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TOLERANCE IN ALGEBRAIC STRUCTURES 

BoHDAN ZELINKA, Liberec 

(Received January 8, 1968) 

E. C. ZEEMAN [3] introduces the concept of tolerance on a set as a reflexive and 
symmetric relation. M. A. ARBIB [1,2] applies this concept in the theory of automata, 
B. ZELINKA [4] in the theory of graphs. Here we shall introduce this concept into 
abstract algebra. 

As mentioned above, the tolerance is a reflexive and symmetric relation on a set. 
If on a set M a tolerance £, is given, we speak about the tolerance space (M, 0-

Now let an algebraic structure 91 = (A, ^) be given. (By the symbol A we denote 
the set of elements of the algebraic structure, by the symbol ^ the set of operations 
on this set.) On the set A let a tolerance ^ be given. We say that ЭД is a (^-tolerance 
algebraic structure, if and only if the following holds: Let / G #" and let / be an n-ary 
operation. If we have In elements x^, ..., x„, j i , ...,};„ of Л such that (x̂ -, y) e ^ for 
i == 1, ..., n, then also 

( /(xi , ..., x„),/(j;i, ..., y„))e(^. 

We shall investigate the most important types of algebraic structures — groups, 
semigroups, rings, fields and lattices. 

L GROUPS 

Theorem 1. Let G be a group, let a tolerance ^ be given on its set of elements. 
If G is a ^-tolerance semigroup with respect to its multiplication, it is also a 
^-tolerance group. 

Proof. The fact that G is a (^-tolerance semigroup means that (x^, y j e ^, (x2, У2) ^ 
e ^ imphes (xiX2, У1У2) ^ ^ for arbitrary elements Xj, X2, Уи у г of G. To prove 
that G is a (^-tolerance group it is necessary and sufficient to prove that (x, y) e с 
implies (x"^, y~^) e ^ for arbitrary elements x, у of G. 
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Thus let us have arbitrary two elements x, y of G and let (x, y)^^. The unit element 
of the group G will be denoted by e. As ^ is reflexive, we have {x~^, x~^) e ^. From 
the relations (x, j ) e f, (x~^,x~^)e^ we obtain (xx'~^, yx~^) e ^, therefore 
(e, yx~^) e ^. But there is also ( y " \ y ~ ^ ) e ( ^ and therefore (y~^e, y~^yx~^) G ^ 
which means ( j ; " ^ x~^) G ̂ . As è' is symmetric, also ( x ~ \ y~^) G ̂  holds. 

Theorem 2. Lef G be a ^-tolerance group, e its unit element. The set H of the 
elements x e G such that (^e, x) G ̂  is a normal subgroup of the group G. 

Proof. XGH, yeH means that (e, x) E ̂ , (e, y) e ^. This implies (e, xy) e ^, 
therefore with any two elements of Я also their product is contained in Я . The 
reflexivity of £, implies (x" \ x" ^) e £, and therefore this relation together with [e, x) E ^ 
implies ( x ~ \ e) G (̂  or (e, x"^) E ̂ , which means x~^ e H. With any element of Я 
also its inverse element is contained in Я and Я is therefore a subgroup of the group G. 
Now let z E G. There is again (z, z) G ̂ , therefore (e, x) E ̂  and (z, z) E ̂  imply 
(z, xz) G (̂ . But there is also (z"'^, z~^) E £, and therefore (z~^, z~^) E ̂  and (z, xz) E ^ 
imply (e, Z~'^XZ)E^ or Z ~ ^ X Z G H for any XEH and z G G. The subgroup Я is 
therefore a normal subgroup of G. 

As it was already mentioned in [4], a tolerance ^ on a set M can be represented 
by a graph E, the so-called graph of tolerance, whose vertex set is M and two vertices 
X G M, j ; G M are joined by an edge in S if and only if (x, y) E Ç. We shall prove 
a theorem about the graph of tolerance of a (^-tolerance group. 

Theorem 3. Let G be a ^-tolerance group. The graph E of the tolerance ^ consists 
of pairwise isomorphic connected components which are complete graphs. 

