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ON THE DEFINITION OF AN ABSOLUTELY FREE ALGEBRA

H. F. J. Lowig, Edmonton
(Received December 8, 1966)

Some mathematicians mean by an absolutely free algebra a freely generated
algebra in the sense of [II], Definition 2.1. See, e.g., [I], p. 109. But the author of
the present paper wishes to define an absolutely free algebra as a lawless algebra, i.e.,
an algebra which satisfies no non-tautological law in the sense of [III], Definition 3.1.
In other words, we wish to

(1)

call an algebra 2 absolutely free if (P€) U is the equality
relation on € for every freely generated algebra €.

(1) is open to the objection that it involves the indefinitely wide class of all freely
generated algebras. It is the main purpose of this paper to show how this difficulty
can be avoided by speaking of a fixed freely generated algebra of order =2 instead
of speaking of “‘every freely generated algebra”.

Some results of this paper were announced in a paper read at the 581st meeting of
the American Mathematical Society in Seattle, Washington, U.S.A., June 13—16,
1961. See [VI].

Roman numerals in square brackets refer to the bibliography at the end of this
paper. The notation introduced in [II] will be used in this paper. In particular, it is
understood that S is a set, and that ¢ is an S-system of sets. An algebra U of species o
over a set A (shortly: an algebra 2 over A) is determined by o, A, and a system
{f,; s € S}in which f; is a os-operator on 4 for every element s of S, and which is denot-
ed (). See [11], Definitions 1.1 to 1.4. €, €,, €, and €, are freely generated algebras
on the sets C, Cy, C, and C,, respectively, and D, D,, D, and D, are the free bases
of €, €y, €, and €,, respectively. In the following Lemma 1, 2 and B are algebras
on the sets 4 and B, respectively.

Lemma 1. Let a’ and a” be elements of A with a’(P,) a”. (See 11, Definition 1.6.)
Let h be a homomorphism of W into B. Then (ha') (P,B) (ha").

Proof. Let s be an element of S, let a be an element of A°%, and let k be an element
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of os such that ak = a’ and () s) a = a”. Then (h . a) k = ha' and ((B) s) (h.a) =
= H(C0)5) ) = ' Hene (1) (Py) (1),

Lemma 2. Let ¢; and ¢} be two different elements of €, with ¢{(PC,) cj. (See II,
Definition 1.7.) Let h be a homomorphism of €, into €,. Then he} * he¢| and
(hey) (PG,) (Reh).

Proof. See Lemma 1 and [II], Theorem 2.12.

Lemma 3. Let ¢} and ¢| be elements of €, such that (PC,) ¢ * (PE,) c}. (See [11],
Definition 3.2.) Let |C,| = 2. Then there exists a homomorphism h of €, into €,
such that he¢§ =+ hef.

Proof. Let b, be an element of (PC,) ¢} which does not belong to (PC,) . Let hy
be any homomorphism of €, into €,. Let &, be a homomorphism of €, into €,
such that h,d = hyd for de(PC,)¢] and h,dy % hydy. hy and h, exist by [II],
Theorem 2.16. By [II], Theorem 3.9, h,c{ = hycf and h,¢f =+ hyc}. Hence hyc} =+
=% hyc] or hyey =+ h,¢], proving the lemma.

Lemma 4. Let ¢; be an element of C, and let d, be an element of D, different
from ¢,. Let |C,| = 2. Then there exists a homomorphism h of €, into €, such that
he, + hd,.

Proof. Because of Lemma 3, we may assume that (P€,) ¢, = (P€,)b,. Then[d,] = °
= (PC,) ¢;, d; € (PE,) ¢y, and d,(PC,) ¢, by [II], Theorem 3.4. Let 1 be any homo-
morphism of €, into €,. Then hc¢; # hd; by Lemma 2.

Theorem 1. Let |C,| = 2. Then (®€,) €, is the equality relation on C.

