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Czechoslovak Mathematical Journal, 18 (93) 1968, Praha 

THE EXPONENTIAL STABILITY AND PERIODIC SOLUTIONS 
OF ITO STOCHASTIC EQUATIONS WITH SMALL 

STOCHASTIC TERMS 

Ivo VRKOC, Praha 

(Received December 23, 1966) 

Ito stochastic equation (l) where a{t, x, s) and B(t, x, s) are periodic in t is 
investigated in connection with the ordinary differential equation (2). These two 
equations are close in the sense of 5), 6). The conditions 5), 6) are modifications of 
vii), viii) from [1]. It is more difficult to verify conditions 5), 6) than vii), viii) from 
[1], but, on the other hand, they guarantee the uniform convergence of solutions 
of Ito equation (l) to solutions of (2) (in the sense of Lemma 1) even if a(t, x, s) and 
B{t, X, e) are not bounded. The presented Theorems are apphed to the parabolic 
equation (3') and the existence of stable periodic solutions is obtained. 

Notation and basic conditions. Let E,, denote the n-dimensional Euchdean space, 
X an n-dimensional vector, г a small parameter and t the real variable. Let an 
/1-dimensional vector a(t, x, г) be defined in <0, oo) x E,, x <0, 6) and a matrix 
B[t, X, e) of type n x n Ы defined in <0, oo) x £„ x (O, ô), where ô is a positive 
number. We define the norm of a vector a and the norm of a matrix В in the ordinary 
manner, i.e. we set \a\ == vTl^?' Щ "^ VZ^O"- ^et Q be an abstract space, #" 

a (j-field of subsets of Q and P be a probabilistic measure defined on #". The norm 
of a random vector or of a random matrix z is defined by ||z|j = ^E|zj^ , where E is 
the expectation. 

In the sequel we shall assume that the following conditions are satisfied 
1) a(^t, X, e), B{t, X, г) are continuous in t, x for every s and \a(t, x, e) — a(f, y, e)j ^ 

S K\x - y|, \B{t, X, e) - B{t, y, г)| g К\х - y\. 
2) Let wj[t) be n-dimensional stochastic processes with independent increments 

which are defined for ^ ^ 0, г > 0 and such that E{w^{t2) — We(̂ i)) = 0, E\w^{t2) — 
~ ^ef^i)!^ = ^£(^2) ~ F^{ti), where F^{t) is a continuous function. 

3) A continuous nondecreasing function F(t) exists such that 

Fsitz) - Fit,) й F{t,) - F{t,) . 
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Denote ^J{^t) the least cr-field of subsets of Q which is generated by increments 
^^(^2) - ^e{h) for ^ й ti < t2 й t. We have #",(t) с ^ . 

4) Let an initial value XQ be a vector random value which is independent of all 
^^^(f), t ^ 0 and £|xo|^ < 00. We say that XQ is nonstochastic, if it is equal to a 
constant vector almost everywhere. We assume that (Q, J^, P) enables to construe 
an initial value XQ{(JU) for every given distribution function. 

The assumptions 1), 2) and 4) are sufficient for the existence and the uniqueness of 
a solution of Ito stochastic equation [1]; 

^E(0 = ^0 + a{^. ^eW. e) dt + Б(т, х,(т), s) dwjj) . (1) 

For the sake of brevity the index s at the solution of (1) will be omitted whenever 
г > 0. We shall compare equation (l) with 

(2) y{t) = xo + fl(T, у{т\ 0) dr . 

The dependence of a{t, x, s) and B[t, x, s) on s is subjected to 

5) (а(т, у{т), ß) - а(т, у{т), 0)) dr -^ О 

as е -> О uniformly with respect to nonstochastic XQ, t e <0, L> for every L > 0̂  
where y{t) is the solution of (2) with the initial condition y{0) = XQ. 

6) \B{T, y{r), sf df,(T) -^ 0 

as 8 -> 0 uniformly with respect to nonstochastic XQ, t e <0, L> for every L > 0. y{t) 
has the same meaning as in 5). 

7) Let the elements of vector a{t, x, e) and matrix B{t, x, e), i.e. ai and Bij, have 
lipschitzian partial derivatives with respect to X;̂ . 

