
Czechoslovak Mathematical Journal

Jaroslav Drahoš
Representations of presheaves of closure space

Czechoslovak Mathematical Journal, Vol. 22 (1972), No. 1, 7–48

Persistent URL: http://dml.cz/dmlcz/101075

Terms of use:
© Institute of Mathematics AS CR, 1972

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/101075
http://dml.cz


Czechoslovak Mathematical Journal, 22 (97) 1972, Praha 

REPRESENTATIONS OF PRESHEAVES OF CLOSURE SPACE 

JAROSLAV PECHANEC-DRAHOS, Praha 
(Received December 15, 1969) 

INTRODUCTION 

Let 9^ = {{Su, Tu); Quvl Щ be a presheaf of closure spaces over a topological 
space X, P its covering space and ^ ' = {Aul Puvl ^} its natural representation. 
That is to say, we know that every aeSu can be regarded in a natural way as a section 
a{x) over U in P. Denoting the assignement a -> a(x) by pu, then to the set Su there 
corresponds a set Au = Ри{^и) of sections over U, Moreover, let us denote by 
puv • 1̂7 -^ ^v the map defined as follows: a{x) e Au, a{x) -^ Puv{^) = ci{x)IV = 
= [̂ î7p.(a)] (x). Then 6^' = {Aul Puv'^ ^} is a presheaf of sets over X. If 9 satisfies 
convenient natural requirements, every Pu is injective and thus ^' is a natural repre­
sentation of ^ with help of the presheaf of certain sets of sections in P. 

Let us denote by J^(Z) the set of all open subsets in X. We say that a nonempty 
family Ж of subsets of a set Lis cofilter base if the folowing holds: M, N e Ж => 
=> M u iV с X for some KE Ж. 

We say that for the presheaf 9 = {Sul Quvl^} there is given a cofiltration x = 
= {Ж^; и G ^(Z); a e Su}, if for every U e J'(Z), a e Su there is given a cofilter 
base Ж a in U such that for Ve ^{U) we have: For every К e Ж^^^^^) there exists 
Le JT^ such that К с L. 

Let be given a closure t in P. Further let for every U e ^{X) qu be some method 
which enables us to form a closure qu{t) in Л ;̂ from t. Then ^ ' = {(̂ c/? t̂/CO)» Р'с/к? ̂ } 
is a presheaf of sets Л^ with the closures qu{i)- Now, we can try to find a closure t in P, 
so that the all natural maps pu : {Su, Тц) -^ {Au, qu{t)) would be homeomorphisms. 
Every such a closure will be called normal. 

Here we restrist ourselves to the case when the method qu is the closure of uniform 
convergence on some cofiltration x. Now, two following questions can be studied: 

L If there is given a cofiltration к and if k{t) is the closure of uniform convergence 
и 

on H, we study when there exists a normal closure t in P. 



2. We study if there exists in P a closure t generating a representation i.e. for which 
the following is satisfied: 

(a) There exists a cofiltration x for which t is normal. 
(b) If for Ï7 G ^(X) T{U, t) is the set of all continuous sections over U, then 

r(l7, t) = Ли for all и e ^(X), That is to say, if t generates such a representation, 
then S^' = {{Ли, ku{t)); puyl X} is not only a set representation, but even a topologi­
cal representation of ^ = {{Su, Ти); QuylX}, i.e. 6^ can be represented even topo-
logically using the presheaf of all continuous section sin its covering space {ku(t) is the 
closure of uniform convergence on x). 

Agreements and notations 

The set of all open subsets of a topological space X will be denoted by ^{X). 

0.1. Definition. A presheaf of sets over a topological space Z is a system 

(0.2) ^ = {S^;Q^y;X} 

where Sy for U e ^(X) are sets and QW for I/, VG ^{X\ F С I/ is a map QUV : S^ -> 
-^ Sy, such that the following holds: 

(i) If WcVcz и then Quw == Qvw о Qw^ 
(2) Quu = iu — identity map of Зц. 

We say the presheaf 9" is the presheaf of closure spaces (semiuniform spaces) if in 
every set S^ there is given a closure Xy (a semiuniformity r]j^ and the maps q^y are 
continuous (uniformly continuous) maps of the closure (semiuniform) spaces 

Where it is not important to repeat the all data, we will speak only about a presheaf 
and write simply 6^ = {{Su, Ти); X}. 

If ^ is a presheaf over X from (0.2), we can to every x eX assign the system 

(0.3) ^ , - [S^; Q^y; U, Ve Ш{Х); xeU,V}, 

Because Quy satisfy the conditions (l), (2) from (0.1), we can form the set #'д.== 
= lim 5^^ - the inductive limit of ^^ (see [2], p. 744). 

0.4. Definition. The set ^^ is called stalk over the point x. For every U e ^(x) 
containing x there is a natural map of the set Su into ^^. 

0.5. Notation. Let xeU e ^(X). The natural map of Su into J^^ will be denoted 
by ^ux- If of e Su, then the element èux{^) e ^^ will be called germ of a over x. 



Let us put P = \J{^x \xeX}, Further let ф be the map of P onto X constructed 
as follows: If a e P , then there is the unique XGX such that a e #'^. Let us set 
i/r(a) = X. 

0.6. Notation. The set P is called covering space of the presheaf .^. The map ф is 
called projection. 

0.7. Remark. Clearly there is J^^ = \l/~^(x). Thus for the stalk over x will be more 
frequently used the symbol i//"^(x). The capital P will in the next denote only the 
covering space of 6^. 

0.8. Definition. Let 17 e J^(X). Every map r : U -^ P for which ф о r = iu is the 
identity map of U is called section over U. 

If и e ^{X), a 6 Su, then we can to every x eU assign an element hj(^x) G P as 
follows: hjx) = iux{^) (see (0.5)). 

According to our way of introduction of ^ux ^nd xj/, there is (ф о h^ (x) = 
= ф{^их{^)) ~ ^' Thus the map h^ is a section over U. If we assign in this way to 
every ae Su the section h^ over U, we get a certain sets of sections over U. 

0.9. Notation. The map which to every a e Su assigns the section h^ over U will 
be denoted by Pu and called natural map. The set of sections {pu{^) \ « e Su} will 
be denoted by Au^ Instead of h^ we will write briefly a(x), where x denotes the variable 
taking values from 17. Thus a(x) is the section over U such that 

(0.10) p^(a) = a{x). 

The element èuy{^) will be denoted in accordance with our agreements by a{y). We 
will say that the section a(x) goes through the point y e X. Thus we have 

(0.11) ^^^{a) = a(y). 

0.12. Remark. If 17, F e J*(X), V cz U, and if a{x) E Au is я section over U from 
(0.9), we can to a{x) assign a section from Ay as follows: a{x) -> a{x)jV, i.e. the restric­
tion of a{x) to V. Let us denote this map by puy Then риу{а{хУ) e Ay and we get the 
commutative diagram 

(0.13) 

с 
^^U 

puv 

PU 

у 

^v 
PL 

r 

0.14. Remark. For у eJJ there exists a natural map luy ' ^u -^ Ф~\у)- Namely, 
if there is a{x) e Au, then we set ^uy{^{^)) = (̂> )̂- According to (O.IO, 11) we have 



^uy{Pv{^)) = èuy{^) = ^(у)' Thus the following diagram is commutative: 

Su -̂  Ли 

(0-15) , \ Xu. • 

0.16. Remark. The natural map ^u from (0Л0) need not be injective. This can be 
reached by adding this assumption: 

0.17. Assumption. Let U e ^(X), a, b e Su and let f " be an open cover of U. 
V Quv{^) = Quv{^for all Ve V, then a = b. 

This assumption implies the injectivity of Pu (see [5]). In the next we suppose 
steadily, that this assumption is satisfied. 

