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GREEN'S RELATIONS ON A PERIODIC SEMIGROUP 

JAMES T. SEDLOCK, Storrs 
(Received May 5, 1968) 

1. INTRODUCTION 

A semigroup S is called periodic if each element of S has a finite order, where the 
order of X e S is the order of the cyclic subsemigroup of S generated by x. This type 
of semigroup has been treated only occasionally in the literature, essential contribu­
tions having been made by S. SCHWARZ in [4] and M. YAMADA in [5]. 

The fact that for each element x of a periodic semigroup S some power of x is 
idempotent (ex. 1 p. 120 of [1]) leads to defining a natural (equivalence) relation .:̂ Г 
on S by: for a, b e S, aJfb if and only if there exists an idempotent e and integers m, n 
such that a"^ = b"" = e. The .^'-classes of S will be denoted by X ,̂ e idempotent. 
For each JT-class K^, the notions of maximal subgroup G^ and maximal semigroups 
contained in K^ were first studied by Schwarz. As a consequnece of his work we have 
the following facts about S: 

(I) for each idempotent e, ex = xe for each x e K^, and еК^ = K^e = G^ = 
= {x e K^ \ ex = xe = x} is the maximal subgroup of S containing e; and 

(II) S is a union of groups if and only if each element of S has index one if and only 
if for each idempotent e, K^ = G'\ 

The five Green relations ^, Ш, 9), / , Ж were defined in [2] for an arbitrary semi­
group and have become a familiar tool among semigroupers. Their definitions, funda­
mental properties and an intuitive discussion can be found in Chapter 2 of [ l ] . 
If S is a semigroup and x e S, then L^^, D ,̂ J^, H j will denote the 5£\ß, Q), / , 
.^]-class of S containing x. Of particular interest here are the results: if 5̂  is a periodic 
semigroup, then 

(I) for each idempotent e, H^ = Ĝ  (see ex. 1 p. 61 of [1]); and 
(II) 9 = / (Theorem 3 of [2]). 

It is the purpose of this paper to determine necessary and sufficient conditions on 
a periodic semigroup S in order that JT coincide with any one of the Green relations. 
In section 2, where Theorem 2.1 is actually the key to all results, we characterize S 
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when Ж — Q) (Theorem 2.9). In section 3 conditions parallel to those in section 2 are 
found for the cases Jf = . ^ and Ж — ^ (Theorems 3.5 and 3.6 respectively). 
Finally, the easy case JT = J f is mentioned for completeness (Theorem 3.8). 

Throughout this paper all unexplained notation and undefined terms are those 
of [ l ] . 

2. THE NATURAL EQUIVALENCE AND 9 

The first theorem provides a steppingstone to results involving Ж and each of the 
Green's relations. 

2.1. Theorem. For each idempotent e in a periodic semigroup, K^ n D^ = G^. 

Proof. Since G' ^ K' and G' = H, ^ D^, it is immediate that G' ^ K' n D,. 
Conversely, let xeK^ n D^; then ex = xe e G^ ^ D^, so x^ex and x = pexq for 

some p, q e S^. This will allow us to express x as sandwiched between two idem­
potents. That is, since S is periodic, there exist idempotents / , h and positive integers 
m, n such that {pe)"" = f and g" = h; therefore 

X = pexq = {pef xq^ == ... = (pe)^" xq""" = fxh . 

Noting that fe = (pe)"" e = / , we have 

S'ex ^ S^x = S%h = S^fexh Я S^exh . 

But it is easily checked that S^exh = S^ex, hence S^ex = S^x = S^exh. This shows 
that x^ex. 

Dually, 

xeS^ ç̂  xS^ = jxhS' с fxS^ = fexS^ = fxeS^ . 

Now since / x = / it follows that fxeS^ = xeS^, so that xeS^ = xS^ = fxeS\ and 
xMex. Therefore, x e L^^ n R^^ = H^^ = Я^ = G .̂ 

2.2. Corollary. For each idempotent e in a periodic semigroup, K^ n L^ == G^ and 
K' nR, = G\ 

Proof. Again G" ç К' and G' = H, я L^, so it is immediate that G^ ^ K^ n L,. 
From the preceding theorem, K^ n L^ ^ K^ n D^ = G^. 

Similarly, one shows K'' n R^ = G^. 

2.3. Corollary. Periodic semigroup S is a union of groups if and only if Ж ^ S). 

Proof. If 5 is a union of groups, then for each idempotent e, K^ = G^ = H^ я D^. 
On the other hand, if Jf ^ ^ , then for each idempotent e, K^ ^K^ n D^=: G\ 

Hence, S is a union of its maximal subgroups. 
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2.4 Definition (6.4 of [3]). Semigroup S is weakly commutative if for each a, b E S 
there exist x, y e S and an integer к such that (аЬу = xa = by. 