Definition 1. The solution z[î) of 

(3) z(r) = Zo + о(т, Z(T)) dT + Б(т, Z(T)) dw(T) 

is called stable, if to every e > 0 and /0 ^ 0 a <5(Го, г) > 0 exists such that ||z(ro) -
— z(ro)|| < <5(Го, г) implies \\z{t) — z(^)|| < г for t ^ ^Q. 

The solution z{t) is called uniformly stable if ô is independent of t^. The solutions 
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of (3) are called uniformly exponentially stable if constants ß, S,0 < ß < 1, S > 0 
exist such that Цг^Щ - z^^\\ й ß\\z^^\to) - z^^\to)\\ for t ^ to + S, where 
z^^\t), z^^-\t) are arbitrary solutions of (3). 

We may apply this definition to the ordinary differential equation (2) too. Then 
the condition for exponential stability reads \y^^\t) - /^^Oi = ß\y^^\^o) - J'̂ ^X^o)| 
for t ^ to + S. 

Definition 2. A process z{t) is called periodic with a period T, if it is defined for 
all t and if for every integer s, for all numbers t^, Г2, ..., t^ and for all Borel sets 
^ 1 , ^ 2 , . . . , Л we have P{z{t^)eÄ„ 2(^2) e Л2, ..., z(f,) G Л,) = P{z{t^ + T) e Л^, 
z{t2 + T)eÄ2,..„z{t,+ T)GÄ,). 

Definition 3. A process w{t) is said to have periodic increments with period T, if for 
every t, h > 0 and for every Borel set Ä the condition 

P{w{t + h) - w{t) EA) = P{w{t + h + T) - w{t + T)eA) 

is fulfilled. 

Theorem 1. Let assumptions 1) to 7) be fulfilled, let a{t, x, г) and B{t, x, s) be 
periodic in t with the period T and let the processes wjj:) have periodic increments 
with period T. If the solutions of {2) are uniformly exponentially stable, then a posi
tive number SQ exists such that the solutions of (l) are uniformly stable and uni
formly exponentially stable for 0 ^ e ^ So-

The proof of Theorem 1 is based on several lemmas. The first lemma gives us an 
estimate of the diff'erence of solutions of (1) and (2), which have the same initial 
value. 

Lemma 1. Let assumptions 1) to 6) be fulfilled; then to every rj > 0 and L > 0 an 
So > 0 exists such that sup £(|-x(r) — y{t)\'^ \ ̂ ^^^) < rj almost everywhere for 

fe<0,L> 

0 ^ £ ^ 0̂ ciy^d for all initial values Xo fulfilling 4), where x{t) is the solution of 
(1) with initial value XQ, y{i) is the solution of (2) with the same initial value XQ, 
£(|) is the conditional expectation and J^^°^ is an a-field independent of ^j{t) 
containing ^(x^ with .^(XQ) being the least a-field generated by XQ. 

Proof. Suppose that XQ is an nonstochastic initial value; then 

(14) Ht) - y{i)\\ й (а(т, х(т), г) — а{т, >'(т), 0)) dr + 

Б(т,х(т), e)dw,(T)|| 
Jo 1 
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The second term of this inequality can be estimated by means of 1) and 5), 

(1.2) ! (а(т, X(T), г) - а{т, у{т\ 0)) dTJ S («(т, х(т), в) - а{т, у{г), s)) ат 
Jo il Jo + 

+ 

+ 

(а(т, >'(т), е) - а{т, у(т), 0)) d 

(о(т, >'(т), s) ~ а(т, у(т), 0)) dx 

< К ||х(т) - у{т)\\ ат + 

^хГ1К^)~Х^)1Ит + ф1(г) 

where (pi{s) -» О as s -^ 0. 
We shall estimate the last term in (lД) by means of (4,7) from [1] and by 6) 

(13) I B{T, X{; ), б) dw,(T) 'n ^'Е\В{т,х{г),е)\ЫР,{т)\^ 

g К Ifn Ï'E\X{T) - Хт)Р dF(T)) + l(n Г |В(т, Хт), е)|^ dF,(T)) S 

й К, 1{'Е\Х{Т) - у{т)\' dF{t) + <р2(б) 

where (Р2{£) -^ О as £ -> 0. 

According to (1,1), (1Д) and (1,3) we obtain 

\\x{t) - (01 й Ф(в) + X Г ||х(т) - V(T)|| dT + К, j(ï' 1|х(т) - y{i-)\\' dF(T) 

By Lemma 2 from [ l ] , lim sup \\x{t) — y[t)\\ = 0 as г -> 0 provided XQ is non-
<0,L> 

stochastic. Since x{t) — y{t) is a Markov process and since XQ is independent of all 
increments of w^(t), the statement of Lemma 1 is proved. 

