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1. Introduction. Let F = GF(q) denote the finite field of order g = p", where p
is a prime and n = 1. For a € F put

t(a): a + at+ ... +a’"",

so that #(a) € F. Now put e(a) = >, We dgfine the Kloosterman sum for F:

(1.1) K(a) = K,(a) =XZ e(x + ax’),

0

where the summation is over all nonzero x € F and xx’ = 1. Similarly we define the

double sum
(1.2) Kya)= Y elx+y+axy),

x*0,y%0

where now the summation is over all nonzero x, y € F.
The writer has proved [2] that, when p = 2,

(1.3) Ki(a) = q + K,(a).

No result of this kind is known for p > 2. Moreover the writer has been unable to
obtain a reduction formula for the triple sum

(1.4) Kiya)= Y ex+y+z+ax'yz).
f x*0,y¥0,2%0

In the present paper we consider sums of the following type:
(1.5) S(Q. L) = 2eLix) + (2x) ™'} »

where L(x) is a linear form and Q(x) a quadratic form in x,, x,, ..., X, with ceef-
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ficients in F and the summation is over all x; in F such that Q(x) + 0. We find that
in general the sum S(Q, L) can be expressed in terms of K,(a) or K,(a), where a is
an explicit function of Q and L. More precisely for p = 2 and s even, S(Q, L) reduces
essentially to K,(a); for s odd it reduces to K,(a). These results are contained in
Theorems 1 and 2 below. For p > 2 and s even we find that S(Q, L) reduces essentially
to K,(a); for s odd, on the other hand, we require a variant of K,(a), namely

K'(a) =Y e(u + au™?).

ux0

These results are contained in Theorems 3 and 4.

The cases p = 2 and p > 2 require separate treatment. For the former we make
considerable use of a recent paper [3] on multiple Gauss sums over finite fields of
order 2". For the latter case we use some of the results of an earlier paper [1] on
weighted quadratic partitions over a finite field of odd order.

2. Preliminaries. We recall that

(2.1) Se(ax) = {‘1 (e =0)

0 (a#+0),

where now the summation is over all x € F. Let N(u, v) denote the number of solutions
Xy{s X, ..., X, € GF(q) of the system

(2.2) ox)=u, L(x)=v,
where u, v are fixed numbers of F. Then by (2.1) we have

a* N, v) = 3, 3ele(Q(x) — ) + d(L(x) — 0)} =

c.d

= %e(—cu — dv) (zx:)e{c 0(x) + d L(x)},

where the outer summation is over all ¢, d € F and the inner summation is over all
X5 X2u ..., X Thus (1.5) becomes

a*S(Q.L) = ¢* L e(u' + v) N(u, v) =

= “Zve(u’ + v)c%e(—cu — dv) (;)e{c O(x) + d L(x)} =

=“Z*:0e(u’) ;de(—cu) (Zx:)e{c Q(x) + d L(x)} E;e((l —d)v).

617



By (2.1)

L1 -9 ={1 =D

v 0 (d=+1).
It follows that

3 050 1) = L'~ ) efe 0(x) + L) =

=u§0e(u’)(%: e(L(x)) +C*O§*Oe(u’ - cu)g; e{c O(x) + L(x)} .

We now define the sum

(2.4) G(Q,L) = (%e{Q(x) + L(x)} .

Then (2.3) becomes ’

@9 4SOD--Fll)+ T v - a)ofen. ).
Since

e o () =0)
L - {7 0

(2.5) may be replaced by

(2.6) q8(Q,L) = —ig* + Y el — cu) G(cQ, L),

c*0,u*x0

where

(2.7) 1= {1 (L(x) = 0)

0 (L(x) % 0).

3. The case p = 2. We may take

(3.1) 0(x) = axix; (a;eF).

1sisjss

liA

If
Vi ‘.2 lcijxj (cijel s lcijl +* 0)
j=

and

Q(x) = Ql()’) s

the quadratic forms Q(x) and Q,(y) are equivalent. If Q(x) is nonsingular, that is,
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if it is not equivalent to a form in fewer than s indeterminates, then it is equivalent to
either [4, p. 197]

(3-2) ViVs + VaVa + oo F VeoaVeor + V2

when s is odd or to one of the forms

(3.3) Vi¥z + YsVa + oo F Vo1V
or
(34) )’1}’2 + ... + ys—3ys—-2 + ysz—l + ys—lys + ﬂy.?

when s is even. In the latter case 8 is any number of F such that the polynomial
u? + uv + pr®

is irreducible in F[u, v]. We say that Q(x) is of the type © = +1 or —1 according as
it is equivalent to (3.3) or (3.4). It is easily seen that

(3.5 = 1(Q) = ¢(B).

Moreover 7 is invariant under nonsingular linear transformations.