Proof. Let E be the set of all elements ¢ of C, such that, for every element ¢, of C,
different from ¢, there exists a homomorphism h of €, into €, with he, =+ he. Then
E o D, by Lemma 4. Let s be an element of S, and let ¢ be an element of E**. Let ¢,
be an element of C, different from (<€, s) ¢. If ¢, € D,, Lemma 4 implies that there
exists a homomorphism h of €, into €, with he; + h((K€,) s)¢). Let ¢; ¢ D,.
Let s’ be an element of S, and let ¢’ be an element of C{*" such that (€D s) e = ¢
s’ and ¢’ exist by [II], Theorem 1.4. If 5" & s then (<€, ") (h . ¢') * (K€,> s) (h . ¢),
h((<€;> 5") ¢’) & h((<€;) s) ¢), and he; + h((<E,) s) ¢) for every homomorphism h
of €, into €,. Let s’ = 5. Because ((€,> s") ¢’ + (€, ) s)¢, ¢’ + c. Let ko be an
element of as such that ¢’k = ck,. Then ck, € E. Hence there exists a homomorphism
h of €, into €, such that h(c'k,) = h(ck,), whence h . ¢’ # h.c, (K€,> ") (h.c') *
+ (K€,) s) (h . ¢),and hey =+ h((<E,) s) c). This completes the proof that (€, ) s) c €
€ E. Hence E is closed with respect to €,. Hence E = C,. Hence if ¢, and ¢ are any
two different elements of C,, there exists a homomorphism h of €, into €, such that
hey = he. This proves the theorem.
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Theorem 2. Let N be an algebra or a set of algebras, let |C2[ = 2, and let (45(52) A
be the equality relation on C,. Then (@€,) W is the equality relation on C;.

Proof. €,[(®€,) A is isomorphic to €,. Hence (#C,) €, = (9€,) (C,/(9€,) A),
(9€,) €, = (P{C,, €,}) (#C,) A) by [V], Definition 1.1, and (#€,) €, > (#E,) A
by [ V], Theorem 1.3. By Theorem 1, (#€,) €, is the equality relation on C,. Hence
(®€,) A is the equality relation on C;.

Theorem 3. Let U be an algebra or a set of algebras. Let |C1| = 2and [C2| = 2.
Then (®€,) A is the equality relation on C, if and only if (9€,) A is the equality
relation on €.

Theorem 3 is obvious from Theorem 2.

In the following Definition 1, it is supposed that |Co| = 2. (That a €, with |Co| = 2
exists follows from [IV], Theorem 11.)

Definition 1. An algebra U is called absolutely free if and only if (&€,) 2 is the
equality relation on C,. A set M of algebras is called absolutely free if and only if M
is not empty, and (®€,) M is the equality relation on C,.

Remark. The empty set may be regarded as a set of algebras of any species. But
this does not matter because, by Definition 1, the empty set is not absolutely free,
irrespective of the species considered.

Also, if M is the empty set, (PE,) M is the all relation on C,, hence not the equality
relation on C,. Hence any set It of algebras of species o is absolutely free if and only
if (P€,) M is the equality relation on C,.

Throughout the remainder of this paper, we shall use the word “free” in the sense
of “absolutely free”.

Theorem 4. Let 9 be an algebra or a set of algebras. Let |C| = 2. Then U is free
if and only if (#€) U is the equality relation on C.

Theorem 4 is obvious from Theorem 3 and Definition 1. It shows that the truth of
the statement that a given algebra or set of algebras is free is independent of the choice
of €, in Definition 1.

Theorem 5. If |C| = 2 then € is free.

Proof. See Theorem 1 and Definition 1.

Corollary. If |D| 2 1, (see [V], Definition 2.1) then € is free.

Proof. See [V], Theorem 2.1.
The following five statements are almost obvious:
(i) If A is a free algebra then |A| = 2.

398



(ii) If M is a free set of algebras then there exists an element 2 of M with |A| = 2.
(iii) An algebra 2 is free if and only if [A] is free.

(iv) If M is a set of algebras, A is an element or a subset of M, and A is free, then IN
is free.

-(v) If Uis an algebra, B is a subalgebra or a homomorphic image of A, and B is free,
then 9 is free. (See [III], Theorems 3.14 and 3.15.)

An algebra can be free without being freely generated. Let S = [0], and 60 = [1].
Let A be the set of all integers = 4, and let B be the set of all integers = 2. Define
algebras, A and B, on 4 and B, respectively, by requiring that

©) ((AY0) {x} = ((BYO) {x} =x + 1 for x=4,5..,
(«B>0) {2} =3,

and
(B 0) {3} = 2.

(In these equations, {x} is the function on [1] whose only value is x.) Then [4] is
obviously a free basis of 2. Since |A| = 2, U is free by Theorem 5. By (2), A is a sub-
algebra of B. Hence B is free by (v). Also, 4 is the only element of B which is different
from all ((B) 0) {x}, x € B. But neither the empty set nor [4] is a basis of B. Hence B
has no free basis. Thus B is free but not freely generated.

Because an algebra may be free without being freely generated, the author thinks
that the word ““free” should not be used in the sense of “freely generated”.
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