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BIREGULAR SEMIGROUPS I

HuGo D’ALArcAo0, Stony Brook
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In [1], R. F. Arens and 1. KAPLANSKY introduced the concept of biregularity for
rings. The present paper is devoted to the study of the analogous concept for semi-
groups.

It will be shown that biregularity generalizes the concept of an inverse semigroup
which is a union of groups, characterized by A. H. CLIFFORD in [3]. If each #-class
is a subsemigroup, then in the presence of minimality conditions or of Croisot’s
regularity conditions, these two classes of semigroups coincide and are, moreover,
the class of biregular semigroups satisfying a natural uniqueness condition.

With each biregular semigroup S a groupoid S* is associated, where S* is a semilat-
tice union of 0-simple semigroups and satisfies a categorical condition. If S is an
inverse semigroup which is a union of groups, then S* is Clifford’s construction which
characterizes such semigroups. Also, it is shown that every #-class of a biregular
semigroup is partially isomorphic to a O-simple semigroup.

1. PRELIMINARIES

A semigroup S is said to be biregular if each principal two-sided ideal of S is

generated by an idempotent in the center of S. A semigroup S is bi-inverse if each
principal two-sided ideal of S is generated by a unique idempotent of S and this
idempotent is in the center of S.
" Note that if in a semigroup S we have S’e;S’ = S’e,S’, where e, and e, are idem-
potents in the center of S, then we must have e; = e,. Thus, a semigroup S which is
biregular and not bi-inverse, contains at least one element a € S such that S'aS’ has
an idempotent generator which is not in the center of S.

For example: If S = C(p, q) is the bicyclic semigroup then, since S is simple with
identity; S is biregular. However, since the only idempotent in the center of S is the
identity; S is not bi-inverse.
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Throughout this paper we shall use ‘“ideal” for two-sided ideal. The standard
terminology and notation used is that of [4].

If S is a semigroup, the center of S will be denoted by Z(S); the collection of idem-
potents of S will be denoted by E(S) and EZ(S) will stand for E(Z(S)).

We can first note that a simple semigroup with an identity is biregular and its
center is both biregular and simple and since it is commutative is a group. Also, the
concepts of biregularity and regularity are independent. Indeed, let T(X) be the
semigroup of all transformations of a set X into itself, then as is well known T(X) is
regular and if |X ] > 2, the only idempotent in the center of T(X) is the identity.
Since T(X) is not simple, T(X) is not biregular. Also, if C(S) denotes Bruck’s semi-
group (see [2]) where S is not a regular semigroup, then C(S) is not regular; however,
it is biregular since it is simple with an identity.

In [7], D. R. MORRISON considered some properties of biregular rings; most of his
results can easily be adapted to biregular semigroups. We will use one of his results,
namely;

Lemma 1.1. If S is a biregular semigroup then Z(S) is biregular.

The proof is omitted since it is exactly Morrison’s proof.

In the sequel we shall use the following notation: If 4 is a subset of Bthen B — 4
will denote the set-theoretic complement of A in B. If A is an ideal of the semigroup B,
then B/A will mean the Rees’ quotient of B by A.

Lemma 1.2. If S is a biregular semigroup and e is an element of EZ(S) then
J(e) — L, (J(e) — R,) is a left (right) ideal of S.

Proof. Let a be in J(e) — L, and x an arbitrary element of S. Clearly xa is in J(e).
Suppose that xa is in L,; then Sxa = Se, thus e = yxa for some y in S; hence Se =
< Sa. Since e is in EZ(S), Se = J(e) so that Se = Sa < J(e) = Se, or a is in L,
a contradiction. Similarly for J(e) — R.. v

Lemma 1.3. If S is a biregular semigroup then Z(S) is a commutative inverse
semigroup which is a union of groups.

Proof. By lemma 1.1, if S is biregular then so is Z(S), thus, Z(S) a Z(S) =
= Z(S) a = a Z(S) for all a in Z(S). Hence, every one-sided principal ideal of Z(S)
is generated by an idempotent, and since Z(S) is commutative, it is an inverse semi-
group. Since, # = # and every #-class has an idempotent, it is a union of groups.

2. BI-INVERSE SEMIGROUPS

The class of bi-inverse semigroups can now be characterized with the aid of one
more preliminary result.
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Lemma 2.1. Let S be a bi-inverse semigroup; then S is an inverse semigroup if
and only if § = @ and in this case S is a union of groups.

Proof. Suppose S is bi-inverse and # = 2. Then every Z-class is regular. More-
over every idempotent of S is in E Z(S), thus S is inverse.