In order to evaluate the sum

G(Q. L) = Y ¢{Q(x) + L(x)} ,

(x)

where

(3.6) L(x) =i=ilb,.x,. (b F),

some additional notation is needed. For s even we define {(Q, L) in the following
way. Put

a; (i <))
(3.7) a;; =+ 4aj (i > J)
0 (i=1j),
(3.8) 6 = 6(Q) = det (a;;). ‘

Since Q(x) is not equivalent to a form in fewer than s indeterminates it follows that
6 # 0. Then the system of equations

(3.9) agx;j=0b;, (i=1,...,5)
=1

J

619



has a unique solution (b}, b3, ..., bY¥). We put

(3.10) {(Q, L) = Q(b}, b3, ..., b7).
For s odd 6(Q) vanishes identically. Put

dyz dg3 - ays Uy
dszy Ay - Aps Uy
Ou)=1|..coovviiiiiiiian. ,
sy asy A3 Ug
Uy U, Us U

where @, is defined by (3.7). Then for s odd we have
o) = (3 4w

where the A, are certain well-defined polynomials in a;;. We define

(3.11) n= n(Q) = Q(4,, 45, ..., A))
and
(3.12) (0, L) = Blb, by bYH(Q)

It is proved in [3] that when s is even, §(Q) is a relative invariant of weight two;
when s is odd n(Q) is a relative invariant of weight two. On the other hand, C(Q, L)
and o(Q. L) are absolute simultaneous invariants in the respective cases.

Finally we have for s even and Q(x) nonsingular

(3.13) G(Q. L) = ¢ (Q) e[((0. L] ,
while for s odd |

_ (a4 2L) (@(Q.L) = 1)
(3.14) G(0. L) _{ 0 (@(0.0) £ 1),

Q + zLdenotes a quadratic form in the s + 1 indeterminates x, ..., X, z.

We now substitute from (3.13) and (3.14) in (2.6). We first assume s even. It is
evident from the definition that

(3.15) 1(cQ) = 1(Q) (c +0),
while
(3.16) {cQ, L) =c"2Q, L) (c+0).

620



Thus
G(cQ, L) = ¢** 7(Q) Q[a“z t(o, L)}
and (2.6) becomes
aS(QL) = ~ig + g7 «(Q) T o et c24(Q, L)] -
c*0 AN
Since e(c) = e(c?) we have

efu’ + cu+c2¢Q, L) = Y ou™? + cu? + ¢ 2Q,L)] =

c#0m§0

= Y efu +cw + ¢ {Q, L)] >

c*0,u*0

c*0,u%0

at the last step we have replaced u? by u and c2 py ¢’. Thus

gS(Q, Ly = —1¢° + ¢21(Q) Y efu+cu +c (o, L)].

c*0u40

Comparison with (1.2) gives

(3.17) S(Q, L) = —ig*™" + q¢ 212 (Q) K, {(Q. L)] -
Next let s be odd. Then we find, using (3.11) and (3.12) that

(3.18) n(cQ) = c*n(Q) (c+0)

and

(3.19) w(cQ, L) = ¢’ »(Q, L) (¢ * 0).

As noted above 7(Q) is unchanged by nonsingular linear transformations. Applying
the transformation

yvi=ex; (i=1,2,..5 (c#* 0)
to the form

cQ(Xys ooy Xg) + ZL(X15 -20 Xg) 5
it is clear that

©(cQ + zL) = .‘C(C'(Q + zL)).
Moreover, from the definition of 7, it is evident that

©(cQ) = Q) (¢ =i= 0).

Consequently
(3.20) w(cQ + zL) = (@ '+ zL).
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It follows at once from (3 14), (3.19) and (3.20) that

LS - 4]

Substituting from (3.21) in (2.6) we get
(322)  S(Q,L)= —ig°"' + q“"V?(Q + zL) ;oe{u + v’ o(Q, L)},
provided (@, L) + 0. If however o(Q, L) = 0 we get
(3.23) S(@.L) = —Ag "
We may evidently rewrite (3.22) in the form
(329)  S(@L)= —ig" + ¢ (Q + 2) K[w(Q, )]
We have therefore proved the following results.

Theorem 1. Let ‘

(3.25) o(x) = é: ayxx; (a;eF)

j<s

denote a quadratic form that is not equivalent to a form in fewer than s indetermi-
nates and let

(3.26) L(x) = élbixi (bieF)

denote an arbitrary linear form. Then for s even we have

S(Q, L) = —4g"™" + ¢“72" (@) K5[¢(Q, L)] ,
where 1, 1(Q), {(Q, L) are defined by (2.7), (3.4), (3.5) and (3.10).

Theorem 2. For Q(x), L(x) as above and s odd we have

S(Q. L) = —ig"" ((Q, L) =0)

while
S(Q. L) = —Ag"™' + ¢“ V2 «(Q + zL) K, [w(Q, L)] (w(Q, L) *0),

where w(Q, L) is defined by (3.11) and (3.12).
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We remark that for nonsingular Q(x) we have 7(Q) # 0. Thus by (3.12) the
vanishing of w(Q, L) is equivalent to

(3.27) O(by, by, .. b) = 0.