2.5 Definition. Semigroup S is SL semilattice of semigroups of type a if S' is a disjoint 
union of semigroups of type a{S^ | i el,l index set}, and for each /, j eî there exists 
a. к el such that SiSj Ç S^ and SjSi Ç S^. 

The minimal semilattice congruence J^ of an arbitrary semigroup has been 
determined modulo prime ideals in [3], in v^hichit is also proved (Theorem 6.7) that 
a periodic semigroup is weakly commutative if and only if the J^ and Jf relations 
coincide. The next proposition generalizes Theorem 14 of [4], which deals with the 
commutative case. 

2.6. Proposition. / / S is a weakly commutative per.iodic semigroup, then Q) Ç 
"^ Ж = Jf and each maximal subgroup is a ^-class of S. 

Proof. From the characterization given in [3] of the minimal semilattice congru­
ence J^, it follows that ^ ^ УГ for an arbitrary semigroup. In particular, if S is 
a weakly commutative periodic semigroup, then ^ = J^ ^ J^ = Ж. Hence, each 
Jf-class is a subsemigroup of S and a union of ^-classes. 

Moreover, combining Q) Я: X with Theorem 2.1 above yields G^ = K^ n D^ — D^. 

2.7 Definition (p. 1 of [5]). Semigroup iS is said to satisfy Condition С if for each 
a, b e S and any positive integers m, n there exist positive integers r, s and t such that 

{аЬу = {a^'b^y = {b^'a'^y . 

2.8 Lemma. Periodic semigroup S is weakly commutative if and only if it 
satisfies Condition С 

Proof. If 5 is weakly commutative, then J^ = Jf and S is a semilattice of uni­
potent homogroups; namely, the JT-classes of S. By Theorem 3 of [5], iS satisfies 
Condition C. 

Conversely, let S satisfy Condition C. For a, b e S there exist integers r, t such 
that {аЬу = {bay. Hence, 

{аЬу = b[a{bay-'] = [(ba)'""^ b] a . 

2.9 Theorem. The following are equivalent on a periodic semigroup S: 

(l) S is a semilattice of groups 
(II) S is a union of groups and weakly commutative 

(III) J f = ^ . 

Proof. (I) implies (II). Since S is a semilattice of (periodic) groups, then it is 
trivially both a union of groups and a semilattice of unipotent homogroups. Due to 
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Theorem 3 of [5], S satisfies Condition С, and by Lemma 2.8 it is weakly com­
mutative. 

(II) implies (III). If S is a union of groups, then for each idempotent e, K^ = G^ = 
= He', thus Ж = Ж, Combining this Vvith the afore-mentioned results of [3], we 
get ^ = / " Ç ^ = J f = J^. However, it follows from the definitions of the Green's 
relations that ^ Ç .^ Ç ^ and J f ç ^ ç ^ . So all of the Green's relations 
coincide with JT. 

(III) implies (I). From Corollary 2.3, Ж ^ ^ implies that S is a union of groups; 
that is, each Jf-class is a maximal group. By Theorem 4.6 of [1], henceforth referred 
to as Clifford's Theorem, Ŝ  is a semilattice of ^ = jT-classes. 

3. THE NATURAL EQUIVALENCE AND ^, m, Ж 

We now proceed by a series of lemmas and definitions towards necessary and 
sufficient conditions that Ж = S£, These conditions will be seen to parallel those 
above for the case Ж ~ ^, 

3.1 Lemma. For an arbitrary semigroup S, any ^-class R which is a union of 
groups is a right group. 

Proof. It is well-known that the set of idempotents of any ^-class forms a right 
zero semigroup, and for any ^-related idempotents e, / , groups H^ and Hf are iso­
morphic. Thus, if £ is the set of idempotents of R, and Я is a fixed Jf-class contained 
in jR, it is easily estabhshed that R ^ ExH, In light of Theorem 1.27 of [1], Ĵ  is 
a right group. 

3.2 Lemma. / / an arbitrary semigroup S is a semilattice of right groups, then 
Jf =^ ß and each of these right groups is a ß-class of S. 

Proof. Let еУ# be a semilattice congruence on S such that each ^-class is a right 
group. Now a right group is completely simple, thus 5' is a union of completely 
simple semigroups. By CHfford's Theorem, 5 is a semilattice of /"-classes; hence, 
J^ Ç / . However, we have already remarked that ß ^ J^ in any semigroup; thus, 
^ = / . 