In the following lemma we shall estimate the differences of four solutions which, 
simlarly as in article [2], are used for the proof of stability of equations (l). 

Lemma 2. Let assumptions 1) to 7) be fulfilled; then to every rj > 0 and L > 0 an 
£o > 0 exists such that 

sup \\х<-щ - х'-щ - y^xo + у''Щ ^ »уЦ̂ о'' - 4'^\\ 
Jco(i).xo(2),f6<0,L> 

for 0 ^ £ ̂  £o , 

where x^^\t), x^^\t) is the solution o / ( l ) with initial value x\^^ and x^\ respectively 
and y^^\t), y^^\t) solution of (2) with initial value X^Q^ and x^^\ respectively (XQ^^ and 
x^Q^ fulfil 4) in the sense that the least a-field containing both ^(x\^^) and ^(X^Q^) 
is independent of ^J^t)). 
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Proof. From equations (l), (2) we obtain 

(2.1) \\х^Щ - х^Щ - у^Щ + у^'Щ й 

й I Г(а(т, л-<»»(т), е) - а(т, х''\т), е) - а(т, у'-'Хт), 0) + а{г, у(-^\г), 0)) аг 
ilJo 

+ 1 Г (В(г, л-">(т), б) - В(т, .х(̂ >(т), е)) dw,(T)|| . 
i lJo li 

First, we shall deal with the first expression on the right hand side of (2,1), 

(2.2) II Г(а(т, x^'\r), e) - a{r, x^'\x), e) - a{x, y^'\r), 0) + а{т, y^'\t). 0)) dt 
I lJo 

I Г(а(т, X^'\T), E) - a{r, х'-Щ, e) - a{t, y^'\r), E) + a{r, у^^\т), s)) ат\ 

I Г(а(т, /'\x), E) - a{x, y<-'\x), a) - a{x, у^'\х), 0) + a{x, y^'\x), O)) dt 

Il \\a{x, / '> ( t ) , E) - a{x, /'\x), s) - a{x, x^'\x), e) + 

+ a{x, x<'\x)+ y^'>{x) - y^'\x), e)) dl + 

{a{x, x<^'\x) + y^'\x) - /'\x), E) - a{x, х^Щ, E)) dx 

{а{т, )M\T), S) - O(T, / ^> (T) , e) - а(т, >'̂ ^>(т), 0) + а{т, у<-'\т1 0)) dr 

+ 

< 

+ 

< 

+ 

< 

Similarly as in [2] we can prove by 7) that 

(2,3) \a{t, X, e) — a{t, y, s) — a{t, u, s) + a{t, и + у — x, s)\ ^ 
S К\у — x\\x — u\ , 

and 

(A4) {a{x, /'\x), s) - a{x, y^'\x), E) - а(т, y<-%), 0) + а(т, /'\x), O)) dt 
'o 

^ Фз(е) i J^^X^) - y^^Xö)! for t E <0, L> , фз(8) -> 0 as г -> 0 . 

From these inequahties we obtain that (2,2) does not exceed 

+ к {'^E\x^'\x) - x<^X )̂ - y''\^) + / ' X ^ ) l ' d^ + <Рз{е)^Е\х 

< 

-0 -^0 
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where J^° is the ^-field generated by x\)^\ x[^^ such that the assumptions of Lemma 1 
are fulfilled. Using Lemma 1 we obtain an estimate 

(2,5) cp,{e) |xl,>> - xC >̂|| + X Г ||X^I'(T) - x^^'(t) - /^>(t) + / ^ ' ( t ) | d t . 
Jo 

Analogously we shall estimate the last term of (2,1). RecaUing (4,7) from [1] we get 

(2,6) < n \\B{r,x^'\r),e) (Б(т, X'1'(T), e ) -B( t , x^^\t), e)) dw,{r)\\ 

- B{T, X''\X), e)P d F / t ) ^ 2n Г |в(т, х^Щ, e) - В{г, x^'\r), a) -

- B{r, y^^\r), s) + B{r, /^XT), б)Р dF(T) + 

+ 2n Г ||В(т, /'\r), 8) - B{T, У<-'^{Т), e)f йР^г) й 

^ 4n Г ||В(т, у'-^Хг), e) - В{х, у^^\т), e) - В{г, х^Щ, s) + 

+ В{г, х^1>(т) + у^Щ - у^Щ, е )р dF(t) + 

+ 4« Г \\В{г, х(1'(т) + у^Щ - /'Хх), г) - В{х, х'-Щ, Е)\\' dF{x) + 

+ 2п Г \\В{х,/Щ, а) - В{х, у^'\х), а)\\' аР^т). 

