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Czechoslovak Mathematical Journal, 18 (93) 1968, Praha 

THE WEAK EXPONENTIAL STABILITY AND PERIODIC SOLUTIONS 
OF ITO STOCHASTIC EQUATIONS WITH SMALL STOCHASTIC TERMS 

Ivo VRKOČ, Praha 

(Received July 20, 1967) 

The problem investigated in this article is very similar to that in [ l] . However, now 
we are going to assume another conditions, particularly conditions concerning the 
stability of (2). In the previous paper we utilised the uniform exponential stability of 
all solutions of (2). Some of consequence were, for example, that a(t, x, s) cannot be 
bounded and that we had to replace relations 8), 9) which are usually used in the 
averaging theory by 5), 6) from [1]'. In this article we shall investigate the case that 
a(t, x, s) and B(t, x, s) are bounded and, at the same time, we shall have to use 
a certain weaker concept of stability than in the article [1]. The proof of the theorem 
on periodic solutions depends substantially on the theorem on total boundedness. 
To prove the total boundedness we need to have the existence of the expectation 
of |x(l)|2g where x(t) is a solution of (l) and q is an integer q > 1. This would be obvious, 
if we(t) were a continuous process, but we do not assume this. The last theorem of the 
paper deals with this problem. The stability theorem is also formulated in terms of 
the g-norm. 

Since notation and conditions used here differ slightly from those in [1], we shall 
formulate them again. 

Notation and basic conditions. Let En denote the rc-dimensional Euclidean space, 
x = [xl9 x2,..., x„] an n-dimensional vector, & a small parameter and t a real 

n n 

variable. We shall use the norms \x\q =
 2*/( £ x2q) for vectors and \B\q = 2qj( £ B2J) 

i=l ij=l 

for matrices where q is a positive integer. For q = 1, \x\ = \x\i. 
Let Q be an abstract space, J^ a cr-field of subsets of Q and P be a probabilistic 

measure defined on SF. We shall suppose that all random variables are J^-measurable. 
The norms of vector random variables and of matrix random variables are defined 
by \\z\\q = 2qJ(E\z\2q), where E is the expectation, ||z[| = \\z\\v Denode by P(A\B), 
A e #*, B G $F a conditional probability. 
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7) Let the vector function a(t, x, e) and the matrix function B(t, x, e) have partial 
derivatives with respect to x( which are Lipschitz continuous in the following sense 

дa , ч õa , , 
— (t, x9e)-— (t, y, e) 
õx õx 

< K\x УU: 

, 2 . 2 - 1 ÕB 

дxк 

дB (t, x, e) - —- (t, y, e) 
dxlr 

2.2- 1/2.2 

< K\x 

We shall use following notation. 

8) By \JJ(T, d, e) we denote a function which fulfils | J*J (O{T, x, £) — a(x, x, 0)) dx\q S 
^ i>(<5, d, e) for 0 ^ T2 - xx S S, \x\q ^ d, £ ^ s. 

9) By X(T, d, a) we denote a function which fulfils JT
TJ \B(T, X, Q\2

q
q dF^r) ^ 

£ X2«(T, d, e) for 0 ^ T2 - TX ^ (5, |x|€ ^ d, C S e. 

The further assumptions on \j/ and % will be given in Theorem 1 (implicitly) or in 
Remarks 1,2 and these assumptions are related to the used averaging method. 

The difference from the previous paper [ l ] consists in essence in the different type 
of stability which we shall use now. 

Definition 1. The solution z(t) of (3) 

(3) z(í) = z0 + o(т, z(т)) dт + ľß(т, 
J ř0 

z(т)) dw(т) 

is called stable, if to every e > 0 and t0 ^ 0 there exists S > 0 such that \z(t0) — 

— z(to)\q < $ implies |z(t) — z(t)|^ < e for t ^ t0. 
The solutions of (3) are called weakly uniformly exponentially stable, if there exist 

a function ft(d), 0 < f$(d) < 1 for all d ^ 0, and a constant S > 0 such that \\zx(t) — 

- z 2 (0 | | , S P(d) Hz^to) - z2(f0)||€
 f o r t ^ t 0 + S provided |zf(t0)|€ S d, i = 1, 2 

with probability 1. 
This definition can be applied also for nonstochastic ordinary equation (2). The 

condition for the weak uniform exponential stability is then |y i (0 ~ y2(0L = 

zg P(d) \yt(t0) - y2(t0)\q for t ^ t 0 + S, |y,(t0)| ^ d, i = 1, 2. 