0.18. Definition. Let a e P, y = ф(ос). Then there exists U e ^(X) such that for 
some a e Su we have ^uy{^) = ^{у) = ^- Every such a will be called generating 
element for a. Similarly the section a[x) e Au will be called generating section for a. 

0.19. Notation. Let a G 5^, Ы A cz U be an arbitrary subset. Let us denote 

iUa) = muy{a)\yeA] 

and further, more generally, if M ci Su is an arbitrary subset, 

èuA{M) = U{^UA{a)\aeM}. 

Thus ^UA{^) and ^UÄ{^) are subsets of P. By (0.5) for y e A there is 

^ил{М)пф-\у) = Сиу{М). 

In the same way (with respect to (0.9,14)) we proceed if M с Au- Thus, for example, 
if Л с Г7, M с ф-^А): 

iûl{M) = {а; ае Su, а{у) еМ, уеА}, 

^ÜA{^) = ( 4 ^ ) ; а{х)еАи, а{у)еМ, у е А} . 

0.20. Notation. The set ^UA{^) fr^m (0.19) will be denoted by gr^ a and called graph 
of the section a(x) (resp. of the element a) over A. By (0.9,11) we have ^UA{^) = 
= \j{a{y)\yeA}. 

0.21. Notation. Let (X, t) he a closure space, M its subset. 

A. If M с X, then every filter-base of f-neighborhoods of M will be denoted by 
A(M; t). 
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в. By the symbol indj^ t will be denoted the closure in M induced by restriction of t 
to M.IÎ xe M and A(x; t) is a filter-base of ^neighborhoods of x, then the filter 
of ind^f ^-neighborhoods of x will be denoted briefly by M n Л(х; t). The relation 
'4he closure и is finer than v" will be denoted briefly by и ^ v. 

C. If #" is such a filter in X that for every F e ^ there is M с F, we say that #" is 
filter round M. If J^ and ^ are two filter-bases and ^ majorises ^ , we write 
briefly #• ^ ^ . If #" ^ ^ , ^ ^ J^, we write #" - ^ . 

D. For и e ^(X), M с f/ let us set 

B(M; U) = {V\ Ve ^{U), M a V} . 

0.22. Notation. In the set X let us have a nonempty family ß or closures. The 
coarsest (finest) closure in X, finer (coarser) than every closure from Q will be denoted 
by hm Q (resp. hm Q). 

0.23. Remark. Let {(Z^, т«) | a e A] be a nonempty family of closure spaces, let X 
be a set and for every a e Л let cp^ be a map cpa ' {X^; т )̂ ~> X (resp. cp^iX -^ (Z^, т^)). 
Then if T = Hm т^ (resp. т = Irm т^) is the closure in X, generated by the closures 
{тд I a e A} inductively (projectively), then (0.22) is inkeeping with this notation. 

0.24. Remark. The map / : (g , u) -> (Z, Hm r j is continuous iff for every a the 
map (Paof: ( ß , и) -> (X^, т^) is continuous. A similar remark is true for hm Тд. 

0.25. Notation. If ф : M -> ^ is a map, let cp : M x M -> N x N he the map 
defined as follows: (x, y) e M x M => (p(x, y) = {(p{x), (p(y)). 

0.26. Agreement. When speaking about a compact space in a topological space X, 
we suppose that X is a Hausdorff" space. 

0.27. Agreement. Let U e ^(X). The set of all open covers (of all finite open 
covers) of и will be denoted by ПуСПи)-

0.28. Notation. Let X, Y be two sets, let / : Z -^ У be a map and let J^ be a filter-
base in Z . Then the fiUer-base { / ( F ) | F G J ^ } in F will be denoted b y / ( # ' ) . 

0.29. Notation. For a semiuniform space (Z, tj) let us denote by ^ ( Z ; rj) the filter 
base of ^/-neighborhoods of the diagonal in Z x Z . 

0.30. Notation. For a set Z let us denote by d the discrete topology in Z , and by h 
the coarsest topology in Z , where the only open sets are Z and 0. 
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0.31. Definition. We say, that the presheaf 9" = {Sul Qvv'i>^} is projective, if the 
following condition holds: "If U = UKt» ^^ К ^ ^{^) ^^^ if there exist the elements 
a^ G Sy^ such that for V^ n Vß there is ^к«к«пк (̂̂ (х) = ^F^F.OF^C«/?), then there exists 
aeSfj such that QuvX^) ~ ^a ^^^ ^^^ ^• 

Because we assume that (0.17) holds, there exists the unique such a e Su. 

0.32. Definition. We say that the presheaf .9^ is the presheaf with the unique con­
tinuation, if the following conditions are satisfied: 

1. X is locally connected, 

2. if 17 G ^(X) is connected, a, b e S^, and ^uy{^) = ^uy{^) ^or some y eU, then 
a = b. 

0.33. Remark. Let P be the covering space of the presheaf 6^ = [S^; X}. If U e 
e ^(X), then by (0.9) every a(x) e Ац is a section over 17. Let us set Q! = {t\t is 
a closure in P such that for every 17 G ^{X) every a{x) G yl̂ y is a continuous map of U 
into the closure space (P, t)]. 

0.34. Definition, notation. The closure Jjm ^' is called sheaf topology and denoted 
by t^ (see [5]). If n s a closure in P and 17 G J ' ( X ) , then the set of all continuous sec­
tions over и is denoted by Г(17, t). 

0.35. Remark. If the presheaf is projective, then Г([7, t^ :=z A^ (see [5]). t^ is the 
finest of the all closures t in P, for which A^ ^ Г(17, t) for all JJ G J ' ( X ) . 

0.36. Notation. Let (X«, u^ be closure spaces. The space {X, u) will be called topo-
ogical sum of the spaces (X^, u^) if X = [JX^ and и = Hm u^ (see [1], § 8). 

0.37. Notation. A nonempty family Jf of subsets of the set Lwill be called cofilter 
base (cofilter) if the following holds: M,NeJf=>MuNczK for some К eJf. 
{M,NE.yr =>M Kj NeJf). 

0.38. Definition. A closure collection fi = {т^; U e В{Х)} of a presheaf 9 = 
= {{Su, Тц); Quvl X] is defined to be projective if the following holds: ,,If U e ^(X) 
and i^ eUu (see 0,27) is an open cover of U, then the closure Tjji'f^ defined in Su 
projectively by the maps {QUV ' Su -^ (Sy, v ) ; Ve Г], coincides with т^;." (See [8], 
L I A ) 
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CHAPTER 1 

UNIFORM CONVERGENCE ON COFILTRATION 

1. Introduction of notions 

Let 9^ = {(St;, T[;); Q^V^ -^1 be a presheaf of closure spaces, P its covering space, 
y\/ the corresponding projection of P onto X, A^ the set of sections over (7 in the cover­
ing space, corresponding to S^ under the natural map p^;. 

1.1.1. Assumption. For Sf let us have a cofiltration УС = {jf^ | I/ € J'(X), a e S^/}, 
i.e. for every V e ^ ( Z ) and every a e 8ц let us have a cofilter J T ^ (see (0.37)) of sets 
in и such that for every Ve ^(U) the following holds: "If X G ^Г^^^^(Д), then there is 
L e Jf^ such that К a V - see [8], (1.2.15). 

Let be given a closure t in P. We provide every set Ay with the closure k{t) of 
uniform convergence on the cofilters (jT^ | a e Su}. Then we try to find the closure î 
in P in such away, so that the all natural maps 

(1.1.2) p',:{Su,T^)->{Av,kit)) 

are homeomorphisms. 

1.1.3. Definition» A closure t in P will be called normal if the all p{j are homeo­
morphisms. 

1.1.4. Notation. Let U e ^ (Z ) , aeSu^Ke Jf^. Let us take the set gr̂ ,. a (see (0.20)) 
and its r-neighborhood O, i.e. О e A(gTj^ a; t). We set 

(1.1.5) B{a{x); K, O) = {b{x) \ b{x) e Au, b{y) eO for уеК} = 

see (0.19), 

(1.1.6) ^{a{x)) = {B{a{x); К,0)\Же Jf^, О e A(gr̂ ^ a; t)} . 