We shall need the following inequality 

(2,7) Г \B{x, / I ' ( T ) , e) - B{x, /^>(t), af аР^х) й срЦ^) H^' - A'f . 
JO 

Without loss of generality this inequality will be proved only for nonstochastic initial 
values. Choose fixed indices i, j and set f{t, x, г) = Bij{t, z{t), e) — Bij{t, y^^'\t), г), 
where y^^'\t) is the solution of (2) with the initial value x\^^ and z{t) the solution of (2) 
with the initial value x + X^Q\ According to 1) f{t, x, s) is continuous in t, x and 
lipschitzian in x. With respect to 7) the partial derivatives dfjdxj^ exist, are lipschitzian 
in X, f{t, 0, e) = 0, and by 6), 

(2,8) Ifi-^,^, e)|^ аР,{т) -> 0 as e -> 0 

uniformly with respect to x\^\ x and t e <0, L>. Let D/(r, x, e) denote the vector 
consisting of the partial derivatives of/(f, x, e) by x^ at the point [t, x, e], and let 
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(,) signify the inner product. First we prove that 

(2,9) Г (о/{т. О, e), ^ \ dF,(T) ^ 0 as e ^ 0 

uniformly with respect to all vectors x + О, х^ '̂ and to all t e <0, L>. Actually, we 
have 

Г |/(т, X, 8)1̂  dFlr) = Г Г ̂ ОДт, Хх, б), х\ dX 

= Г|(0/(т, О, Е), Х) + {ф{х, х), xf dF,(-

dFlr) = 

• ) 

where \l/{t, x) = JJ D/(f, xX, e) dX - Df(t, 0, e). From this it follows that \ф{1, x)\ g 
^ X2|x|/2., From the previous relation we obtain 

(2.10) r|/(T,x,e)|^dF,(T) = |x|^ Г ("оДт, 0, e),-^Y df ,(t) + 

+ 2|x|^ [' (Ofir, 0, 8), ^ \ U{r, x), ^ \ dF,(T) + |x|^ Г (ф{г, x), -^Y dF^r) . 

(2,12) and (2,11) is the estimate for the last and the last but one term, respectively, 

(2.11) j £ (Ofir, 0, e), ^ \ U{r, x), ^ \ dF,(T)| й 

(2.12) j j ^ ( t , x), A ) ' dF,(T) g ^ |xP (F(0 - F(0)). 

By (2,10) to (2,12), 

j j / ( r , x, e)|^ dF,(T) è |xl^ {\'l^f('^ 0, 8), j ^ ) ' dF,(T) -

[^jjD/(x, 0, 8), j ^ - ) ' dF,(T) (F(0 - F ( 0 ) ) | . KM 

If sequences of unit vectors Xj, of vectors XQ .̂', of numbers S; -> 0, (,• e <0, L> and 
a number q > 0 existed such that JÔ' (D/(T, 0, 6;), X;)̂  d̂ £̂i('!̂ ) ^ q, then by choosing 
в = <î*(̂ (L) - F(0))""* (2^2))'^ we would obtain J '̂ \f{t, ©X;, 8,.)|2 dF,,(T) ^ 6)^^/2 

307 



< 2\x\ 

which contradicts (2,8). Relation (2,9) is proved. From (2,10) to (2,12) we obtain 

(2ДЗ) r | / ( t , x , e ) | ^ d F X T ) ^ 

^YD/(T, 0, e), ^Y dFXi) + ^ |xl̂  (f(0 - F(0))j . 

By (2,8) there exists a function Фб(в) > 0, (Pe{s) -^ 0 as г -> 0 and 

Г | / ( т , х , в ) 1 М ^ Х т ) ^ Ф б ( 4 
Jo 

Put 

Ф,(в) = max hcp,{s), 2 Г7о / ( т , 0, г), - ^ Y dF^r) + ^ U<pl{e) {F{t) ~~ F(0))1. 