Proof. According to Theorem 2, the set Я of all elements x E G such that (e, x) G ĉ  
is a normal subgroup of the group G. Let x E H, y E H. This means that (e, x) G ^, 
(e, y) G (J. As (̂  is a symmetric relation, we have also (x, e) E ^ which together with 
(e, y) E ̂  implies (x, y) E ̂ . Therefore the subgraph of the graph E generated by the 
set Я is a complete graph. Let z E G and consider the class zH in the group G. Let 
x' G zH, y' E zH. This means that x' = zx, y' = zy, where x G Я, y G Я. As x and y 
are of Я , there is (x, y) E ̂ . As ^ is reflexive, (z, z) E £, and this together with (x, j ) G ^ 
implies (zx, zy) G ̂ , thus (x', y') E ̂ . Therefore also the subgraph of the graph E 
generated by the class zH is a complete graph. Now let us have two elements z^, Z2 
of G such that z^H Ф Z2H. Let x^ EZ^H, X2 E Z2H. This means that x^ = z^ji , 
X2 = ^2У2, where y^ E Я , у2 G Я. Assume that (x^, X2) G ̂ . This means {z^yi, ^̂ 2̂ 2) ̂  
E ̂ . The relations (z~^, z~^) E ̂ , (^ iJb ^2^2) ^ ^ imply (ух, zï^Z2y2) ^ i- This 
relation together with {y~^, y"^)^ ^ implies {e, Zx^Z2y2yï^) ^ ^ and therefore 
^1^^2У2У1^ G Я. As Я is a subgroup of the group G and the elements j i , 3̂2 belong 
to it, also the element {zï^Z2y2yï^) У1У2^ = zï^Z2 belongs to Я . But then Z2 G г^Я 
(because Z2 = Zx{zï^Z2) and z7^Z2 ^ Я) and therefore ZlЯ = Z2Я, which is a con
tradiction with the assumption that z^H Ф Z2H. Therefore elements of diff*erent 

180 



classes of the group G according to H are not joined by edges in S. Any class zH 
generates a connected component of the graph S which is a complete graph. All 
connected components of S have the same number of vertices, therefore they are 
pairwise isomorphic. 

2. SEMIGROUPS 

Theorem 4. Let S be a ^-tolerance semigroup, T its subsemigroup. The set ^T of 
elements x of S such that (x, x') G S, where x' G T, is a subsemigroup of S. 

Proof. Let X e ^T, y e çT. This means that there exist x' e T, y' e Tso that (x, x') e 
G (̂ , (y, y') G <̂ . These relations imply (xy, x'y') e ^. As T is a semigroup, there is 
x'y' G Tand therefore xy G ^Tand ^Tis also a semigroup. 

Corollary 1. Let p be an idempotent of a ^-tolerance semigroup S. The set of the 
elements x such that [p, x) e ^ is a subsemigroup of the semigroup S. 

Theorem 5. Let S be a ^-tolerance semigroup, T its right (or left, or two-sided) 
ideal. The set äT of the elements x of S such that (x, x') G ä, where x' e T, is a right 
[or left, or two-sided, respectively) ideal of the semigroup S. 

Proof. Let X G (̂ T, let Tbe a left ideal of .S. There exists x' G Tsuch that (x, x') e ^, " 
Now let j ; G S. As the relation ä, is reflexive, we have [y, y) G ^. The relations (x, x') G ^, 
{y, y) ^ i imply [xy, x'y) e ^. But x'y G Tbecause x' e Tand Tis a left ideal. Therefore 
xy e ^T and <̂ T is also a left ideal of the semigroup S. Analogously for right and 
two-sided ideals. 

Corollary 2. Let о be a zero element of a ^-tolerance semigroup S. The set of 
elements x such that (o, x) G ̂  is a two-sided ideal of the semigroup S. 

Theorem 6. Let S be a ^-tolerance semigroup, let S be the graph of the tolerance ^, 
Let p be an idempotent of the semigroup S. Then for any positive integer n the set 
of elements whose distance from p in the graph E is less than or equal to n is a sub-
semigroup of S. Also the set of vertices of the connected component of the graph E 
containing p is a subsemigroup of S. 