It is clear, that J'(a(x)) is a subbase of a filter in Au round a(x). Therefore we can 
take it for subbase of the filter of neighborhoods of a(.x) with respect to some closure 
in Au. 

1.1.7. Definition. The closure in Au generated by the subbases (1.1.6) will be called 
uniform convergence closure on the cofiltration к from 1.1.1. Its dependence on the 
closure t can be expressed by introducing for it the symbol k{t). 
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From 1.1.5 we can see, that the form of the sets B(a(x); K, 0) is not influenced by 
the whole filter A(grjç a; t), but only by the induced filter A(grj5̂  a; t) n \1/~^{К) of 
neighborhoods of gr^^ a in the space (ф"^(К); ind^-i(K) 0* From this we get 

1.1.8. Proposition. The closure k(t) in the sets Au depends only on the closure, 
which is induced by the closure t in the sets \I/"^(^K) for U e^{X\ a e Su, К G Ж^. 

1.1.9. Corollary. All the closures t in P can be divided into classes with respect 
to the equivalence 

(1.1.10) fi - t2 iff mâ^-^K)h = ind^-HK)t2 

From ti ^ t2 follows the equahty k{t^) = k{t2) in all A^. The example (3.4.12) 
shows, that from t^ -^ 2̂ <i(>es not follow the equahty t^ = ?2 even for the topologies 
ti, 2̂- From k{ti) = k{t2) does not follow the relation t^ ^ t2 — see example (3.4.13). 

1.1.11. Condition. Let the closure t in P have the property: "If U,Ve ^(X), VczU, 

aeSu^Kc: jr[^^(,), L e JT,^, X CZ L , then A(gr^ a; t) n i ^ -^^ ) ^ ^(^^к a; t)r 

1.1.12. Condition. Let the cofihers Ж^ have the property: "For U,Ve^{X\ 
Fez U, a e Su there is 

(1.1.13) < , , ( , ) = {K\KeJflKcz V} ." 

1.1.14. Remark. For U, Ve^{X), V a U the map puv ' {Ли, k{t)) -> {Ay, k{t)) 
need not generally be continuous for any closure t in P. 

Naturally, such a closure can not be normal. But when the closure t satisfies (1.1.11), 
we can see from (1.1.5) and (1.1.1) that the all puv are continuous for this t. If the 
cofilters J T ^ satisfy (1.1.12), we can easily see, that the all puv are continuous for any t. 

2. Homeomorphie of p^u 

First of all we are going to check condition for the continuity of p%. The following 
trivial proposition we state in order we could paraphrase it in the next assertion into 
the form, which will be more convenient for us. 

1.2.1. Proposition. Let U e ^{X). Then pu is continuous iff the following condition 
holds: ''If a e Su, В{а{х); К, О) e A(a(x); fe(^)), then there is We A(a; т ;̂) such that 
p'u{W)czB{a{x)',K,Ö)r 

According to (0.14, 15) we paraphrase 1.2.1 in this way: 
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1.2.2. Proposition. Let U e ^{X). The map ph i^ continuous iff the following 
condition holds: " If a e S^, B{a{x)\ K, O) e Л(а(х); k{t% then there is We A{a; ty) 
such that 

(1.2.3) W^)c: Ог,ф-\К)Г 

Now we can already find without difficulties, what a neighborhood 0 of the set 
gr̂ ^ a in (il/~^[K)); ind^-i(X) 0 ^^^^ contain in order that the all p\j would be conti­
nuous. Let и e ^ (X) , a e S^, К e JT^, 0 e A{grf^ a; t). We suppose, that the all p{j 
are continuous. The continuity of p^ at the point a gives by 1.2.2 that 1.2.3 holds 
for some W^^ e A{a; Тц). If F e В(К, U) — see 0.21 - , again from the continuity 
of Py at the point Quv{ci) follows (by 1.2.2) that ^VK{W^) ^ 0 ГЛ ф'^К) for some 
W^ E A(Quv{a); Ту). (We suppose that 1.1.12 holds.) Thus for the continuity of all plj 
the following condition is necessary: 

1.2.4. Condition. Let U e ЩХ), a e S^, К E J T ^ , 0 E A(grj^ a; t). Then for every 
VE B{K; U) there exists W^ E A{Quy{a); Ту) such that 

(1.2.5) U{M^O I y^ HK; u)}<^On ф-\к). 

From 1.2.1. is qute clear that the condition 1.2.4. is also sufficient for the continuity 
of all PIJ. Thus we get 

1.2.6. Proposition. All p\j are continuous iff 1.2.4 holds. 

1.2.7. Proposition. Let U E ̂ {X), a E S^, KE X ^ , О e Ä(gr̂ ^ a; t) and let there 
exists U' E B ( K ; U) such that for every VE B ( K ; 17') there exists W^ E A{Quy{a); Ту) 
such that \J{^VK{W^) I VEB{K; U')} a О n ф~\К). Then for every VEB{K; U) 
there exists W e A{Quy{a); Ту) such that U R F x ( ^ i I ̂ ^ 4^'^ U)} a О n il/~\K). 

Proof. We use the continuity OÎQUV For F e В(К; U) we set W^ = Qvu'nvi^i'''^)' 
Then the neighborhoods W^ have the requered property. 

Proposition 1.2.7 says, that if the condition 1.2.4 holds locally, i.e. in the form 
from 1.2.7, then it holds in the original form from 1.2.4. 

1.2.8. Notation. Let U E ^ ( Z ) , a E S^ and let К с 17 be an arbitrary set. Every 
map rj of the set B(X; U) into the cartesian product |~J A(Quy{a); Ту) such that for 

VE B ( K ; U) we have f]{V) = W^ e A{Quy{a); ty) will be called choice. 

1.2.9. Definition. Let U e ^(X), aESu,K a U,K an arbitrary set, rj a choice. The 
chain round a from 17 to К is ihe family 

(1.2.10) R{U, a, K, PfO = {Ж^ I F e B(^; (/), W"" = ri{V)} . 
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1.2.11. Agreement. Let К с X, M с: ф" ^{К) be such sets, that for some U e ^(X) 
and some aeS^ there is X e j f « and M = gTf^a. 

With such 4-tuples (X, M, I/, a) we will often meet later. In order, that we need 
not describe them again, we will say briefly, that {K, M, U, a) is a 4-tuple from 1.2.11. 

1.2.12. Notation. Let (K, M, U, a) be from 1.2.11. Let us choose a chain 
R{V, a, X, W^) and let us set 

(1.2.13) F = S{R{U, a, K, Ж^) = U ^vKiW") cz ф~\К) , 
VeBiK;V) 

(1.2.14) J^M(^, a,K) = {F\F = S{R{U, a, K, Ж^)), R{U, a, K, W) 

is a chain round a from U to К} 
We have clearly 

1.2.15. Proposition. / / (X, M, IL/, a) /5 /rom 1.2.11, then ^M{U, a, K) is a filter 
base in xj/'^^K) round M. 

1.2.16. Lemma. Let U, Ve ^ ( Z ) , aeSu^beSy and letK a U nVbe an arbitrary 
set that grj^ a = gr̂ ^ b. Then for some Ve B(X; U r\V) we have Quv{^) = Quvi^)-

Proof. Because of gr̂ ^ a = gr̂ ^̂  b, for every xeK there exists an open neigh­
borhood V^ cz и nV such that QuvS^) = QvvS.^)- Let us set V = U{V^ \ x еК}. 
Then Ve B(K; U nV) and for the elements a' = Qvfia), b' = QVV{^) we have: For 
every V^, xeK there is QyyJ^a') = QyvÄ^') (by 0.11). Because of F = IJ F^, there is 
by 0.17 a' = b\ 

1.2.17. Corollary. Let {K,M,U,a), (K, M, F, b) be two 4-tuples from 1.2.11. 
Then the filter bases ^M{U, a, K) and J^M(K b, K) are equivalent. 