We have (l/|xl^) J^ |/(т, x, e)|^ dF^i) ^ l/cpS) й <Pi{s) for |x| ^ ^^^(e) , and by 
(2,13) and by definition of cp^ we find (l/|x|^) J^ |/(т, x, e)|MF,(T) ^ ф^^) for 
0 < ]x| < l/(P(,{8). Both these inequalities imply Jo |/(т, x, 8)|^ dFg(T) ^ <p7(e) |xp. 
Since (p'j{e) -^ 0 as e -^ 0, inequality (2,7) is proved in the case of nonstochastic 
initial values. Since y^^^t) are solutions of the nonstochastic equation (2), inequality 
(2,7) is true also for stochastic initial values. If we use inequality (2,3) in a similar 
manner as in the case of estimating (2,2) and if we apply inequality (2,7) and the 
assumption 1) we obtain that (2,6) does not exceed inK^ (p4{s) Jo || J^^ '̂̂ ) "" З̂ ^̂ Х'̂ )!̂  • 
. dF{r) + 4K'n J^ \\X^'\T) - X^'\T) - у^'\т) + / ( T ) P dF(T) + 2n^ (p,{e) \\4'^ -
— Xo^^p. From (2,1), (2,5) and the last inequality it follows that 

||x<''(0 - х^Щ - у^Щ + /Щ\\ ^ фз(е) |x^^' - х<^>|| +KJ'\\X^'\T) -

- x^'\x) - / I ' ( T ) + y^'\r)\\ dx + 

+ K^ If Г ||X(1'(T) - x^'\x) - /'\x) + y^'\x)\\^ dF(x)\ . 

By Lemma 2 from [ l ] we conclude that 

|;,(i)(t) _ ^СЩ _ /!)(,) + /Щ\\ й çM\ 4'^ - х^оЦ 

where ^9(e) -^ 0 as e -> 0. 
Now we are going to prove the stability of (l) under more general assumptions 

than those formulated in Theorem 1. 

Lemma 3. Let assumptions 1) to 7) be fulfilled with 5) and 6) replaced by: 

5') 
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ÖS г -> о uniformly with respect to tQ, t e <fo? ô + Ц> ̂ ^^ ^o nonstochastic initial 
values XQ for every L > 0. 

6') 
rto + t 

\B{T, >'(T), г)|^ аГ,{т) -> О as e -^ О 
J to 

uniformly with respect to to, t e {tQ, t^ + L> and to nonstochastic initial values XQ 
for every L > 0. Let y{t) have the same meaning as in assumptions 5), 6). Let 
a continuous function G(t) exist such that F(tQ + f) — F{t^ ^ G(t) — G(0). / / the 
solutions of (2) are uniformly exponentially stable, then a positive number BQ 
exists such that the solutions o / ( l ) are uniformly exponentially stable for 0 ^ e ^ 
USc. 0-

Proof. Constants 0 < /? < 1 and S > 0 exist such that \\y^^\t) - y^^'\t)\\ S 
й ß\\y^^\to) - y^^Kh)\\ holds {or t ^ to + S and all solutions of (2). By Lemma 2 
we can choose ê  > 0 for the given (l — j5)/2 and S such that ||x^^^(t) — x^^\t) — 
- у^Щ + /'Щ й{1- ß)2-' \\x^'%) - x^'%)\\ for t 6 <(o, to + 2Sy, OueS 
g e^. According to 5'), 6') and to the existence of the function G{t) we can choose ê  
independently of ô- The initial values were chosen so that j^^^^^o) = ^^^\to)y 
y^^'\to) = x^^'^to). From these inequalities we obtain easily 

\\x^'\t) ~ х^Щ\\ й - ^ ^ \W%) - x^'%)\\ for r E <Го + S, to + 2S> . 