Proof. Let X e S, let the distance of elements x and p in the graph S be a positive 
integer m. This means that there exist elements У1, --., Ут+i of iS such that y^ = p, 
Ут+1 — ^ ^^^ (Уь Ji+i) ^ ^ foî* Ï = 1> •••5 WÎ. Now let us have m ^ n. The assertion 
of the theorem will be proved by induction. If n = 1, the assertion follows from 
Corollary 1. Let the assertion hold for n = к — 1. The set of elements whose distance 
from p in E is less than or equal to к forms a subsemigroup T/,_ ̂  of the semigroup S. 
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The set Tj, of the elements whose distance from p in 3 is less than or equal to к is 
evidently the set of elements x such that {x, y) e ^ where j e Г^_ i, therefore according 
to Theorem 4 it is also a subsemigroup of the semigroup S, q. e. d. The set T of the 

00 

connected component of the graph S containing p is evidently U T .̂ If we have two 

elements x e T, y e T, there is x e Ti, y e Tj, where i, j are some positive integers. If 
к = max (f, j), then obviously x e Tj,, у e T .̂ Therefore also xy e T^. a T, 

3. RINGS AND FIELDS 

Theorem 7. Let R be a ^-tolerance ring, let О be its zero element. The set RQ of 
elements x e R such that (0 , x) e ^ is an ideal of the ring R, 

Proof. As О is the unit element of the additive group of the ring R, the set RQ is 
according to Theorem 2 a normal subgroup of this group. And as 0 is at the same 
time the zero element of the multiplicative semigroup of the ring R, the set RQ is 
according to Corollary 2 an ideal of this semigroup. Therefore RQ is an ideal of the 
ring R. 

Theorem 8. Let R be a (-tolerance ring. The graph E of the tolerance £, consists 
of pairwise isomorphic connected components which are complete graphs. 

P r o o f is the same as that of Theorem 2. 

Theorem 9. Let T be a (-tolerance field. The graph S of the tolerance ( is either 
a complete graph with loops, or each of its components is formed by a single 
vertex with a loop. 

Proof. The unique ideals of a field are the field itself and its zero element. In the 
first case the graph from Theorem 8 has only one component and therefore it is 
a complete graph with loops. In the second case each component must consist of 
a single vertex (obviously with a loop). 

Theorem 9 may be expressed also in the following way: 

Let Tbe a (-tolerance field. Then ( is either the universal r elation (i.e. (x, y) ^ ( 

for arbitrary two elements x, y), or the identity relation (i.e. (x, y) e ( if and only 

ifx = y). 

Theorem 10. Let Rbea (-tolerance ring, let 0 be its zero element, 1 its unit element. 
Let (O, l) G (. Then the graph S of the tolerance ( is a complete graph with loops. 

Proof. According to Theorem 8 we have 1 e JRQ where RQ is an ideal of the ring R. 
But the unique ideal of the ring R containing the unit element is the ring R itself. 
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Therefore the graph E contains a single connected component and is a complete 
graph with loops. 

Remark. In an algebraic structure we admit also partial operations, therefore 
a field is also an algebraic structure. 

4. LATTICES 

Theorem 11. Let Lbea ^-tolerance lattice and let x e L. The set L{x) of the elements 
y 6 Lsuch that (x, y) ^ ^ is a sublattice of the Lattice L. 

Proof. Let (x, y) e ̂ , (x, z) e ̂ . Directly from the definition it follows that (x v л% 
у V z) e ̂ , therefore [x, у v z) e ̂  and at the same time (x A x, у A z) e ^^ 
therefore (x, у A z) e ̂ . 

Assume that any of the lattices L(x) for x e Lhas the least element and the greatest 
one. Denote the greatest element of L(x) by M(x) and the least element of L(x) by 
m(x). 

Theorem 12. The mapping M which to any element x e L assigns the element M(x) 
is an isotone mapping of the lattice Linto itself. 

Proof. Let X e L, j e L, x ^ y. This means that x v 3; = j . As (x, M(x)) e ^^ 
{y, M{y)) E Ç, there is also (x v y, M(x) v M(y)) e ̂ . Therefore M(x) v M{y) G 
e L(X V y) and thus M(x) v M{y) ̂  M(x v y). But x v 3; = y, therefore M(x) v 
V M{y) ̂  M{y). As on the left-hand side we have a join, there must be also M(x) v 
V M(y) ^ M{y) and therefore M(x) v M{y) = M{y) which means that M(x) ^ 
й M{y), 

Theorem 13. The mapping m which to any element x e Lassigns the element m(x) 
is an isotone mapping of the lattice Linto itself. 

Proof is dual to that of Theorem 12. 
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