Definition 2. The solutions of a nonstochastic ordinary equation (2) are called 
totally bounded, if there exist numbers £ ^ 0, a > 0 , S > 0 such that |y(0|q = 
S \y(t0)\q - a f o r | y ( l 0 ) | ^ £ , tl>t0 + S. 

The definitions of a periodic process and of a process with periodic increments are 
the same as in the previous paper, but they are restated for completeness. 

Definition 3. A process z(t) is called periodic with period Tif it is defined for all t 

and if for every positive integer 5 and for all numbers tu tl9 ...,ts and for all Borel 
sets Al9 A2,..., As we have P(z(tt) e Al9 z(t2) e A2, ... z(ts) e As) = P(z(tx + T)e 
e Al9 z(t2 + T ) e 4 . . . z(ts + T) e As). 
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tions of (1) with the initial values x0° and y(i)(t) are solutions of (2) with the initial 
values x0

l). Since the solutions of (2) are weakly uniformly exponentially stable, we 
have |x<i+1>(f) - x"(t)\\q ^ max (cp2(\x

(j\, e) + p(\x^\q) + „) ||*<" - x<i+1)||, for 

j=i,i+i 

t e <S, 25). By these inequalities it follows that 

IKO - KOI. £ XK + 1 ) (0 - *O)(0L = « * W I 4 , a) + /?(|x|4) + , ) . 

. Ii|x^ + 1> - 4% = (pc(d) + rj) \\u - v\\q for t e <S, 2S> 
i 

where u(t), v(t) are solutions of (1) with initial values u(0) = u and v(0) = v, respec
tively. The last inequality means that the solutions of (l) are weakly uniformly 
exponentially stable, since r\ is an arbitrary positive number. 

The proof of the stability of solutions of (l) is the same as that in the end of the 
proof of Theorem 1 in [1]. 

Remark 1. At the first glance it seems very difficult to find e0 > 0 fulfilling (2.33); 
however, if the functions i//(S, d, e), x(<5, d, e) are continuous in e, x (<5, d, 0) = 0 and if 
we do not need and explicite expression for e0 but only an existence statement is 
sufficient, then it suffices to find ex > 0 such that (2.33) holds for d large enough, 
i.e. for d ^ d0 ^ 0, where d0 is a number. Obviously, we can choose e2 > 0 such 
that (2.33) holds on the compact set 0 S d ^ d0. Since \p(5, d, e) and /(<5, d, e) are 
nonincreasing functions of e, the inequality (2.33) holds for all d, and 0 ̂  e ̂  
^ e0 = min (el9 e2). From these considerations the sufficient conditions follow, i.e., 

WM , Q *fo(4«0M >Q x(S1(d),a(d),e) >Q as ^ 
l - / ? (d ) ' (1-/,(</)) 5.(d) ' ( l - ^ ( d ) ) 2 ^ ( d ) 

ejMd)) . 0> W , 0> ^2(d),«(4«) >0> 
J8(d) l-j8(d) (l-/?(d))2<52(d) 

^ ) ' a ^ £ ) 2 J « 0 ) ^ o as d^oo. 
(1-/J(d))2 V 8%d) 

If F(t) is linear and h(t) is bounded, then it is obvious that we can simplify this 
system of conditions. Thus, the following sufficient condition for (2.33) is obtained. 

