., ẑ „ by mathematical induction. 
It holds: 

m + m 
< 

й Kl 
m 

i + (i/p) 

+ 1 + i ^ i ) N I < ( i + ^(^i + W))NI< 

<(l + ^{K,^\\n))\\z4<e<-^-\^n^ со 

So all points Zi, i = 0, 1, ..., m, are contained in the sphere ||z|| < е'^^^^^"^"^||ш| 
Further it holds: 

^i+i - yt- z , ^ , - ( E + - P ) z , . 
m m / \ m 

^ Ki f^Y''^'V-^ll^">|ico| + fl + ^ | P A \\Z, - y,\\ 
\mj \ m J 

(7) |z„, - >.J| ^ K, 
i + ( i / p ) 

< K , 
m 

.(K..iiPii),L..iia + W m ) l | P | | r - l 
(a/m) IIPf < 

^«(Xi + 211P| l ) l . [i 

If we now put together the estimates (6), (7), we get ||z^ — -̂ тЦ < К2{ОИ\П1)^'Р. 
Now let us choose m so that iC2(a/m)'/^ < 8 ^ K2{ocl{m ~ 1))^/^. Then (5) holds 

and we get the estimate for T: 

ml \m K-, 

^>'-''"^)'hi^ "•'-'• 
Lemma is proved. 
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Theorem. Let R ,̂ res p. S^, be the set of all points x G E„ which can be linked 
with CO by a solution of the equation (1), resp. (2). Then R^ = S^. 

Moreover, each point from R̂ ^ can be linked with œ by a solution o/(1) which 

corresponds to some piecewise constant controls u, v e M, values of which are only 

- 1 , 1. 

Proof. Evidently every solution of (l) is also a solution of (2), hence R ,̂ cz S^. 
We prove the inverse inclusion in two steps: 1) Let us choose x e S^, then there exists 
a solution x{t), t ^ 0, of (2) and a number Г ^ 0 such that x = х[Т). 

Let dim V{w) = r, then according to [1] every point у e S,̂  is contained in an 
r-dimensional manifold S, given by a mapping 

where G a E^ is some neighbourhood of the origin and matrices P^ e Ш(А, В,) 
i = 1, 2, ..., r, are such that Y{y) = {Pi^, Р2У, • • -, Р^у}- The set (p[G) is open in S^. 

Thus the compact set E[x[t), t e <(0, T}) can be covered by a finite number of such 
manifolds. If we choose two points x^ 2 ̂  Я^{^)^ then according to lemma 3 for every 
£ > 0 there exists (u,v)e MQ and a number tQ > 0 so that for the solution x{t, u,v,Xi) 
of (1) it holds: [|x2 — x^t^, u, v, х^Щ < s. 

If we repeat this procedure we get that for every г > 0 it exists (w ,̂ v^) e MQ and 
a number t^ so that for the solution x(t, t/^, v^, ш) of (1) it holds: \\x(t^, ŵ , v^, со) — 
- x\\ < 8. 

2) Let us choose elementary matrices Q^ G ЭД(А, В) with grades ^ ,̂ / = 1, 2, ..., r, 
so that V(x) = {QiX, Q2X,..., QrX}. To every matrix Q̂ - it corresponds the matrix-
function (3), let us denote it by Fi[t), i = 1, 2, ..., r. Now we take the mapping 

(8) iA(^, t,, ..., 0 = Fi(r}/^0 • F2(ty^^)... Yltl'^^) X , 

t = (Г1Л2, •.-, 0 * e E , . 

Then the functional matrix d\jjjdt\^^Q exists and has the vectors Q^x, i = 1, 2, ..., r, 
as columns. So the rank of d\l/jdt\^^Q is equal to r. 

We choose so small open environ G с E^ of the origin that the rank of d\j/(t)ldt 
is equal to r for all teG. Then the set ^{G) is an open environ of x in S^. From the 
step 1) it is obvious that it exists tQsG and e > 0 so that x{t^, u^, v^, ш) = i/̂ (̂ o)-
And from (8) immediately follows that there exists (u, v) e MQ and ? > 0 such that 
the solution x(t, û, v, 1/̂ (̂ 0) of (I) passes through the point x. 

3) Let us take the matrices Ai = A + B, B j i = A — B, instead of the matrices 
A, B. The matrices Aj,, B^ create the same space ЩА^, B^) =9t(A, B) and hence 
the same distribution V and the same manifold S^. 

Aw + Bi; = Ai(w + t;) . i + Bi(w — v). ^ = A^u^ + B^^v^ . 
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In the first two steps we have proved that for every point x e S^ there exists 
(wi, v^) e MQ and a number ti > 0 such that if we denote by y{t, u^, v^, со) the solution 
of the equation 

у = (AiWj + B^v^) у , j(0, Wi, b\, со) = CO , 

it is X = y(ti, Ui, Vi, œ). 
If we now put и = Ui + Vi, V = Ui -- v^, then w, v are piecewise constant, have 

only the values —1, 1 and it holds x = y[ti, w ,̂ v^, œ) = x{t^, w, v, со). 
This completes the proof. 
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Р е з ю м е 

РЕШЕНИЕ В ЦЕЛОМ УРАВНЕНИЯ УПРАВЛЕНИЯ 
л: = (Aw + Bf) X 

ЯН КУЧЕРА, (Jan Kucera), Прага 

В работе показано что равны множества R^ или S ,̂ всех точек, в которые 
возможно попасть из данной начальной точки со по некотором решению 
уравнения (1) или (2). В каждую точку из R^ возможно попасть при помощи по 
частьях постоянных управлений w, v, которые имеют только величины 1, — 1 . 
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