Also, Ж я ^ , where each ^-class is a right group. Recalhng the characterization 
of a right group given in the preceding lemma, let M ^ ExG be an arbitrary ^-class 
of S. For any {e, a), (/, b) e M it is easily verified that S\e, a) S^ = S\f, b) SK 
That is, x^y implies x/y; ov уМ я / = J^. So, J^ = Ж = / and each right group 
is a / -class of S. 

3.3 Definition, Semigroup S is left [right^ weakly commutative if for each a, b e S 
there exist xe S and an integer к such that 

(abf = bx [{abf = xa] . 
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3.4 Lemma. Let a periodic semigroup S be a union of groups. Then S is left 
weakly commutative if and only if ^ = ^. 

Proof. Suppose S is left weakly commutative. Let a,b e S and a^b. Then S^a = 
= S^b and there exist x, y e S^ such that a = xb, b = ya. Now the hypothesis 
that S is left weakly commutative imphes there exist z e S and an integer к such that 
(хЬУ =^ bz. Also, the index of a is one, for a is in some maximal group, so choose 
integer n > к such that a" == a. Then 

a = a" = {хЬУ = (xbf (xb)""^ = bz{xby-^ 6 bS^ . 

Similarly, one shows b e aSK Hence, аМ and i f ^ ^ . Therefore, ^ = J^ о ^ £ 
Ç ^ о ^ = ^ , and ^ = ^ . 

Conversely, suppose ^ = ^ . By Clifford's Theorem 5 is a semilattice of ^-classes. 
So for any a,b e S, ab^ba. Hence, abS^ = baS^ and there exists an xe S^ such 
that ab = b{ax). 

3.5 Theorem. The following are equivalent on a periodic semigroup S: 
(I) S is a semilattice of right groups 

(II) S is a union of groups and left weakly commutative 
(III) Ж = ^ . 
Proof. (I) implies (II). From Lemma 3.2, Ж = / z=z ^ and each of these right 

groups is a ^-class of S. Again, a right group is completely simple, so each ^-class 
(and hkewise S) is a union of groups. 

To complete the proof it suffices, due to Lemma 3.4, to show that ^ = ^ . To see 
this let Lg be an ^^-class of 5. We know that L^ is a union of J^-classes, each a maximal 
subgroup of »S. Let Hf be any Jf-class contained in L^. The idempotents of any 
^-class form a left-zero semigroup, so ef = e. However, the idempotents of right 
group De form a right-zero semigroup, so ef = / . That is, e = ef = f; hence, L^ = H^. 
But L^ was arbitrary, so i f = ^ . So, ^ = ^ о ^ = ^ о ^ с ^ , and ^ = ^ . 

(lï) implies (III). Since S is a union of groups, then each e:^-class is a maximal group 
and Ж = Ж. Also, by Lemma 3.4 ^ = ^ , thus Ж = Ж-^^г\т^^(л9)=^ 
= ^ . 

(III) implies (I). Using Corollary 2.2, for any idempotent e, K^ = L^ = K^ n L^ = 
= G^ = H^. This imphes that 5 is a union of groups and ^ = Ж; therefore, ^ = 
= ^ о ^ = Ж о m Œ m and Ш = ^. 

Once more from Clifford's Theorem we infer that 5 is a semilattice of ^-classes. 
In this case each ^-class is a union of groups, so the result follows from Lemma 3.1. 

Lemmas dual to those in 3.1, 3.2 and 3.4 yield the analog: 

3.6 Theorem. The following are equivalent on a periodic semigroup S: 
(I) S is a semilattice of left groups 

(ll) S is a union of groups and right weakly commutative g, 
(III) Ж = Ш. 

322 



3.7 Proposition. Let periodic semigroup S be a union of groups. Then all Green's 
relations on S coincide if and only if S is weakly commutative. 

Proof. If J f = =^ = ^ = ^ , then by Lemma 3.4 and its dual, S is both right and 
left weakly commutative. To see that S is weakly commutative, let a, b e S. Then 
there exist x, y G S and integers r, s such that [аЬу = bx, [аЬУ = ya. Hence, (аЬу^ = 
= [{аЬуу = {bxf = b[x{bxy-'] and {ab^ = [{abyj = {уаУ = [{уаУ~^ у] a. 

On the other hand, a weakly commutative semigroup is trivially both right and 
left weakly commutative; so again by Lemma 3.4 and its dual, M = ^ = ^ . By 
definition, J f = if n ^ , and we know ^ = /^ in the periodic case. 

For the sake of completeness in our discussion of JT and the Green's relations, we 
conclude with necessary and sufficient conditions that Ж =^ Ж. Their proof is 
immediate from the introductory comments and ChfFord's Theorem. 

3.8 Theorem. The following are equivalent on a periodic semigroup S: 

(l) S is a semilattice of completely simple semigroups 
(II) S is a union of groups 

(III) Ж = Ж. 
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