Let a number e > 0 and a function S(d), 3(d) > 0 exist such that 

(2.34)-M-^0, W M 4 * ) „0> x(S(d),a(d),s) _^Q 
V J 1 - 0(d) (1 - H(d)f S(d) (1 - p(d))2 W ) 

then a number e0 > 0 exists such that (2.33) is satisfied. 
Further we shall consider a more special case. We shall assume that the functions 
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\jj, x can be estimated by the product of functions which depend either on 3, e or on d, e 
only, i.e., 

(2.35) i/<O\ oc(d), e) = xl/x(d, e) </,2(d, e) , *(<$, *(d), e) = Xl(8, e) Xi(d, e) , 

\f/l9 Xi are continuous in 3, e. 

Remark 2. Let (2.35) be fulfilled and let a number e > 0 exist such that one of the 
functions {j/^ljd, e) d, \j/2(d, e)J(l — P(d))3 tends to zero as d -» oo and one of 
the functions ^(l/d, e) 2^Jd, Xi(d, e)J(l — P(d))2 + 1/2q tends to zero as d -> oo; then 
a number e0 > 0 exists such that (2.33) holds. 

For proving this statement we have to use the fact that deriving Lemma 1 we 
estimated (1.2) and (1.8) separately so that we could choose different 3(i) in (1.5) and 
in (1.8); this means that in (2.34) we can choose different functions 3(1)(d), 3(2)(d) 
in conditions for ij/(3(d), a(d), e) (1 - P(d))~2 3(d)'1 -> 0 and for x((5(f1), oc(d), e) x 
x (1 - p(d))~23(d)-1/2q->0. 

Finally we shall show how to estimate the function /?(d) for a wide class of differen
tial equations whose solutions are weakly uniformly exponentially stable. 

Remark 3. Let a bounded function f(t, r) defined for r = 0 exist such thatf(t, r) = 

= 0, (d2fjdr2) (t, r) = 0 and 

(2.36) E M " - y^)2*-1 (a{t, y(1), 0) - a{t, /2), 0)) = 
i 

g |y(2) - y(1)|2- xf(t,\y(2) - /%) 

holds. Condition (2.36) means that an inequality \y(1)(t) - y(2)(*)|<2 = \r(t)\ holds 
where y(l)(t) are solutions of (2) and r(t) is the solution of 

(2.37) f=f(t,r) 

with initial condition r(t0) = |y(2)(^o) - y(1)(*o)|<r 
Obviously the function p(d) for (2) can be estimated by the function p(d) for 

equation (2.37). The variational equation of (2.37) is 3f = (df(t, r(t))Jdr) 3r and the 
solution of the variational equation fulfils 3r(t)j3r(0) = exp {J0 (df(t, r(t))Jdr) dt}, 
where r(t) is a solution of (2.37). Since f(t, r) = 0 and (dfjdr) (t, r) is nondecreasing, 
we have 3r(L)j3r(0) = exp {§o(df(t, r0)Jdr) dt} and by definition of fi(d) we obtain 
fi(d) = exp {{0(G/(>, d)Jdr) dt}. Since j0(df(t, d)Jdr) dt -> 0 as d -> oo, the function 
(1 — p(d))-x can be estimated by (jo(df(t, d)Jdr) dt)'1 asd -> oo, and we can replace 
(1 - fild))-1 by (j0(df(t, d)Jdr) dt)"1 in (2.34) and in Remark 1. 

Now, we shall turn to the investigation of the boundedness of solutions of (l). 
We shall show that if we take the total boundedness of solutions of (2) into account 
then we obtain an explicite estimate for the solutions of (1). In the sequel the index e 
in (l) can be omitted. 
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+ (l- Ą - ì (ғ ( + -) - F( )) > P( - 0) - Ґ~° -"! dҒ( ) + 

V a 2 « Д V V {)J- K ' J0 ( - + a( ))2" K> 
+ (i-^)(p( + ţ)-P( -o)) ғ+(B-o)-

° --- dE+(ð) + Л - ^ І ? N \ ( V fø + - V ғ+( - oЛ > 
o ( - + «( )y« u V «2VІ l У v 7 " 

> Ғ + ( 0 - 0). 