Proof. Let Fl - S{R{U, a, K, W^')) e #'м(^/, a, К). For 17 and F let us choose F 
such that the assertion from 1.2.16 holds. 

For V2 e B(K; V) let us set W^' = Qv'v2n9{^i'"l- Then we have F^ = S{R(V b, 
K, ]¥2'))е.Гм{К Ь, X) and F 2 a F^, which finishes the proof. 

1.2.18. Corollary. Now we can write simply ^^ or #" gr̂ ^ a instead of ^^{U, a, K) 
and use always the more convenient base ^^{U, a, K) which we do in the following, 

1.2.19. Proposition. All the maps p\j are continuous iff for every U e J*(Z), a e Su, 
Ж e Ж^ the base ^ gx^ a majori ses the base A{gTj^ a;t)n i/̂ ~ ^(К) {briefly #" gr̂ ^̂  a S 
g A{gr^ a; t)rMr'{K)y 

Proof. If we take into consideration the corollary 1.2.18 and 1.2.12—15, we see, 
that we have only paraphrased Proposition 1.2.6. 
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Цош, for Ue^{X), a € Su,>3f e Jr^\ FeJ^gTi a M us take the set ^^к(^) = 
= {b{x) I b{x)e Au, grjé b G F} (see 0.19) und Ifet us set w ^ < > ^ 

( 4 t ? 0 ) { l i ; ^ ( F ) | ^ € j r ^ , F e J ^ g r ^ ^ a } . ^ . , 

We have obviously 

1.2.21. Proposition. The family 1.2.20 is a filter siibbase in Au гоипф a{x). ,̂  . 

1.2.22. Definition. The closure in the sets Au generated by the filter-subbases 
1.2.2.0 will be denoted by A:. The natural map 

(1.2.23) Ри'{^и.ч)--{ЛиЛ) 

will be denoted by p^. 

1.2.24. Corollary. Let fi = {ти} be a closure collection of our presheaf. From 1.2.13 
we can see, that for U e Щх), aeSu,Ke JT^ the form of the base ^ gr^ a depends 
on the form of the collection /x, an,d thus к from 1.2.22 depends also on fi. Therefore 
in cases if necessary, we will denote the closure к by the symbol k^, understanding 
uiider it the closure/c from 1.2.22, which is formed from jt(. 

1.2.25. Corollary. A. All the maps Pu are continuous. ' 
B. All the maps pu are continuous iff we have к ̂  k(t) in all Au* 

Proof. A. Let и e ^{X), aeSu, Ke JT^', F = S{R{U, a, K, W)) e ^ gr^ a. 
Then D = ^ÜK{F) ^ A(a(x); k) and Pu{W^) с D, thus pu is continuous. 

B. If ail the Pu are continuous, then by 1.2.19 (comparing 1.2.20 and 1.1.6) it 
follows, that in all Au there is к S k(t). Conversely, if in all Au к ̂  k{t), then A 
implies the continuity of all pu. 

1.2.26. Proposition. Let for the closure t in F all the maps (pu)~^ be continuous. 
Then k(t) ^ к in every Au* 

Proof. By 1.2.25A the all Pu are continuous. From the continuity of all (pb)"^ 
follows the continuity of the map i = p^u o(Pt/)~^? which is the identity map iu : 
: (Au, k{t)) -> (Au, к). 

1.2.27. Corollary. If the closure t is P is normal (see 1.1.3), then k(t) = к in all Au* 

Proof. If t is normal, then every pu is continuous and thus by 1.2.25B we get к S 
g k{t) in every Au- Because every (p^)~^ is continuous, 1.2.27 follows from 1.2.26. 

1.2.28. Definition. A closure n n P is called seminormal, if k{t) = kin all Au* 
From 1.2.27 follows immediately: 
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1.2.29. Theorem. Every normal closure is seminormaL A necessary condition for 
the existence of a normal closure in P is the existence of a seminormal one, 

1.2.30. Theorem. A necessary condition for the existence of a normal closure in P 

is the continuity of all (p^)~^-

Proof. Let t be normal, i.e. all the p\j are homeomorphisms. By 1.2.27 the all p'ij 
are homeomorphisms and therefore the all {pu)~^ are continuous. 

1.2.31. Theorem. A. Let all the (pv)^^ be continuous. Then there exists a normal 
closure in P iff there exists a seminormal closure ti in P. If this condition is 
satisfied, then ti is normal 

B. / / there exists a seminormal closure t^ in P, then there exists a normal closure t 
in P iff all the (p^)~^ ^^^ continuous. If this condition is satisfied, then ti is normal. 

Proof. A. If all the (p^)~^ are continuous, then by 1.2.25A the all pu are homeo­
morphisms. If ti is seminormal, then p^ = Pu for all U e ̂ {X\ hence t^ is normal. 
Conversely, if t^ is normal, then by 1.2.29 is seminormal. 

B. If t is normal, then by 1.2.27 all the {p]j)~^ are continuous. Conversely, from the 
continuity of all (jp̂ )""̂  follows by 1.2.25 A that all p^ are homeomorphisms. Then the 
seminormality of tj impUes that t^ is normal. 

1.2.32. Theorem. The necessary condition for the existence of a normal closure 
in P is the simultaneous validity of both necessary conditions 1.2.29, 30. Conversely, 
the simultaneous validity of both these conditions provides the existence of a normal 
closure in P. 

Proof. Follows immediately from 1.2.31 A. 

So that we could decide, whether there exists a normal closure in P, we must study 
the simultaneous vahdity of 1.2.29, 30. In the following paragraph we study the second 
condition. 

3. Continuity of (p^)"^ 

For sake of completeness we state the necessary and sufficient condition for the 
continuity of all (p^)~^ 

1.3.1. Theorem. All the {pu)~^ öf̂ ß continuous iff the following condition holds: 
'4f Ue^{X), a G Su, \¥ЕА{а;ти), then there exist K^, ..., K„e .Ж^ and F.-e 
e ^ gTfr.a, i = 1, ..., n such that 

(1-3-2) f)ïvl{Fd^Po{W)." 
1 = 1 
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Proof. By the definition 1.2.22, 1.3.1 is only the verification of the definition of the 
continuity of all (py) "" ̂ . 

We will study when the condition in 1.3.1 holds. For that we need to stronger 
Condition 1.1.1 for the cofihers Jf .̂ 

1.3.3. Assumption. From now up to the end of the chapter we assume that 1.1.12 
holds, i.e.: "If U, Ve ^(X), V cz U, a e Su, then 

(1.3.4) <,,(,) =={K\KeJf^„,Kcz V] ." 

Let ju = {TU} be a closure collection of our presheaf and let U e J'(X), a e Suf 
К e Jf ̂ . Let us put 

(1.3.5) P(a, K) = {èuà{F) \Fe^gr^a}, 

(1.3.6) ^{a) = {P(a, K)\Ke Jf^} . 

Then ^{a) is a filter-subbase in Su round a. Thus the sets ^(a) form a closure т̂  
in Su- If we form the closure т̂  in all Su, then by 1.3.3, 1.2.18, 13 we have obviously 

1.3.7. Proposition. Let us denote fi^ = {т^}. Then pP is a closure collection 
coarser than fi. 

1.3.8. Theorem. Let S^ be a presheaf over X, ц and v its closure collections, 
ß ̂  V. Let all the {p^)~^ be continuous (see 1.2.24). Then p? ^ v. 