Since the solutions of Ito equations are unique and continuable, we have 

(3,1) \\x^'\t) - х^'Щ й - — \\x^'%) - x^'%)\\ for t^to + S, 

It remains to prove that every solution x{t) of (1) is stable. Choose a fixed solution 
of (l) and denote it by x{t). Let y(t) be the solution of (2) with the initial value Д'̂ о) = 
= x{to). The exponential stability of y{t) and the continuous dependence on initial 
values imply that to every rj > 0 and to ^ 0 a ô > 0 exists such that \\y(t) — y(t)\\ g 
g rjl3 for t ^ Го whenever \\y{to) — y{to)\\ < ^- By Lemma 1, to ?//3 an 82 > 0 
exists such that \\x[t) — y{t)\\ < rjjS for t e {tg, to + S>, 0 ^ s ^ Sj, where x{t) is 
the solution of (l) with the initial value x(fo) = y{to)- From this we obtain 

||x(o - x{t)\\ й 1140 - у(Щ + 1140 - XOII + IIXO - KOII ^ ̂  
for 0 g e g во ^^'^^ t ^ (̂ 0? 0̂ + ^y^ where во = min (e^, 82). Recalling (3,1) we 
conclude that x{t) is stable. If a{t, x, 0) is periodic then ô need not depend on ô and 
it means that x{t) is uniformly stable. 

In the next part of the article the construction of a periodic solution will be 
carried out. There are many methods which are suitable for the proof of the existence 
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of a periodic solution and some of them can be used under less restrictive assumptions; 
however, we utiUse the uniform exponential stability of solutions in our construction 
and therefore, the convergence of the method is rather rapid and the estimate (4,3) 
holds. 

Theorem 2. Let the assumptions of Theorem 1 be fulfilled; then equations (1) 
have periodic solutions xj{t) with period Tfor 0 < e ^ во, equation (2) has periodic 
solution y{t) and lim sup £|3с£(̂ ) — y{t)\^ = 0 where SQ has the meaning given in 
Theorem 1. a^o t 

Remark . Since the solutions of (l) are uniformly exponentially stable, the periodic 
solutions are determined uniquely in the sense that their distribution functions are 
determined uniquely. 

The proof of Theorem 1 is based on Lemma 4. In order to simplify the wording 
of this lemma and its proof we introduce a new notation. Let X(t, ^, CD) be a solution 
of (1) with nonstochastic initial value X{tQ, ^, со) = ^. We can write x{t, XQ) = 
= X{t, XQ{CO), СО) for general initial values fulfilling 4). Since every solution of (1) 
is a Markov process, we have 

/•oo Лоо 

f ( ( , A i , . . . , i „ ) = . . . Ф{1, ÄU ••; K; toAu ••; L)àF{to, ^i,..., Q 
J — 00 J — 00 

for the distribution functions of x{t, XQ), where Ф{t, Я ,̂ ..., Я„; to, ^^, ..., ^„) is the 
distribution function of X{t, ^, со). This dependence can be written in the form 
F(t, X) = <9,^,^{F{to, Я)}. We say that F^A^, ..., A„) converge to F(Ai, ..., Я„), if this 
convergence has its ordinary meaning in all points of continuity of F(Ai, ..., Я„). 
Obviously the expression 

/•oo /*oo 

E{y{X{t, i, œ))) = . . . y(li, ..., 1„) аФ{и 1 „ ..., 4 ; to, i„ ..., Q 
J — OO J — GO 

is a continuous and bounded function of ^, where 7 is any continuous and bounded 
function. By Alexandrov's theorem we obtain from this that the operator 6̂ , ^̂  is 
continuous. 

Lemma 4. Let the assumptions of Theorem 1 be satisfied, then to every distribu-
tion function F(0, Ai, . . . , Я„), ЦЯ]̂  dF(0, Я ,̂ ..., Я„) < oo a distribution function 
F*(Ai,..., Я„) = lim ФттЛК^^ h^'-', ^ )} exists and Щ^ dF*(Яl, ..., Я„) < oo. 

m->oo 

Proof. Let Xo(co) be a random value fulfilhng 4) with distribution function F(0, Я) 
and Xj(co) be a random value fulfilling 4) with distribution function F{sT + qT, Я) = 
= ^sr+qr,o{^(ö, Я)}, where Я = [Я1,...,Я„], s is the least integer with sT > S 
( s is from Definition 1) and q is an arbitrary number from 0, 1, ..., s — L According 
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to Lemma 3, 

(4.1) E\x{sTl, x,{co)) - x{sTh Xo{(Jo))\^ й 

й ßiE\x{sT{l - 1), x,{œ)) - x{sT{l - l), Xo(co))|' й 

й ß[E\x,{co) - Хо(ш)Р , О < ^ , < 1 . 