With respect to the definition of £ we have F(0) = F+(0) for 0 < 0 and F(0 + a/2) -
- P(B - 0) ^ F+(0 + a/2) - F+(0 - 0). The last inequality follows from (3.1) and 
the function a(0) is defined by a(0) = 0 — C f o r O < 0 ^ £ + a a nd a(0) -= a for 
0 > £ + oc. These inequalities mean that j\x\q^e dF(*o + L, Au..., /l„) ^ P+(0) for 
0 > C + a. (The integral as a function of 0 is continuous from the right). If we 
have 0 ^ C + oc, then F+(0) = 0 and the proved inequality is satisfied too. This com
pletes the proof of Theorem 2. 

Analogously as in paper [1] we shall find periodic solutions by using the weak 
uniform exponencial stability and the total boundedness of solutions. These two 
properties allow us to derive explicite estimates for periodic solutions. 

Theorem 3. Let the assumptions of Theorem 1 with 6) be fulfilled for q > 1 and 
let the solutions of (2) be totally bounded; then an e0 > 0 exists such that equations 
(1) have periodic solutions xe(t) with period T for 0 < s <; s0, equation (2) has 
a periodic solution y(t) with the same period and lim sup ||xe(t) — y(0H- == ̂ > 
i = l,...,q-l, ~ ° ' 

Remark 4. Since the solutions of (l) are* weakly uniformly exponentially stable, the 
periodic solutions are determined uniquely in the sense that their distribution func
tions are determined uniquely. 

Proof. First, let a positive number d be given. We shall decompose the process we(t) 
into two w£(t) = wd(t) + wd

e(t) such that wd(t), wd(t) are mutually independent and are 
processes with independent increments. The process wd(t) is that centered at its expecta
tion part of we(t) for which \wd

e(t + 0) — wd(t)\ fg d almost everywhere. Obviously 
\\wd(t2) — vvf(^)|| -* 0 as d -> co for every tu t2. This means, that for the process wf 
a function Fd

E exists such that E\wd(t2) - vv^(ti)|2 <, Fd(t2) ^ Fd(tt) and lim (Fd
e(t2) -

d~> 00 

- FftJ) = 0. For the process wd
e we have E\wd

e(t2) - <(fi)|2« g FE(t2) - Fjtt). 
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tend to zero as d -> oo and J0 g2(?) dF(r) < co, it follows that the second term tends 
also to zero. 

Lemma 4. Let the assumptions of Theorem 2 be fulfilled; then for every d > C 
(for £, a see Definition 2) equation (4,1) has a periodic solution. 

Proof. Since £-(*) B(t, x, c) = 0 for |JC| ^ d and P(|w?(f + 0) - wf(t)| > d) = 0, 
we have P(|x(f, d)| > 2d) = 0 if P(|x(0, d)| > 2d) = 0. Recalling Theorem 1 we 
obtain 

||x(1)(r0 + f, d) - x(2)(t0 + t, d)\\ ^ p(2d)\\ x(l)(t0, d) - x(2)(t0, d)\\ for t ^ S 

where x(0(t, d) are solutions of (4.1) for which x(i)(t0, d) are nonstochastic and 
|x(l)(*o, d)\ ^ 2d. By Theorem 2. from [1] it follows that the uniquely determined 
periodic solution xE(t, d) of (4A) exists. Obviously, P(\x8(t, d)\ > 2d) = 0 and by 
Theorem 3 we have P(\xE(0, d)\ S 0) ^ F+(6). • 

For the proof of Theorem 3 we shall still need another lemma. 

Lemma 5. Let a sequence of distribution functions Fm(X1, ..., An) be given such 
that Fm(Xu ..., An) -> F0(XX, ..., A„) in all points where F0(X1, ..., An) is continuous 
and let a distribution funkcion F+(9) (depending only on one variable) exist such 
that F+(6) = 0 for 6 < 0, J02 dF+(0) < oo and j m g e dFm(Xl9..., Xn) ^ F+(6) 
for all 9; then a sequence of random variables zm (which are n-dimensional) exists 
whose distribution functions are Fm(Xu ..., A„) and for which E\zm — z0\

2 —> 0 as 
m -> oo. 