Proof. Let Ue^{X), aeSu, fi = {ти}, v == {т^}, \¥еА{а;т1), From the con­
tinuity of (pu")"^ and from 1.3.1 follows the existence of the sets K^, ...,K„e Ж^ 
and the chains R{U, a, gr̂ .̂ a, W^'), i = 1,..., n such that 

(1.3.9) S, = f)^ul[ и èvAwr^)]czpu{W). 
i=l VießiKiiU) 

Here for the all W^' in 1.3.9 there is W]^' еЛ(^с;^.(а); TJ..). Because /z ̂  v, we can for 
every Wp from 1.3.9 find some W'^'eAiQuvh); т^,) such that W^' с W[\ Then 
we have 

(1-3.10) s, = hïvKl и <V,K,(>̂ '̂)] == Si . 
i = l VießiKi;U) 

If we denote by Fi the sets in the brackets, then F^e^ gr̂ .̂ a, / = 1, ..., w and by 
1.3.5-7 we have pü\S2) e A{a; 4) and pü^{S2) ^ W. 

1.3.11. Theorem. For every collection ц == [lu] there exists the unique collection 
ß — {^u] coarser than fi with these properties: 
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{a) kf, ~ kß in all Ay^ I ; . .̂  

(b) the all {p^if)~^ : (Л^, кц) -> (Su, %) are continuous, ' ^ 
(c) if V is a coarser collection than ц and all (р^^/)'^ are continuous, theti ß й v. 

And simultaneously we have ß = ß^. ' 

- Proof. Let us set Д — fi^. By L3.7 we have /г й ß^^ (с) holds according to 1.3.8. 
Let и e ^{X), aeS^^Ke Ж^. Let us form the base #" gr̂ ^ a from the collection ц^ 

and let us denote it by ^^ gr:^ a. Because /i ^ ß^, ^^ gr̂ ^ a is coarser than the base 
J*̂  grjK; a formed from the collection û. 

Conversely, let F e #" gr̂ ^ a. Let us set IF^ = ^ккЧ^) for F G B ( X ; C / ) . Then 
5 = S(R{U, a, K, W^)) e ^^ %i^ a and S cz F, which proves the equalence of 
^ gr̂ ^ a and J^^ gr^ a. This proves (a). Let U e 3^{X), a e S^, Let us choose D = 
^ Cüi(^) e ^(«; ^c/} for some X e JT^ and some F e ^"^ gr^ a. Then 5 - IÜK{F) ^ 
E Л(а(х); ^̂ ô) and Pu{R) <= D, which proves (b). , .. 

1.3.12. Definition. Because the collection д° from 1.3.7 has the properties described 
in 1.3.11, we call it cofilter-modification of the collection /i with respect to the given 
cofiltration X = {Ж\ \ U G ^(X), a e S^}. 

1.3.13. Corollary. By 1.3.11 ß^ is the finest of the all collections v which are coarser 
than fi and for which the all (p^)"^ are continuous. These three properties are 
equivalent: 

(a) The all {p\f)~^ are continuous, 
(b) n = 11°, 
(c) for the collection p. the condition from the theorem 1.3.1 holds. 

1.3.14. Remark. Let 9' = {{Su, Zfj); g^y; X} be a presheaf over a locally compact 
space with the unique continuation, (see 0.32) and with projective closure collection 
(see 0.38, or [8]), 1.1.4, for which 1.2.13, 18 from [8] holds. By [8], 1.2.20 for ^ 
there exists its natural cofiltration к. Let k{t) be the closure under the uniform con­
vergence on X and let к be the closure from 1.2.22 formed for x. Then the all {pu)~^ 
are continuous. For such a presheaf and its natural cofiltration we have ju = p^. 

Proof. Let Ue^(X) be connected, a e Su, We A{a;i:u). We can assume (see 
1.2.13 in [8]) that К = M{W) e X^i. By [8], 1.2.1 - 3, for every F e В{К\ U) there 
exists W^ e A(QUV{^)I '^V) such that 

(1.3.15) Quvi^"") ^ W. 

Then S = S{R{U, a,K, W"")) e ^ gr^ a and L = luiiß) ^ Pu(^) , b e A(a(x); /c). 
Thus (p^)~^ (b) c: W, which finishes the proof for connected t/. For an arbitrary 
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и е é^(X) let us notice the commutative diagram for every component VofU: 

{Su> T̂ c/) < "̂̂  — i^v, k) 
I 

(1-3.16) , , , , 

The projectivity of /i = {tf/} and the local connectedness of X (see 0.32) imply 
that {PI)~^ is continuous iff QW ° (JPL/)""^ is continuous for all components F of [/. 
By 1.3.16 there is Quy ° (PV)"' = {Pv)~' о p^y. From [8] 1.2.20 and from 1.2.20-22 
follows the continuity of all Puv which with the first part finishes the proof. 

1.3.17. Remark. Let all the (Зц, т^) be compact topological spaces and let all 
the (Au, к) be Hausdorff topological spaces. By 0.17 all the p\j are injective, and by 
1.2.25 also continuous and thus homeomorphic. 

Now, we are going to show that in some cases the modification can be also construct­
ed in an other way than in 1.3.5 — 7. 

1.3.18. Notation. Let U e ЩХ), К a U ht an arbitrary set and и и resp Uj^ a closure 
in и resp in K, induced from X, Let Ги^ be a map: a(x) G Л ^ , => Гил^[а(х)) == а(х)1К 
of the set A^ onto Г^ = Гик{Аи). For all VeB[K; U) there exists a natural map 
Syf^ : Sy X к -^ II/~^{K) defined as follows: о e Sy, у еК => ôy^{a, y) = a{y) = 
= ^vX'^' L^^ ^^ denote Ä ;̂ = [ôyj^ | F e В(К, U)]. We can define a natural closure t^ 
in I/ /~^(K), with respect to the set Äjy of the maps ôyj^, namely the finest of the all 
closures t, such that all the öyj^eÄu, ду^^ : [Sy x К, Ту x u^) -^ {ф~\К); t) are 
continuous, i.e. 

(1.3.19) ^̂  = lim {T^ X UK I F e В{К; U)} . 

(See 0.21.D) For U,Ve ^(X), F e В(К; U) let us define the map R^y : Sy x К -> 
-^ S^ X К as follows: a e Su, x еК => Ruv{^^ ^) = iQuv{^)> ^)- Clearly the map 
^vv • i^u ^ ^» '^u ^ ^х) "^ i^v ^ K, Ту X Uf^) is continuous. 

Let U, U' e J*(Z), К с U n U\ We will prove that r^ = t^'. Let Г be such a closure 
in ф'^^К) that the all maps ^^^eÄ^/ are continuous. Let оу^^^еА^' for some 
F ' eB(i^; (7'). Then we have ôyrg^ = ^F'ni/к ° ^vv^v From the fact that the map 
^v'nUK is from Au follows, that it is continuous. Therefore the continuity of Ryvnu 
implies the continuity of ôy^jr. Thus f̂ ' g t^, which proves the equahty t^' = f̂ . 
Now we can instead of t^ write briefly tf;^. 

Let и e J^(Z), a e >S[; and Ы К c: U be compact. Similarly as in 1.2.8-18 we can 
construct a base ^ gifr a round gr̂ j- a in \I/~^(K). From 1.3.19 we get A(gr|;̂  0,1^) й 
S ^ gr^ ^' Conversely, let О e A(gr^ a\ i^. We may assume that 0 = [/{O ĵ | a e 

gr̂ ^ a} (where 0^еА(а; Г̂ )̂ for all aegr^^a) such that the following holds: "If G 
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a 6 gr^ a, y = il/{ix), then 

(13.20) O, = и iv^MO> 
VeB(K;U} 

where for every Ve В{К; U) we have (pjv) ^ ^{У1 ^)- Now, let Ve В{К; U). For every 
ОС G gr^ a we take (pj[y) from 1.3.20. A family Л = {(pj(y)\ae gr^a} covers K. 
Thus К с \J{(pJy) \oce A} for some finite A. We may assume that A = {a^, аз}. 
Then W^ = Wl n W^^ G à{Quv{a); Гу). We construct W^ for every Ve B{K; U) in 
this way. Then S = S{R{U, a, K, W^)) e ^ gr̂ ^ a and S с О. We have proved 

1.3.21. Proposition. Let U e ^(X), a e Su and let К a U be compact. Then the 
bases A[gT^ a; t^) and ^ gVj^ a are equivalent. 