This inequality yields for distribution functions, 

F{sT{l + 1) + qZ X) S F{sTh Я + O'ye) + O^y, 

F{sTh X) й F{sT{l + 1) + qT,À + в^уе) + O'y 

where 0 = ^ßi, у = max^£|xi(co) — Xo(co)|̂ , 
я 

F{t,X) = &,^o{F{Oa)}' e = [1,1 • • • ] ] • 

Both previous inequalities imply that 

(4.2) F{sTl, A - e'jie) - ©Vi й F{sT{l + k) + qZ X) й 

й F{sTl, À + в'у.е) + e'jt , Уг 
1 - & 

I.e. 
lim sup F{sTk + qT, X) - lim inf f (sTk + qT, X) й 

fe->oo /c->oo 

й F{sTl, À + в^у^е) - F{sTl, X - G^y^e) + 26>Vi 

for arbitrary /. For proving that the distribution functions converge, put /i(/, w, v) = 
= F ( S T / , ue + V + О^у^е) - F{sTl, ue Л- v - O^yic), where w is a real variable 
and г; is a vector orthogonal to e. First we shall prove that there exists only 
a countable set of values of и such that hm inf h{l, u, v) = 2p[u) > 0 for a fixed u. 

Consider a finite number of values of и for which lim inf h{l, w,-, v) = 2j>(w,.) > 0 for 
l-* 00 

a fixed V. There exists an /Q with /г(/, ŵ , i;) ^ p{ui), 2 0 ^ 1 = ^̂ î̂ ^ |^i ~ ^j\ foi" 

I '^, IQ. Using the properties of distribution functions we obtain YjV{^i) = *̂ Since 
the values of p{u) are nonnegative, there can exist only countably many positive 
values of p{u). This means that the distribution functions F[sT(l + k) + qT, Л), 
converge to a distribution function F*(A) almost everywhere. By (4,2) we obtain 
that F*(A) is independent of q, F(IT, Я) converge to F*(A) and 

(4,3) F{sTl, X - e^y^e) - 6)^1 ^ ^*(^) ^ ^(^'^^' '̂  + ^Vi^) + 6)^1 • 

Obviously, F*(A) fulfils the first condition of Lemma 4. From (4,1) we have 
J|A|^ dF(/T, Я) ^ С where С is a constant independent of / and, by Helly theorem, 
J|A|2dF*(A) < 00. 
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Next, turn to the proof of Theorem 2. Let Хо(со) be a random value fulfilling 4). 
F*(A) denote the distribution function which has been constructed in Lemma 4. 
Let x\^\(o) be a random value fulfilling 4) v^ith the distribution function F*(A), 
Let x^{t) be a solution of (l) with the initial value x\^\co). Since the operator Ф^^^^ is 
continuous, we have 

^r,o{^*W} = ^r,o{ Ит F{mT, X)} = lim OJAK^T, X)} = 
m-*oo m->oo 

= l imß)(^+i , r ,o{^(0, l )}=F*(l ) , 
m-* 00 

where F(0, Я) is a distribution function of Xo(co). We have proved that the distribution 
function of xj(t) is periodic in t with the period T. Since a, Б are periodic in t and 
Wg(f) have periodic increments, (Definition 3) the solution x^(t) is also periodic 
according to Definition 2. By Theorem 1 the solutions are uniformly exponentially 
stable, and consequently, F*(/l) is determined uniquely. 

By applying Lemma 4 to (2) we conclude that equation (2) has also a periodic 
solution y(t). Let y^{t) be a solution of (2) with the initial condition j*(to) = X^^ÎQ) 
forO utou Ts. By Lemma 1, l|x,(^) - y^{t)\\ ^ (p{s) for te {to, t^ + Ts} and 
<ф(г) -> 0 as e -^ 0. Since the solutions of (2) are uniformly exponentially stable we 
obtain 

|j.*(fo + Ts) - y{to + Ts)\\ й ß\\xlto) - y{to)\\ 

and 

pXto + Ts) - y{to + Ts)\\ й Ф) + ßM^o) - У(*о)|1 • 

Since x,{t), y{t) are periodic, l|x,(/o) - у{4)\\ й ф(е) + ß\\x,{to) ~ y{to)\\, i-e. 

Peito)-y{to)\\ef^ß-

Since the theory of Ito stochastic equations and the theory of parabolic equations 
are closely related, it is possible to formulate a certain statement about periodic 
solutions of parabolic diff'erential equations. 

