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ON A CLASS OF FUNCTIONS WITH STARSHAPED IMAGES 

R. M. GOEL, Patiala 

(Received February 2, 1968) 

1. Introduction. Let S be the class of functions 
00 

(1) m = z + ib.z" 
2 

regular in |zj < 1 and satisfying the condition 

(2) Re f i f f l l > 1 for Izl < 1 . 

In [1] Wu ZwAO-JEN proved the following theorem. 

Theorem A. Iff{z) e S, then any section 

of f{z) is starshaped in |z| < ifor n Ф 3, 4, 5. 

Later in [2] it was shown that the above theorem holds for л = 3. 
Thus is has yet to be proved that Theorem A holds for n = 4, 5. 
The purpose pf this paper is to show that the statement is true for n = 4, 5. We 

shall need the following Lemma 
00 

2. Lemma. Let f{z) — z -\- ̂ b^z^ e S, then the coefficients satisfy the following 
equalities ^ 

(3) b2 = b, 

(4) 2b, = 2b' + e,{l - \b\') , 

(5) 6^4 = 4b^ + 3e,b{l - |bp) + 2^2 , 

(6) 24^5 = lOb^ + 12b'(l - \b\') e, + 3(1 - \Ь\'У e\ + ^be^ + 6̂ 3 , 

|b| g 1 , |e„| ^ 1 for n = 1,2,3. 
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Proof. Let 

then G(0) = 1 and Re [ ( J (Z) ] > 0 for |zj < 1. Hence, by Caratheodory — Toeplitz's 
theorem we can put 

(7) 
2z/'(z) 

1 = 
2(1 + 2^22 + ЗЬз2^ + 4b^z^ + 5b,z* + ...) 

(1 + 62Z + b^z^ + b^z^ + b.z" + ...) 

1 + (5lZ + Ô^Z^ + <5з2̂  + ^4Z* + ... , 

Ô,\u2, \ôA й 2 . 

- 1 = 

(8) 1̂ 1 ̂ 2 , \2ô,-ô,\u^-\o,\\ 

Equating coefficients of z, z^, z^, z"̂  on both sides of (7) we get 

(9) 2b, = 0,, 

(10) 4^3 = b^Si + Ô2, 

(11) 6^4 = b3<5i + b2Ô2 + Ô3 , 

(12) 8^5 = M l + ^3-52 + ^2^3 + ^4 • 

By the second inequality of (8) we can put 

(13) 2Ô, - ôl = e,{4 - \ô,\') ( h l ^ l ) . 

Putting Ô, = 2b{\b\ й 1), ^2 = i^l + i^i(4 - l^ip), с5з = 2e,(|e2| ^ 1) and ^4 
= 2e,{\e,\ й 1) in (9), (10), (11) and (12) we get (3), (4), (5) and (6). 

3. P roo f of theorem a for n — 4. 

We shall show that Re [z/;(z)//4(z)] > 0 for \z\ < \. 

Re (Ю" 
(-) J 

= Re 
'1 + Ibyz + 3b.z^ + 4b4Z^" 

1 + b2Z + h^Z^ + b4Z^ 

Re 
1 + b2Z + h^z'^ + b^z'j 

> 2 
1 + b2Z + b^z^ + b^z^l 

It is easy to see that the denominator never vanishes. Hence, by the principle of mini­
mum for harmonic functions, we have only to prove that Re [^/4(z)//4(z)] > 0 for 
|z| = ^. By considering £f{ez) in place of/(z) with a suitable e (|e| = 1), the proof is 
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reduced to the case z = i. Thus it is sufficient to show 

(14) 

By (3), (4) and (5) 

4 - &3 - b4 

+ 4h2 + 2Ьз + ^4 
< 1. 

+ 4Ь, + 2Ь, + b, 
4 - b' - jb^ - ie,{l + b)(i - \b\') - je, 

8 + 4b + 2b^ + ib^ + e,{l + Щ (1 - \b\^) + \e^ 

Again, by the principle of minimum it is sufficient to prove (14) with \b\ = 1, |ei| 
1621 = 1- Thus we see that the inequality (14) is satisfied if 

2|12 + 6b + 3b^ + fe^l _ |i2 _ 3̂ 2 _ 2b3| - 2 > 0, Щ = l ) . 

On putting Re Ь = X, we have 

(15) P{x) = 2(106 + 114x + 168x2 ^ 96x')^/^ -
- (229 + 156x - 144x2 - 192x )̂̂ /2 _ 2 > 0, ( - 1 ^ x ^ l ) . 

