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1. Introduction. Let f(z), F(z) be regular in the unit disk D(|z| < 1) and satisfy the
conditions f(0 = F(0) = 0, f'(0) = 1, F'(0) = e*, where B is real. If

(1.1) {ZP{(S)} >1 and Re {Z;(Z()z)}

forzin Dand 0 £ 4, ¢ £ 1, then f(z) is close-to-convex of order A and type o with
respect to F(z). This class of functions is discussed by R. J. LiBRA in [2].

Let

(1.2) fZ)=z+ a2z + ... +az"+ ..
and
(1.3) F(z) = e®z + byz® + ... + bz" + ...
Since
(1.4) zf'(z)} =e"# = Cosfp —iSinf, Cosf 4.
F(z) L=

we have
(1.5) Re{Secﬁ~ !y ztanﬂ} > ASecB.

Denote by C*(4, 6), 0 < 2, ¢ < 1, the family of all functions f(z) and F(z) which

satisfy (1.1) and

ec f8 f()+ttan[f—}LSecB

(1.6) F(z) —a/<a, (xz1) for |z|<1.
1 —2Secp

The results obtained by R. J. Libra in [2] shall follow as special cases from our
results by taking a = 0.
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2. We first prove the following lemmas which will be used in the subsequent work.
Lemma (2.1). Let

(2.1) P(z)=1+4piz+ pz® + ...+ pz" + ...

be regular in D and satisfy the condition

|P(z) — oc| <o (xz1) for lzl <1,
then

@2 P = reE)
1 - <1 - l) o(2)
o
where @(0) = 0, ¢(z) is regular in ‘zl < 1, satisfying l(p(z)[ < |z| in M < 1.

(2.3) Il < |P(z)] < ot

1+<l—i>\z| _1—(1—i>lzl.
G
R R

All these inequalities are the best possible.

(2.4) 2 P(2)

| P(2)

Proof.
Let

(2:5) ¥(z) = PE) ,
then f
(2.6) woy="2-1.

Let

_ ¥lz) - ¥(0)
() = o)

then ¢(0) = 0 and l(p(z)l < 1, therefore by Schwarz’s lemma

(28) le(2)] <[] -
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From (2.5), (2.6) and (2.7) we obtain
Ao = 1
1 - <1 - ;) o(z)
(2.2) gives in connection with (2.8)
*dl_—_lil_# < ’p(z)l < __1#412_1* .
1+<1_1);z; 1—<l—~>|zl
a «

Equality holds for

which proves (2.2).

From (2.2)

Differentiation and simplification give

(D)o

P(z) 1+ i(p(z) B (1 3 i) () )
Therefore
1 .
(29) 2P () <2 § ;> § =] o2 ,
P(z) | T 1|z

L= 1o = (1= ) oto)

Where we used the estimate |¢(z)| < (1 — |o(2)|)/(1 — |2]?) (see [1], p. 18). It can
be easily shown that

a1 T P 1

v Hotal - (1= Dot 1= 2 - (1= )
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(2.9) gives in connection with (2.10)

-.)F
zP (z)| x
P(Z) | 1 _llz| __(1 ‘£>1le
o o
with equality holding for

P(z) = 1__:(;_8_21); le| = 1.

Lemma (2.2). If P(z) satisfies the conditions of Lemma (2.1), then

< (2 — —) for alln.
o

’

(2.11)

Dn
The bounds are sharp.
Proof. From (2.2)

where ¢(z) is regular in D and satisfies the conditions ¢(0) = 0 and [(p(z)] <1
for z in D. Therefore

(=) (=) St - 5 o

where Y ¢2* converges in D. Then, since lgo(z]l <1
k=nt+1

925

Squaring both sides and integrating around lz[ =r<l1

G-+ (- Zme Sl e 3 Jak ez

%ill’iz oz

<2 _ i)z (1 - —) "21|m|2 = Z |pef* 5

5

n oo
k _k
=\2 ,\.z+>:ck41, n=1.
k=1 k=nt1

Let r — 1, then
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or

P

T
Inn|§(2*i>’ nzl.

Considering now the function

Therefore,

for which

M:

lz] <1, (a—1)<1.
Also P(z) has the expansion

1
P(z) =1+ (2 - —)z" + ...
o
showing that the estimate is sharp.

3. Some properties of c*(4, ). Theorem (3.1) If f(z) belongs to ¢*(4, ), then the
radius of convexity of f(z) is greater than or equal to the smallest positive root of

(3.1) (1— 2@[(1 - i)(l — b — ,u,] o
_ [(20 - 1)+ 2(1 — a){<1 - i)(l _ b} — Ab} + <2 - i)u - /Ib)]rz +

+(20-3)r+1=0.
where b = Sec f.