For и G ̂ {X), К с и, bGTl, О G A(gr̂ ^ Ь, t^ let us set D{b\ 0)= {C\CG F ^ , 
c{y) G О for all yGK], 9{b) = {D{b;0)\ 0 e K{gXj^ b; /;^)}. Then ^{b) is a filter 
base in F^ round b. The closure in F^ generated by these bases will be denoted by %. 

If for all и e ^{X) the following condition 

(1.3.22) (a) .;Г^ = j r ,^ '= J T ^ for all a.bGS^, 

(b) К G Ж^ => X is compact 

is satisfied, let us set 

(1.3.23) ти=^\т{^к\^^^'']. 

with respect to the set of maps \ruj(^ | К G J T ^ } . (See 1.3.18). 
Comparing 1.3.23 and 1.3.5 — 6, we get immediately from 1.3.21 m^ = т^ for all 

I7e J'(X). Thus if 1.3.22 holds, then the cofilter modification [i^ of \i can be con­
structed also using 1.3.23. 

1.3.24. Examples. (1) Let for every U G Ш{Х) and every aGS^ ^a be the cofilter 
of all finite sets in U. It can be easily seen, that ß^ is projective (see [8], 1.1.4 or 0.38). 
Thus we have /л' ^ / (see [8], 1.1.6-7). 

(2) Let .9^ be a presheaf over X, where for U G ̂ (X) Sy is some set of continuous 
functions on и and ty the closure under the uniform convergence in Sy. It can be 
easily seen, that for every U G ̂ (X) Ту is the closure under the pointwise convergence 
in Sy. (The cofiltration is the same as in (1)). 

4. Seminormal closure 

Here we study whether the necessary condition 1.2.29 for the existence of the 
normal closure holds. 

1.4.1. Definition. We say that the closure n n P is a generating one, if the following 
condition holds: "If U G ̂ (X), aGSy, KG Ж^ then the filter bases A(gr,^ a;t) n 
n \I/''^(K) and ^ gTj^ a are equivalent." 
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Comparing 1.2.20 and 1.1.5, we get 

1.4.2. Proposition. Every generating closure is seminormal, 

1.4.3. Remark. The seminormal closure need not be a generating one — see example 
3.4.13. 

1.4.4. Proposition. For the existence of a generating closure is P the foloswing 
condition is necessary: ' 7 / U e ЩХ), a G SU, К, Le Jf«, К cz L, then ^ gtfr a ^ 
^ ^gï^an ф^'{К) (see 0.21 С). 

Proof. Let t be a generating closure, U e ^(X), K, Le Жа, К с L, F2 e Ĵ ^ gr̂ ^ a. 
Then О n iA"^(L) c F2 for some О e A{gYj^ a; t). But there is also О e àigr^ ci; t). 
Hence Fl с: О n ф~\К) for some Fj e ^ gi^ a. Therefore F^ с F2 n ^''^{pj and 
thus ^ gïj^a^^ gii^ac\ ф'^К). Conversely, if Fj = S{R{U, a, K, W^))e^ gv^ a, 
then F2 = S{R{U, a, L, W^)) e ^ gr^^ a and F2 n iA"^(X) c: Fi , which finishes the 
proof. 

1.4.5. Agreement. Let the following holds up to the end of the paragraph: "Let 
I/ 6 ^{X\ a e Sul 

(a) everyJT e .:?Гд is compact, 
(b) every xeU has a base ß of the filter of neighborhoods such that ß cz jT^f." 

From 1.4.5 follows immediately 

гл.6. Corollary. Let 1.4.5 hold. Then 
A. X is locally compact, 
B. ifUe ^{X), aeSu,Ke Jf^, then К <=. int Lfor some Le Ж^, 

1.4.7. Assumption. Let the following hold up to the end of the paragraph: "Let 
V E ̂ (X), a e Su, К, Le Ж^, К а L. Then ^ gr^a '^ ^ gr^a n ф''^{КУ' 

1.4.8. Agreement. Let осеР, у = ф(а). In some Su there exists a generating 
element a for a. By 1.4.5b there exist К eЖа and Me^(U) such that уеМ en K, 
Such 4-tuples will often appear later. In order that we need not describe them steadily, 
we will only say that (a, U, a, M) is a 4-tuple from 1.4.8. Sometimes we also write 
(a, U, a, K), where К e Ж^ has the property that у = ф((х) e int К. 

1.4.9. Notation. For a 4-tuple from 1.4.8 let us denote 

(1.4.10) G(U, K, y) = {M\Me Ж^, у = ф{(х) еЫМ с M a К} , 

1.4.11. Proposition. For (ос, U, a. К) from 1.4.8 the set 

(1.4.12) L(a; U,a,K)=: (J ^ ВГм 4 ^ ' «' ^ ) (see 1.2.14) 
MeG(U,K,y) 

is a filter base in P round a. 
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Proof. Let F ^ , / 2 e b ( a ; ^ , û , i ^ X У = Н^)' Then F,-G J^ gr^^Д[/, a, M,) for 
some M, G G{U, К, у), ^ = 1' 2- There exists М3 G G(17, К, y\ M^czM.n M^. 
By 1.4.7 We find a set F , G J^ gr,,3 a{V, a, M3) for F,, such that P, c= F„ z = 1, 2. 
Then F3 = ^̂ 1 n / 2 ^ ^1 ^ ^2 and F3 G #" gr^,, a{U,a, M3) cz L(a; t/, a, K). 

1.4.13. Proposition. Let (ce, U^, a^K^), (a, U2, «2, X2) fe^ two 4-tuplesfrom 1.4.8. 
T/iew bi = Ца; Ut, au ^i) ^ L2 = L{a; U2, «2. ^2)-

Proof. Let Fi G L/. Then F^e^ gv^^ a{U\, a ,̂ M,.) for some M^ G 0(17^, X,-, y), 
I' = 1, 2. By 1.4.5b and 1.3.3 there exist U^ e ^(X) and M3 G e:rf^H(ai) ^ ^^^^(«2) 
(we have put P = [7i, б = ^2^ i^ = ^^з) for which there is j = i^(a) G int M3 c: 
c: M3 c: R с Mj n M2 such that ^PK(«I) = ^Qi?(< 2̂)- By 1-4.7 we can for F | find 
Fi e ^ grjv̂ 3 a/l/f, ^i, M3) such that ¥^ с F,., 1 = 1, 2. Because grjv̂ 3 a^ = gr^^ a^. 
it is possible following 1.2.17 to find F G #" grĵ 3 «2(^2. «2. ^ 3 ) ^ ^2 such that 
F с F | n F2 CI Fl A F2 <= F j . The proof is completed. 

1.4.14. Corollary. All the bases L(a; I/, a, K) can briefly denoted by L(a). We can 
use that L(a; U, a, X) which seems to be most convenient. This we will do in the fol­
lowing. 

1.4.15. Definition. The closure formed by the bases L(a) in P will be denoted by f^. 

1.4.16. Corollary. Let U e ^{X), a e S^, К e Jf^, int К ф 0. If a e gï^ a, ф{а) e 
E int X, then every set F G ̂  gTj^ a is a t^-neighborhood of a. 

Proof. By 1.4.14 we have F e ^^ gr̂ ^ a{U, a,K) c= L(a), 

1,4.11. TheoTpm. The closure f^ in Pis a generating one. 

Proof. A. A(gr^a; '̂̂ ) ^ J^gr^^a: Let FGJ^gr^^a where U e ^(X), aeS^, 
Ke j r ^ . By L4.6B we can find Me Ж1 such that К cz int M. If F = S(R{U, a,K, 
И^^), t h e n F = S(jR(t/, a ,M, TF^))G#'grj^a and by 1.4.16 we get FG(grx a; Г"*-), 
because FGA(a;r"^) for any aGgr^^a. Here we have F п\1/~^(К) с F, which 
proves A. 