Difierentiating (15), we obtain 

(16) 

and 

(17) 

F(x) = 6(19 + 56x + 48x^) 
(106 + 114x + 168%^ + 96x^)^/^ 

6(13 - 24x - 48x^) 
(229 + 156x - 144x^ - 192x^) /̂2"' 

+ 
P Y \ - ^(4853 + 10176x + 5472x^ + 5376x^ + 23Q4x )̂ 

(106 + 114x + 168x^ + 96x^)^/^ 

6(6510 + 21984x + 7488x^ - 4608x^ -- 4608x^) 
(229 + 156x - 144x^ - 192% )̂̂ /̂  

It is easy to see that P\x) > 0 for 0 ^ x ^ 1 and P'(x) < 0 for - 1 ^ x ^ - i . 
Consequently, the minimum value of P(x) for — 1 ^ x ^ 1 is attained in the interval 
— ̂  < X < 0. Moreover, from (17) we find by an easy calculation that P"(x) > 0 
for ~ i ^ X ̂  0. From (15) we have 

P(--i) = 2 V(86-5) ™ V(184) - 2 = 3-04, 

and from (16) 

n-i) = 48 96 
786-5 Vl84 

= -1-91 
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For —iu^uO, noticing P'^x) > 0, we have by Taylor's theorem 

(18) P ( ^ ) > P ( _ i ) _ ( _ j _ . , ) P ' ( _ ^ ) . 

Putting X = 0 in (18) we get 
1-91 

Min P{x) > P{-i) + i P ' ( - i ) = 3-04 > 0. 
- i ^ x ^ i 4 

This completes the proof of the theorem when n = 4. 

4, Proof of the theorem a for n = 5. 

L / sW J I l + b2Z + b,z' + b,z' + b,z^ J 

= 2 - Г 1 - b^z' - 2b^z' - 3bsz^ 1 ^ 
[ l + b2Z + bsz^ + b^z^ + bsz*i 

1 - b.z^ - 2b.z^ - ЪЬ.г" 
I + b.z + b^z^ + b.z^ + b.z'^ 

As in the case n = 4, we may prove reducing the case to that with z = ^. Thus it is 
sufficient to prove 

16 - 4Ьз - 4^4 - 3^5 I 
< 2. 

[16 + 8̂ 2 + 4Ьз + 2^4 + bs\ 

On using (3), (4), (5) and (6) the above inequahty reduces to 

2] 192 + 96b + 48^2 + 166' + 5fe*| -

- |192 - 48^2 - 32b' - 15b*| - 67 > 0, {\b\ = l ) . 

On putting Re Z) = X, we have 

(19) ß(x) = 2(28601 + 26464X + 28608x2 + 2841бх' + 15360x'')^/2 _ 

- (51649 + 40896X + 12096x2 - 49152x' - 46080x'')i''2 - 67 > 0, ( - 1 ^ x g 1). 

Differentiating (19) we obtain 

,^„, ^,, . 32(827 + 1788x + 2664x2 + 1920x') 
(20) 0 (x) = ^̂  — 

' • ^ ^ (28601 + 26464X + 28608x2 + 28416x' + 15360x*)i^2 
288(71 + 42x - 256x2 _ 320̂ .3̂  

(51649 + 40896x + 12096x2 - 49152x' - 46080x'̂ )'''2 
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and 

(21) Q\x) = 1536 /^1221?^ + 3174711X + 4900872л;' + 3175616x^ + 

4- 2505024x'̂  + 1704960JC^ + 614400xM (28601 + 26464x + 

+ 28608x' + 28416%^ + 15360x^)-^/' - 18432 (^^^- -
^ \ 32 

- 413192X - 938319x' - 441216x^ + 7584x^ + 368640x^ + 
4- 230400xM (51649 + 40896x + 12096x'- 49152x^- 46080x^)-^/^ 

It is easy to see that ô'(x) > 0 for —^ ^ x ^ 1 and ô'(^) < 0 for — 1 ^ x ^ —|. 
Consequently, the minimum value of ß(x) for — 1 ^ x ^ 1 is attained in the interval 
~ | < X < — ^. Moreover from (21) we find by an easy calculation that Q"{x) > 0 
for - I g X g - i 

From (19) we have 

e ( - i ) = 2 7(19929) - V(37449) - 67 = 21-83 , 

and from (20) 

ô ' ( - i ) = - ^^^^ 1 ^ ^ = 42-68. 

^ ^ 7(19929) V(37449) 

For — I ^ X ^ — i, noticing б "W > 0, we have by Taylor's theorem 

(22) e(^) > Qi-i) - ( - i - x) ö'(-i) • 
Taking X = —J in (22), we get 

Min Q{x) > Q{-i) - i ß ' ( - i ) = 21-83 - ^ > 0 . 

This completes the proof of the theorem. 
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