Proof. Let

Sec Zf( ) + itan ff — A Sec f

(32) Pz = = 3 — 7 Sec B :

108



then P(z) satisfies the conditions of Lemma (2.1). Differentiating (3.2) and simplifying

we get
3 | zf"(z) _zF(2) z P'(z) _ ASecf —itanfs
G2) +fl(z) F(z) +P(Z)+i7’,1 1 — ASecp
here Re {n} = 0, then
(3.3) {1 PE2NC )} > minRe {ﬂz_)} ~ max 22
1'(z) F(2) P(z) + 7|
Since F(z) is starlike of order o, therefore [3].
F(z2)) _1—(1=2
(3.4) Re{zF(S}g (IJHG)’, lz2f=r, 0sr<1.
PE PG
z P'(z) _ P(Z)L - P(z) I
P(z) + 1 =

using (2.3) and (2.4)

(3.5) (2 _ §> |Z| !

1-—1|-(1——)||21+Re{n}—Jul"Z

w(1-1)H
IR

(1 -1 [1 oy {(1 - i)(l _ b) - zb}]’

here b = Sec f3, Iz] =r.
From (3.3), (3.4) and (3.5) we get

(36) Re {1 + %))} L= <ll+—rzo> r

(2—i>(l—ﬂLb)r
(1) [1 ; r{(l - i)u — Jb) - Ab}] )

%
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_ {(1 ~ 20) [(1 _ %) (1 — b) - Ab] "
- [(20 1421 - o) {(1 - i)(l ~b) - ).b} + (2 - i) (1 - ),b)] .

e I (el IERR (ER R ]}

f(z) is Convex whenever the last expression is positive. Denoting by P(r), the
numerator on the right hand side of the ineuqality (3,6), observe that P(0) = 1 > 0
and P(1) = —2(2 — 1) (1 — Ab) < 0.

Therefore the smallest positive root of the equation P(r) = 0 lies between 0 and 1.
If we denote this root by 7y, it follows that the inequality (3.6) holds for r = 2| < 7o.
Hence the radius of convexity of f(z) is greater than or equal to the smallest positive

o T T

_ [(20— 1)+ 21 - a){(l _é)a —/lb)—,lb} + (z—i)(l -—ib)]rz +

+(20—=3)r+1=0.

Theorem (3.2) If f(z) € ¢*(7, o), then for ]z| =r0Zr<l,

(3.7) L= <) =

T
<1+r[<l—i>(l _;,)—1]

and * S
| r (1 = r)dr i
(3.8) _[0 (14 rPt=o [1 +],.{<] iji) (1- ) - XH <|f@) =

F {zr(1_a)[<1—§>(1—/:)—,1]+[2(/1—a)+i(1-A):l.

l =0 - r)z“'”)]} [2(1 = o) (1 = 20) (1 = PO9T-1, o441,
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A

Il

P

<z—§>(1 —A)ljr + [(1—2‘1})(1 —;L)g/z]logu -1, ¢
l_[p(pi)(;_z)}r_(z_i)(l—z.)mg(‘—r), ;

The above estimates are all sharp.

IA
It

Proof. Let f(z) € ¢*(4, o) with respect to F(z), F'(0) = ¢ and Sec < p. Then,
since

(9) re{ SO = Drcelrel =
(3.9) gives in connection with (3.6)
1 a1
i) 1 (1—;>(I~Ab) b

0
3.10) < log|f/(z)] = - o
( )ar ’f(” 14+r 1 —r 1
L+rf(1== (I—Ab)-ibb:l
o
Integrating both sides of (3.10) from 0 to r, we obtain

Gl ez Lo >

(14 rp0= [1 +r {(1 - i) (1 —2b) — ib}]

1-r

= >

(14 e [1 +r {(1 - i) (1-14)— ;H
since Ab = A.

Again from (3.2), (3.5) and Knovn bounds on Re {P(z)}, [3] we have

El

Re{1+z_fi"(_f)}<l+(1—za)r+ (—i)(l—/u))r
1

O -7 (1-1) [1 +r {(1 - i>(1 —b) — Ab}]

for Izl = r; from which we get

- (1—i>(l;lb)—2b

L tog|(a) s 222 4 :
or

-, r{<1 _i)(l — ab) —Ab}
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Integrating from O to r, we get

(3.12) 172 = o [<1 (: %):)13_‘:”) : )Lb] =
retf(1=Ya-2n-2
< [<(1 _“})3_26 ] since b = 2

From (3.12) we have

R CERC T

<f 1 +r[(1 —i)(l _z)_a]dr‘

= 0 (1 _ r)3-—2o'

On carrying out this integration, we obtain the upper bounds of (3.8).
If Lis the arc in ’zl < 1 which is mapped by f(z) on the line segment [0, f(z)];
then

el = [ relleel = [ e ar 2

gf' (1 —r)dr :
O (1 4 rppi-o [1 vy {(1 - i)(l — ) - )}]

The estimates are all sharp.
Equality holds on the left side of (3.7) and (3.8) for the function

1) = f (1 — z)dz

O(1 4 z)2-2 [1- ¥z {(1 —~ i)(l -2 — A}]

Replacing r by z in the right side of (3.8) we obtain a function in ¢*(, ¢) for which
equality holds in both the upper bounds of Theorem (3.2).