Proof. First, consider the case that n = 1. In this case we choose Q = <0, 1> as 
the space of definition of zm, where the field of Lebesgue measurable sets 3F is defined 
and P is Lebesgue measure. Define zm(co) = F~l(oS), where F~1 is the inverse function 
to FW(A). If the inverse function is not defined i.e. if Fw is constant on an interval 
<a, b), Fm(a) = v, we take F~ x(v) = a and if Fm(X) is discontinuous in a, Fm(a — 0) = 
= a, Fw(a) = P > a, we take Fw

 1(v) = a for v e <a, />>. Obviously FW(A) are distribu
tion functions of zm. Let Km be a sequence of nonnegative numbers; then 

E\zm(co) - z0(co)|2 = f |zm(co) - z0(co)|2 dP + 
J\zm\£Km 

\z0\£Km 

+ f | z m (co)-z 0 (eo) | 2 dP . 
Jmax(|zm | , |z0 |)>Km 

Using the assumption of Lemma 5 we can estimate the last term, 

E\zm(co) - z0(cof <; f | z » - Z o H | 2 dP + 12 f" 62 dF+(6). 
Jkml^Km jA'm ]\Zm\ 

IzoláKm 
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We obtain 

f |x£(0) - x£(0, d)|2 dF = 12 P V dF+(0) ; 
Jmax(| jce (0) , |xe (0,d) | )^s Js 

using this last inequality we obtain an estimate 

(5.11) / [ |x£(0) - x£(0, d)\2 dF ^ (1 - p2(s))-i h(s) |z(T) - x£(T d)|| + 

+ ^ | | z (T ) - x£(T d)|[2 + 4(1 - P2(s))J[3 J V dF+(0)J ||z(T) - x£(T d)[||. 

If we want to have an estimate for the norm |]x£(0) — x£(0, d)||, we obtain easily 

(5.12) |x£(0) - x£(0, d)|| = (1 - /^(s))"1 h(s) ||z(T) - x£(T <Q|| + 

jjz(T) - x£(T d)f2 + 4(1 - p2(s)) ^ 3 J V dF+(0)] ||z(T) - x£(T d)||lj 

f~3 f°VdF+(0)~] . 

+ 

+ 2 

This estimate is rather complicated; hower, it can be shown that 

o 

02dF (5.13) ||x£(0) - x£(0, d)|| ѓ 2 Щ ЏIÆ + 2 
1 - ß2(s) 

+(ö)]. 

Estimate (5.13) is efficient in the case that 

The expression \\z(T) — x8(T, d)\\ can be estimated by Lemma 3 provided the initial 
value of z(0) = x£(0, d) fulfils the relation ||z(0)|| = ||x£(0, d)\\ ^ jj™ Q2 dF+(6). 

The last section of the article is devoted to an existence theorem. In this section we 
shall not consider the index e in equation (l) and shall use a strong g-norm \\\x\\\q 

defined by 

\\\x(t,co)\\\q =
 2«jE sup \x(t, co)\? . 

fe<0,L> 

First we state some properties of stochastic integrals. Let w(t) be a stochastic process 
fulfilling condition 2) and letf(l, co) be a matrix function which is S£ x ^"-measurable 
in both arguments (if denotes the Lebesgue measurability), #"(t) measurable for 
every t and such that JJ E|f(T, (x))\2

q
q &F(T) < co. It is possible, in an ordinary way, 
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able, too. This means that the stochastic integral and also the entire right-hand side 
belongs to Jt. 

We shall find the solution of (1) by using the method of successive approximations, 
i.e., let 

*m+i(') = *o + CI(T,XJT))AT + B(T, XJT)) dw(t) . 
Jo Jo 

Since x0 e Jt, all successive approximations xm e Jt. Since a(t, x), B(t, x) are Lipschitz 
continuous we have by (6.1), (6.2) 

|||*«+i(0 - *»(0III_ = K [ IIM*) - ^-iWIH.dt + 

+ __'2^Jj||xm(T)-Xm_1(T)|||2"dF(T). 