В. J^ gr̂ ^ a ^ A(grĵ  a; t'^): Let О e A(gr|^ a; f ^ ) . For any a e gr̂ ^ a we can find 
OfljG A(a; f^) such that (a) \J{0^ | acgr^^a} с О, (b) by 1.4.15 there exists a set 
M^ G Jfa such that x = ф{а) e int M^ and O^ = F^e^ gx^^ a. Because the family 
{int M^ I X G X] covers X, its finite subfamily covers K, too. For the sake of simplicity 
let us assume that it consists of only two sets Mi ~ M^.., i == 1, 2. Let us write F^. = 
= Fl, where \jj{a^ = x ,̂ г = 1, 2. Thus iC c^ M^ u M2 <= U and gr̂ ^ a с F^ u 
u F2 с 0 . Here we have F | G J^ grĵ .̂ a, i = 1, 2. By 1.2.17, Ft = S{R {U, a, M^, 
W[)), i = 1, 2. Let lis set F ' = S(i?(l7, 0, Mj u M2, W[ n Ж^?)). By 1.4.7 we can 
find F G J^gr^ a such that F a F' n ф~\К). Because of F n ф~\К) с (Fi u 
u F2) n ф~^{К), we get F с (F^ u F2) n ф~\К) a О n ф~^{К) which proves В. 
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By 1.4.4 the condition 1.4.7 is necessary for the existence of a geilerating closure. 
But if we have moreover 1.4.5, we can form the closure f^ from 1.4.15, which is 
a generating one. Thus we get 

1.4.18. Proposition. Let 1.4.5 hold. Then the condition 1.4.7 is necessary and 

sufficient for the existence of a generating closure. If it is fulfilled, f"*" is a generating 

closure. 

1.4.2 implies: 

1.4.19. Proposition, f^ is seminormal. 

5. Appendix 

The bases ^ gï^ a from 1.2.18 have with respect to 1.2.13 rather complicated form, 
which can be simplified for some presheaves. 

Let {K, M, I/, a) be from 1.2.11. Let us set 

(1.5.1) C{M; U, a) = {Сик(И^) | We Л(а, т,,)} . 

1.5.2. Definition. A presheaf will be called simple with respect to the given cofiltra-
tion % = {Jf ^ I и E m{X), a G Su} if the following holds: *Tf {K, M, U, a), {K, M, 
F, b) are from 1.2Л 1, then C{M; U, a) - C{M; F, b)." 

In case of simple presheaves we may write simply Cj^ or С gr̂ ^̂  a instead of 
C(M, U, a). If the presheaf is simple, it is clear that С gtj^ a ^ #" gr̂ ^ a for all U e 

a 6 Sjjj К G ^^. For the simple presheaf the all objects constructed from the 
bases ^ gij^ a will be simpler, namely the closure k, Theorem 1.3.1 etc. For example, 
1.3.1 for simple presheaves is as follows: 

1.5.3. Theorem. Let ^ be a simple presheaf. All the maps {pu)~'^ cire continuous 
iff the following holds: ''If U e^{X\ a e S^, We A{a; т^), then there exists К e Ж^ 
and W e A{a; Ти) such that еик^икЫ') ^ Pi/(^)-" 

1.5.4. Reinark. Let S^ = {{Sjj, Xy); QUV', X} be a subpresheaf of a presheaf ,S^' = 
-^ {(ßu^ [̂7); QuvlX], i.e. Su ^ Su, QUV = QuvlSu. т^ - inds^ ^^'u for U, Ve^(X). 
Let us denote by P' resp. P the covering space of ^' resp. of S^. Then we have P a P\ 
If f is a closure in P\ then t = indp t is a closure in P. Let <? be a method which 
enables us from the closure t' to construct a closure q(f) in the sets A'u and let the all 
natural maps (S^, x'u) ~> {Au, q{t')) be homeomorphisms. Let q{t) be a closure in Au 
constructed from t with use of ^. 

If ^ has the property 

0.5.5) bàA,q{t') = q{t) 
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i.e. the diagram 

(1.5.6) 

is commutative, where the horizontal arrows are the corresponding restrictions and 
the vertical arrows represent the formation of the closure q(t) and q{t'\ then t is 
normal. Thus from the normal closure f for P' we get a normal closure t for P. If we 
succed in embedding of the presheaf in question into the presheaf for which there 
exists a normal closure, then if 1.5.5 holds, then there exists a normal closure for P. 
For example the closure t = indp f is normal. 

CHAPTER 2 

UNIFORM CONVERGENCE ON COMPACT SETS 

The symbols 6^ = {{Su, T:U)I Quvl ^}> P^ ^ Ф> ^i/? Pu have the same meaning as 
in Chapter 1. The results of Chapter 1 are used here in the case, where for every 
и e 0^{X) and aeSu Jf^ns the cofilter of all compact sets in U. The special way of 
choosing of the cofiltration alows us to derive a series of further relations which we 
did not study in Chapter 1. 

1. Introduction of notions and existence of a normal closure 

For every U e ЩХ) and every aeS^ let 

(2.1.1) Jf^ = {K\K ŒU compact} . 

Then Jfa satisfy 1.3.3. Following 1.1.4 — 7 we introduce the closure of uniform con­
vergence on the cofiltrations 2.1.1, in all Au, 

2.1.2. Definition. This closure will be called closure of uniform convergence on 
compact sets and denoted by l(t). The closure t in P will be called normal, similarly 
as in 1.1.3, if all the maps 

(2.1.3) p\, : (S„, r,) -. (A^, /(0) 

are homeomorphisms. We study again the existence of a normal closure. For this 
sake we use the results developed in Chap. 1. 

Following 1.2.8-18 we may construct for every U e ^(X), aeSu, КеЖ^, 
(i.e. К a и compact) the fiher base ^ grĵ  a. Then 1.2:19 gives 
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2.1.4« Proposition. All the maps pj/ are continuous iff for every U e ^(X), a e Su, 
К cz и compact there is #" gr,̂  a S ^(g% a;t) n {{/"^(K), 

Following 1.2.20 — 22 we may construct the closure к from the bases .F gr̂ ^ a. 
With respect to the special choice of cofilters X'^ we will denote it in this chapter by 
the letter /. The closure / depends on the collection /i from which it was constructed. 
Therefore, when necessary, we will denote it by l^. The closure Hn P is called semi-
normal, if l(t) = / in every Ay, 

The propositions 1.2.25 — 27 have the form 

2.1.5. Proposition. A. All the maps p\j are continuous, 
B. All the maps p\j are continuous iff I ^ l{t) in all A^-

2.1.6. Proposition. Let for the closure t in P all the (p^)~* be continuous. Then 
in every Au l(t) ^ Z. 

The conditions 1.2.29 — 32 have the form 

2.1.7. Theorem. Every normal closure is seminormal. Thus a necessary condition 
for the existence of a normal closure is the existence of a seminormal closure t in P. 

2.1.8. Theorem. A necessary condition for the existence of a normal closure in P 
is the continuity of all (pu)'^-

2.1.9. Theorem. A. Let all the {pu)~^ be continuous. Then there exists a normal 
closure t in P iff there exists a seminormal closure ti in P. If this condition is 
satisfied, then ti is normal. 

B. If there exists a seminormal closure t^ in P, then there exists a normal closure 
in P iff all the {pu)~^ are continuous. If this condition is satisfied, then t^ is normal. 

2.1.10. Theorem. The necessary and sufficient condition for the existence of 
a normal closure in P is the simultaneous validity of both necessary conditions 
2.1.7, 8. 

So that we could decide whether there exists a normal closure in P, we must study 
the simultaneous validity éf 2.1.7, 8. In the following paragraph we study the second 
condition. 