Theorem (3.3). If f(z) = z + a,z* + ... + a,2" + ... is in ¢*(4, o), then

(3.13) |a = 23 = 20)...(n = 20) [(1 — o)+ 1211 (2 - i)(l - A)]

n!

for0 =1, 0 <1 andall n.
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For n = 2, the inequality is best possible for every o > 1.

Proof. Substituting the power series for f(z), F(z) and P(z) from (1.2), (1.3) and
(2.1) respectively in (3.2) we obtain after some simplification

z 4+ 2a:2% + ...+ naz" + ... =z + [byby + by(cos B~ ) p, ]2 + ...+
+ [buby 4 by_y)cos f— A) py + ... + by(cos B — ) p, ]2 + ...

Equating Coefficients it gives
nla,,| < ]b,,’ + [b,,_ll |cosﬁ - /1] !pll + ...+ 'b1I |cos[3 — A lpn—l'

and hence on using (2.11) we have

bums] + oo [b]].

1
| -—-)(t-2
(3.14)  a,| = I%L + <—a—2—v[lbml +

If F(z) = z + ), b,z" is starlike of order 6, then

n=2

< (2 = 206)...(n — 20)
- (n = 1)
(3.14) gives in connection with (3.15)

e R R e [ |

n!

(3.15) , n=2,3,..,[4].

b,

For general value of « the sharp upper bound is achieved by the function
1
. 1+[1—l+l(——l):lz
Fz) = J “

0 [1 + (1 - 1) z] (1 =zt
o
for n = 2 only.”

If « — oo, then the extremal function is

_ [l =24)z,

flz) = 0(1_2)3-20(1

=Z(1—G)(1—21)+(l——a)[1 R |
(1 —0)(1 —20)(1 — z)>*=2

for0<A<land0=<o<1,0 F1

£(z) = (1 — 22) log (1 — ) +2(if_‘_%f
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for0 < A< land o = %; and
fz)=2(A—-1)log(l —z) + (24— 1)z
for0 £ A £ 1and ¢ = 1. In this case the upper bounds are sharp for all n.

Remarks 1. 1 = ¢ = 0 gives the class of close-to-convex functions.

2. For ¢ = 1, F(z) = z and Re {f'(z)} = 0, therefore = 0, ¢ = 1 gives the class
of functions whose derivatives have positive real part in the unit circle.

3.1f =1, ¢ =0, then Re {zf'(z)/F(z)} 2 1 and zf'(z) = F(z); thus we get
the class of convex functions.

4. When 4 = g, F(z) = f(2), we obtain the class of starlike functions of order o.

4. A class of function which are real on the real axis and convex in the direction of
imaginary axis.

Suppose f(z) = z + Z a,z" is real for real z and maps D onto a domain convex

in the direction of imaginary axis, then Re {f(z)/z} > 4, [4].

Let F denote the class of all such functions which satisfy the condition

1) ;(2 i(zi) - 1) —q

Putting

<a, (x=1), for |z|<l.

42) Py = 2@

we see that P(0) = 1, Re {P(z)} > 0. Therefore, form (2.2) and (4.2) we get
24! q)(z)
z
f(z) =

2, (1—_) o(z)

which gives rise to the following theorem.

Theorem (4.1) If f(z) € F, then

-114



The equality is obtained for
&
24+ -.z

f(Z):E————-a N 8=i1.

21—£<l—l>z
. o

By following a method similar to that of Lemma (2.2) we can prove the following
theorem. '

Theorem (4.2) If f(z) € F, then
IaI 1—— foralln

The equality is achieved by the functions

zn—l

f(z)zf_zi_“_ n
2;_(1_1) -t
o

Thebrem 4.3) If fi(z) and fy(z) belong to F, then A f(z) + (1 — 1) fy(z) also
belongs to F, (0 £ A £ 1).

2.

1\

Proof: Since f;, (z) and f, (z) belongs to F, therefore,

(222 1) —-1/<1 an L2002 ) )<y
i(ZfZ(z) ) 1l <1 and . <2 fz(z) )
New ;1<2,1f1(z)+(1—l)fz(z)_1>_1!§
o z |
gx@(%&(z—)—l)_l'ﬁ(l_z)l<2fz—(z)_1)—1§;.+(1-z)=1,
o z i o V4

which proves the theorem.

Remarks. (1) Throughout the paper we have taken a > 1 for the sake of simplicity
otherwise all the above theorems remain valid with slight modification when 1 <
<a<l1.

(2) Similar theorems can also be proved for functions Wh.lCh are typically real and
functions which are starlike in one direction.
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