Conversely, suppose that S is bi-inverse and inverse. Since each #-class contains
a unique idempotent and S is regular, we must have ¢ = 2. In this case, we further
have that 2 = # = #; and so S is a union of groups.

Theorem 2.1. A semigroup S is bi-inverse if and only if S is an inverse semigroup
which is a union of groups.

Proof. Let e be in E Z(S). Since D, is a regular @-class of S, with a unique idem-
potent, then D, = L, = R, = H,. Let S, = J(e) — H, = (J(e) — L,) n (J(e) — R,).
Then, by lemma 1.2, S, is an ideal of S and it contains I(e) = J(e) — J,. Thus, since
I(e) is maximal, S, = I(e) and hence J, = H, and so S is an inverse semigroup which
is a union of groups.

Conversely, it is readily verifiable that every inverse semigroup which is a union of
groups is bi-inverse.

3. BIREGULAR SEMIGROUPS AND MINIMAL CONDITIONS

A semigroup S is said to satisfy MJ (My) if the set of all & — (#—) classes of S
contained in a #-class of S, contains a minimal member, with respect to the usual
ordering of classes.

A semigroup S is said to be right (left, intra-) regular if for all a in S, (a, a?) is in
R(L, J).

Theorem 3.1. The following conditions are equivalent for a biregular semigroup
in which each #-class is a subsemigroup of S.

(1) S satisfies M} or My.
(2) S is right and left regular.
(3) S is bi-inverse.

Proof. Since each #-class of S is a subsemigroup, it is a simple semigroup and if it
satisfies M7 then by [8], theorem 2.5, each #-class has a primitive idempotent, and
is thus a completely simple semigroup, since moreover each #-class has an identity,
it is a group. Therefore, S is bi-inverse. Conversely an inverse semigroup which is
a union of groups clearly satisfies M. Proving the equivalence of (1) and (3). Now,
if S is right and left regular then by [5], S is a union of groups and thus in particular
each #-class of Sis a simple semigroup which is a union of groups and hence complete-
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ly simple and thus a group. Conversely, if S is bi-inverse then since & = # = # S'is
both left and right regular. Proving the equivalence of (2) and (3)

4. BIREGULAR _#-CLASSES

Let S be a biregular semigroup. For each a in S, denote by e(a) the unique central
idempotent in J,. If eisin E Z(S), let T, = {xin S :e < e(x)} and let S, = S — T,.

Letae S,and b € S, thenif ab € T, we would have a(ab) = e; but e(a) ¢(b) = e(ab)
therefore, e(a) e(b) = e and e(a) = e a contradiction. Thus, S, is an ideal of S.
Let S* = §/S,. If J *(e) and J are respectively the principal ideal generated by e and
the #-class of e, in S}, then using lemma 2.1 of [8], the following equalities follow
easily: J; = J, U {0} = (J(e) n T,) U {0} = J*(e). Thus, J; is a minimal O-simple
ideal of S.

Let Y be a semilattice isomorphic to E Z(S) where « corresponds to e,. To each x
in Ylet 0, denote the zero of S = S,. If « and B are in Y and such that « = f define
a mapping ¢, ; from J = J3 to J;, = Jj by

a _ (aeg if a, ¥ 0,
?=0 =0, if a,=0,.

Then, ¢,, is a partial homomorphism, ie. (i) 0,0, = 0, and (i) (ab) @, ,; =
= (a@,,5) (b@,,p) for all a and b such that ab + 0,. The following is readily verifiable:
(1) a + 0, implies that ae; + 0.
(2) @a is the identity on J*.
(3) if e = B = y then @y, = @y 3Pp.,-
Let $* = U{JJ : «is in Y} and define an operation on S* by

ay - by = (0,04,4p) (Dp®p.ap) fOr a,in J5 and by in Jj .

Then, . is not necessarily associative, but satisfies the following categorical condition:
(C) Ifa,.b, + 0,5 and by . ¢, + O, then (a,. by) . c, = a,.(by.c,).

Furthermore, the mapping i form J} — {0,} to J, that sends a (in S}.) to a (in S)
is a partial-isimorphism.
We can thus state:

Theorem 4.1. Let S be a biregular semigroup. Then, there is a groupoid S* which
is a semilattice union of O-simple semigroups with identity, J, such that:

(1) S* satisfies condition (C).
(2) Each g-class of S is partial-isomorphic to a JY.
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(3) The semilattice of S* is isomorphic to E Z(S).

(4) A #-class J, of S is a subsemigroup of S if and only if J, is isomorphic to J.

(5) If S is bi-inverse, then S* is Clifford’s description of inverse semigroups which
are unions of groups.
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