From this inequality we obtain 

/ 

||K+1(t) - xjt)\\\q ^ 

fZ ffi|[_(T,^0)||_dT + ^ ^ 2X||B(T,x0)||
2«dE(T)) J[^(L+ F(L) - F(0))-1 

where c is a constant. 

Since the series £ 2y[(cm/m!) (t + F(t) — F(0))m] converges the sequence xJt) is 
fundamental in the strong g-norm. 

Lemma 7. The linear space Jt is complete. 

Proof. Let xJt) be an arbitrary fundamental sequence in Jt. Take a sequence of 
00 

positive numbers em such that Ysskq/('2q+1) < °°- We select a subsequence xtJt) 
k=l 

from xm in the following way. The index n1 is chosen such that |||xm(t) — xBl(OIII« < 
< et for m > nu etc. Denoting this subsequence in the same way as the original 
sequence, we shall have the inequalities |||xfc(f) — xm(*)lll« < 8fc ̂ or m > *̂ Obviously, 

P( SUp \Xk(t) - Xjt)\q > \\\Xk(t) - Xm(0|||2*/(2*+1>) __ |||X,(0 - Xm(f)|||
2«/(2" + 1) • 

te<0,L> 

Denote 

A = PI U {co : sup \xjt, m) - xm+1(t, co)\q > \\\xm - xm+1|||2*/(2«+1)} . 
k m~-k t 

For co $ A there exists an n0(co) such that 

sup \xjt, co) - xm+l(t, co)\q S \\\xm - xm+1 | | |^ / (2«+1) for m ^ n0(co) . 
t 
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For m ^ n ^ n0(co) we have 

oo 

s u p | x m ( . % c o ) - x „ ( ^ ) | g < 2 > 2 « / ( 2 * + 1 > . 
t i = n 

Obviously, the sequence xm(t, co) is fundamental and lim xm(t, co) = x(t, co) exists 
for co $ A. Furthermore, we have the estimate m~*°° 

00 

(7.1) sup \x(t, co) - xm(t, co)\q < £ e>
2*/(2«+1> for m > n0(co). 

t i = m 

We shall show P(A) = 0. From the above inequalities it follows, that 

00 

(7.2) P(A) < lim £ P{co : sup \xm(t, co) - xm+l(t, co)\q > 
k~+oo m = k t 

00 00 

> HI*. - xm+1\\\
2

q
qK2q+1)} = l™ I UK - ^ + 1|||

2"/(2'+1) ^ I™ __ 4 i / ( 2 4 + 1 ) - 0 • 
k-*os m = k k~*o3 m=k 

Denote A„ = {co : n0(co) < n}. Since 

J \ sup |x(r, w)|2* dP < 2JI sup |x(r, co) - x j f ro)|2* dP + 

+ J ( sup |xm(*, o,)|2« dP < f e
2</(2«+1> + sup || |xm | | | , 

VJAm ' *="» W 

and Q = A -h {)Am, where P(A) = 0, we have \\\x(t, co)\\\q < oo. Because x(l, co) is 
m 

_£_? x /^-measurable, ^(^-measurable for every t and \\\x(t9 co)\\\ < oo it belongs 
to Ji. 

It remains to prove that xm converge to x in the strong g-norm | | | # | |L Actually, 
we have (for brevity we denote |||y|j|# = sup \y(t, co)\q) 

t 

J( |||X - Xm|||2« dP < 2 M |||X - Xm|||2* dP + 

•\\\1*&P + J[ | | |xj | | 2*d 
/ Q-Ayr 

T in-
in-Am 

By (7.1) and by the definition of Am we obtain 

'f HI* - *m|||2*dp ^hiqn2q+1) + J J ' IIMIIS'dP + J f 
Jfl t - m V J a-Am VJn-A„ 

Since 1(1*111, < co, Q - l._Mm = A, where P(A) = 0, the terms 2 «/J f t _^ | | | x | | | ^ d P 
m 

tend to zero; since Q - A! => Q - A2 _ ..., P(f)(-3 - _4m)) = P(A) = 0 and since 
m 
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