When Q(x) is in one of the normal forms (3.2), (3.3), (3.4) the above results can be
stated in a more explicit form. In particular if s is even and

O(x) = xyx; + X3X4 + o0 + Xo X,
we have §(Q) = 1 and
€0, L) = byb, + byby + ... + b,_ b,
while if
Q) = x1X2 + oov + X 3%y + XP_y + XX, + X}
then
{Q,L) = byby + ... + by_3b,_, + b} + b,y + ﬁb:—x .
If s is odd and

O(x) = XXy + oov + Xg_pX,_y + X2
we get
o(Q,L) = b?.
Thus if

s—1

L(x) = Y bix;

i=1
but not all b, ..., b,_, vanish it follows that
S(Q,L)=0.

4. The case p > 2. We now take

(4.) o(x) = i axix; (a;€F, a;=ay)
ij=1

and put

(4.2) 5(Q) = det (a;)),

the discriminant of Q. Then by a nonsingular transformation
s

yvi=ycx (i=1,2..5)),

j=1
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0(x) becomes

(4.3) 04(») =.~; ay; (a;eF).
Let
(4.49) L) = Y bixi (bieP).

- It is convenient to now define

(4.5) G(Q, L) = :;) e{Q(x) + 2L(x)} .
Then
(4.6) G(Qo, L) = iljl nge(aixiz + 2bix;) -

If a & 0 and b is arbitrary we have
Ye(ax® + 2bx) = e(—a'b?) Ye(a(x + a’b)?) = e(—a’b?) Y e(ax?).
x X x
We recall that
(47) 6(a) = Te(ax?) = w(a) G(1) (a + 0)

where Y(a) = +1 or —1 according as a is or is not a square in F. It is convenient to
put ¥(0) = 0. We have also

(4.8) Gz(l) = lﬁ(—l) q.

It follows from (4.6) and (4.7) that, if 5(Q,) = a1as ... a, + 0,
“9) 6(00 1) = o(~) ¥(5(20) G(1)
where
(4.10) @ = (0o L) = ¥ aib? .

This result may be put in invariantive form. If 6(Q) =+ 0 we have

(4.11) G(Q, L) = o~ (0, L) (5(Q)) °(1) ,
where
(4.12) o(Q, L) = Q'(by, by, ..., by)
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and Q'(x) denotes the quadratic form inverse to Q(x). We omit the proof of (4.11).
The proof is similar to that of [1, §5].

For the application we require G(cQ, L) with ¢ = 0. Clearly

5(c0) = ¢ 5(0),
while
w(cQ,L)=c .o(Q,L) (c=*0).

Thus (4.11) becomes
(4.13) G(cQ, L) = e —c'. o(Q, L)) ¥(c* 8(Q)) G*(1) -

Substituting from (4.13) in (2.6) we get
(4.14) g S(Q, L) = —2¢° + ¥(5(Q)) G*(1) *O}jww(a) e(u + cu' + ¢ o(Q, L)).

If s = 2t, (4.14) reduces to

(419 S(@.1) =~ + U~V @) 4 T dut et w01 =
— g (1) 8(0) K0, 1)
For s = 2t + 1, on the other hand, we have
(®.16 S(0.1) = —2a + p((~1) Q) 4" 6(1).
5 w(c) du+ ¢+ i o0, 1).

c*0,u%0

If »(Q, L) = 0 the sum on the right reduces to

T HOedut )= = T o) = ~6(1).

Thus (4.16) becomes

(4.17) S(Q. L) = —2¢"" = y((=1)""" 5(Q)) ¢'((Q. L) = 0).

If however w(Q, L) + 0 we consider the sum
(4.18) Ly(a) = Z w(c) e(u + ¢ + au'c’) = e(u)z Y(c) e(c + au'c’).
It is known [1] that the sum

(4.19) L(a) = ;l//(c) e(c + ac’)

625



satisfies
(4.20) Li@) =0 (Y(a) = —1),
(4.21) L(a®) = G(1) (e(2a) + e(—2a) (a + 0).

Substituting from (4.20), (4.21) in (4.18) we get

Ly(a) =Y e(u) Y G(1)e(20) = G(I)U;Oe(Zv + av'’?) = G(1) goe(v + 4av'?).

u®0 au’ =p?

Hence if we put

(4.22) K'(a) =v§*:0e(v + av'?)
we get .
(4.23) S(Q, L) = =g + Y((—1)"** 5(Q)) 'K’ (4(Q, L)) .

We may now state the following results.
Theorem 3. Let

Qx) = ¥ aixix; (ayeF, a; = ay)

i,j=1

be a nonsingular quadratic form and let
L(x) = Y bix; (b;eF)
i=1

be an arbitrary linear form. Then for s = 2t we have

S(Q.1) = 3 0(x) + 2L(x) = ~Ag"™" + ¥((~1) 5(Q)) 4" 'K(ol0, 1)

(x)

where 8(Q) = det (a;;) and w(Q, L) is defined by (4.12).

Theorem 4. For Q(x), L(x) as above and s = 2t + 1 we have

S(Q. L) = =g — (1)1 8(Q) ¢ ((Q, L) = 0),
while

S(Q. L) = —4g"™" + y((-1)""* §(Q)) ¢' K'(4(@, L)),

where K'(a) is defined by (4.22).
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