Corollary. Let a{t, x, s) and B(t, q, e) fulfil the assumptions from Theorem 1 and 
let some assumptions be satisfied such that the parabolic equations 

(3') . . _ ,^^^E^'^0-^'-)^^-^(^-3^'-M ^8Ыиу,е)и} 
dt i,j dyi dyj n dyi 

have fundamental solutions (^see for example [3], [4], [5]), then for a sufficiently 
small e the parabolic equations (3') have periodic solutions, initial values of which 
are cnf^iy) where a are real numbers and fo{y) is a function (which has continuous 



second derivatives and depends on e). These solutions are relatively asymptotically 
stable in the sense that for every solution u(t, y'>fi{y)) Ö / ( 3 ' ) with initial value fi(y) 
and J|y|^ \fi{y)\ ^y < ^» Sfi{y) dy = a we have 

lim 
Г-+00 

'Д1 /*/i. 

{u{t, y;f,{y)) ~ u{t, y;fo{y))) d j i . . . d>'„ = 0 
я„ 

uniformly with respect to Я ,̂ ..., Я„, /i^, ..., 1Л„. 
The equation (3') has a fundamental solution p(s, x; t, y) and with respect of 

Remark 5,25 from [6] JGP{^^ ^; ^ J ) ày is a transition function of a Markov process 
having the differential operator 

i E ^i/c(^ ^. e) ^д(^. ^. e) 
^X^ d X j i OX I 

and which is the solution of stochastic equation 

(4) K[t) = Xo + а(т, X(T), e) dr + В(т, х(т), e) dw(T), 

where w{t) is the Wiener process [6]. 
Let x{t, Xo(co)) be the solution of (4) with the initial value XQ(CD), where Fo(A) is the 

distribution function of Xo(co). We can express the distribution function of x{t, XQ{(D)) 
by 

P(x{t, Хо(ш)) й^) = p(0, x; t, >')dFo(x)dy . 

By Theorem 2 there exists a periodic solution x(t) with the distribution function 
F*(r, Я). We have 

/»00 

p(0, x; T, y) dF*(0, x) dy = f *(0, Я). 
I J — 00 

Obviously, JF*(0, Я) has a continuous density which we denote by /*(Я) and for 
which J!?^ p(0, x; T, y)/*(x) dx = /*(j;). This means that j ^ ^ p{0, x; t, / ) /* (x ) dx 
is a periodic solution of (3'). 

Let /1(3^) be nonnegative and J |y |^ / i (y)dy < 00, jfi{y)dy = L Let x^{co) be 
a random value with density/i(>') and let Xo(co) be a random value with density/*(y). 
If we use the random values just constructed in (4,1), we obtain in a similar manner 
as by (4,2), 

F*(A - e^ye) ~ &^y S F{IT, X) й F*(A + 0^ye) + в^у , 

where e = [1, 1, .-••> 1]? from this we can easily prove the statement of the Corollary 
for a = 1. Other fiiy), for which j\y\^' \fi{y)\ dy < 00 are hnear combinations of 
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nonnegative initial functions and since equation (3') is hnear, the statement holds for 

such / i ( j ) , too. The periodic solution u(t, j;/*(}^)) depends on e and if y(^t) is the 

periodic solution of (2), then the last statement of Theorem 2 yields J | j — y{t)\^ . 

.ii(t,y;P{y))dy->Oas e-^ 0. 

References 

[1] Vrkoc I.: Extension of the averaging method to stochastic equations. Czech. Mat. J. 16 {91) 
1966, p. 518-544. 

[2] Kurzweil J.: Exponentially stable integral manifolds, averaging principle and continuous 
dependence on a parameter. Czech. Mat. J. 16 {91) 1966, p. 380—423. 

[3] Krzyzanski M.: Evaluations des solutions de l'équation linéaire du type parabolique à coeffi
cients non bornés. Ann. Polon. Math. 11 1962, 253—259. 

[4] Krzyzanski M.: Une propriété des solutions de l'équation linéaire du type parabolique à coef
ficients non bornés. Ann. Polon. Math. 12 1962, 209—211. 

[5] Эйдельман С. Д.: Параболические системы. Издат. Наука Москва 1964. 
[6] Дынкин Е. В.: Марковские процессы. Гос. Изд. Физ.-Мат. Лит. Москва 1963. 

Author's address: Zitnâ 25, Praha 1, CSSR (Matematicky üstav CSAV). 

314 


		webmaster@dml.cz
	2020-07-02T20:56:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