2. Continuity of (pJ/) "^ 

Theorem 1.3.1 has the form 

2.2.1. Theorem. All the the (pu)"^ are continuous iff the following condition 
holds: " J / и e ^{X), a e Sj/, We A(a; Ти), then there exist compact sets K^, ...,K„ a 
с и and Fi e #" gVj^. a, Ï = 1, . . . , n such that 

(2.2.2) n^ül{F;)^Pu{W):' 
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Following 1.3.5, 6 we can construGt for our collection ß ^ {ти} its modification/^^ 
which is again a collection,/x^ jÛ . By 1.3.8 we get 

2.2.3. Theorem. Let ^ be a presheafoverX, ß and v its closure collections, fi g v. 
Let all the (pu)"^ be continuous. Then we have /i^ g v. 

By 1.3.11 we get 

2.2.4. Theorem, (a) /̂ o = l^, in all Au, 

(b) the all p^ij are continuous. (We have put l^o = IQ.) 

Because 2.2.3,4 hold for ju^, we will call it cofilter modification of the collection f.i 
with respect to the cofiltration к from 2.1.1. Then from 1.3.11 we get. 

2.2.5. Corollary. The collection ß^ is the finest of the all collections v which are 
coarser than ft and for which the all {p[j)~^ are continuous. These three properties 
are equivalent: 

(a) The all {pli^)~^ are continuous, 

(b) /г = /1°, 
(c) the collection ц satisfies the condition of Theorem 2.2.1. 

2.2.6. Proposition. Let ^ be a full presheaf(sQQ [8], 1.1.46) over a locally compact 
space X with the projective closure collection (see [8], 1.1.4). Then the all {pu)~'^ 
are continuous. 

Proof. Let и e ^{X), a e 5^, WeA{a; Ту). By [8], 1.1.44 we have QÛV{W^) ^ W 
for some Ve ^(U), and some W"^ e A{Quv{a); Ту), where V a U is compact. Fürther 
we h2iVQ^yy^yy{W') с W^ for some W e A{QVV{CI); T^). For Г e B(F; U) let us set 
W""' = Q^^viW). Hence F = S{R{U, a, V, W'j) e ß" gty a and iuvi^) ^ ^üv{F ^ 
пф-'{¥))с:^^^-;суу{^)с2 pü^^y^ivy{W') с pûhv^vv^vvi^^') с: р^^^^ (Ж^)> 
= PuQuvi^^l ^ Ри{^)^ which finishes the proof. 

From 1.3.14 we get also one sufficient condition for the equahty ß ~ ß^: 

2.2.7. Proposition. Let all the (Sfj, r^/) be compact topological spaces, all the 
(Au, I) Hausdorff topological spaces. Then we have: ß = ß^. 

3. Seminormal closure 

Here we study when the necessary condition 2.1.7 for the existence of a normal 
closure holds, i.e. when there exists a seminormal closure in P. By 1.4.1, 2 every 
generating closure is seminormal and therefore we try to find a generating closure in P. 
1.4.4 gives 
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2.3.1. Proposition. For the existence of a generating closure in P the following 
condition is necessary: " J / ( 7 G ^ ( Z ) , ae SU and if К a LczJJ are compact, then 

So that we could construct the generating closure t"^ from 1.4.14, the conditions 
1.4.5; 7 must be satisfied. Because our cofilters are of the form 2.1.1, the condition 
1.4.5a is satisfied and 1.4.5b requires local compactness of X, 1.4.7 gives 

2.3.2. Assumption. Let the following hold up to the end of the paragraph: "Let 
и e^{X), a e S^, К ^ L <=: U compact. Then J^ gr̂ ,̂  a - J^ gr̂ ^ a n ф'^К):' 

Thus if Z is locally compact and 2.2.2 holds, we may construct following 1.4.8 —15 
the closure t"^ which is by 1.4.17 the generating one. Thus the condition in 2.3.2, 
which is by 2.3.1 necessary for the existence of a generating closure, is also sufficient 
in the case of a locally compact X. Thus we have (by 1.4.18) 

2.3.3. Proposition. Let X be locally compact. Then the condition 2.3.2 is necessary 
and sufficient for the existence of a generating closure. If it is fulfilled, t^ is the 
generating closure. By 1.4.19 we see that t^ is seminormal. 

4. The importance of assumption 2.3.2. 

The special form of cofilters 2.1.1, which we are studying here, allows us without 
difficulties to show some further relations, which we did not study in the previous 
chapter. 

2.4.1, Proposition. Let X be locally compact and let 2.3.2 hold. Let (XE P,U,U'e 

e ^(X), let и cz U' be compact, a' в Зц, у = ф{о()еи, а = Qvvia') а generating 
element for a (see 0.18). Then the filter bases 

(2.4.2) i ( a ; U, a) = {^uv{W) \ Ve B{y; U), We A{a; Тц)} , 

(2.4.3) ^{a; U, a) = {F n II/~\M) \ F E ̂  gr^ a, M E B{y; U), M a U compact} , 

(2.4.4) ^ ' (a ; U, a) = {F n I / /~^(M) \ F e ^ gVjj a, M E B{y; U), M Œ U compact} , 

are equivalent with the filter base L(a; U\ a\ U) of f^-neighborhoods of oc (see 
1.4.11-14). 

Proof. From the local compactness of JC follows immediately the equivalence of 
^ (a ; U, a) and J*'(a; U, a). Because 2.3.2 is satisfied, we get easily that ^ ( a ; U, a) 
and L(a; U\ a', U) are equivalent. We are going to prove the equivalence of ^ ' ( a ; U, a) 
and Ща; U, a). 
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1. Let F n ф^^М) 6 J"(a; U, a). Then F e J^ gr^ a and M с I/. With respect 
to the form of the sets F e^ gi^j a from 1.2.13, there exists (by 2.3.2) We A{a; х^) 
such that iuM{W)^ Рпф-^М). Hence ^им{^) ^ F r^ Ф^Ч^) and ÇUM{W)^ 

e Ща; U, a), 
2. Let ^иу{}¥)^Щ(х;и,а). For VeB{Ü;U') let us set W^ = Q^vi^). Then 

F = S(Ä(17', a', C7, PF )̂) 6 J^ gri7 a' and F n IA~^(F) с ^^^(PF). Moreover Fn 

2.4.2. Corollary. Let X be locally compact and 2.3.2 hold. Then the filter base 
of t^-neighborhoods of a is formed by any base from 2.4.1. For our purposes we 
can choose that, which is most convenient for us, 

2.4.3. CoroUary. Let X be locally compact and'2.3.2 hold. Assertion: ''Let a e P , 
U,Ve^(X), let a G Su, b e Sy be generating elements for a and let JJ' e ^(U), 
V e ^{y\ y = ф{а) eV nV where V' cz 17, P с Vare compact. We а{дии{а)\ x^) 
and V" e B(j; I/')." Then there exists W' e A{Qyy{b)\ Xy) and V" e B{y; U") such 
that ^y>y.{W') cz ^u'AW). 

Proof. Under this assumption we have ^ij'ij"{W) e Ща; U\ a'), where a' = Qvu'i^)-
By 2.4.1 this base is equivalent to the base Щос; V, b') where b' = Qwi^- And this 
is our corollary. 

2.4.4. Proposition. Let X be locally compact and let the assertion from 2.4.3 
hold. Then 2.3.2 holds. 

Proof. Let 17' e^(X), a' e S^, К cz LczU' compact. There exists U e B(L; 17') 
such that 17 с 17' is compact. Let a = Qu'u{^% ^ = S{R{U, a, L, W^)) e ^ grĵ  a. 
For all Fe B(L; V) let us set Ж^ = W^. If Ve B(K; 17) - B(L; V\ we can find for the 
neighborhood W^ and for a e gr̂ ^ a (by the assertion 2.4.3) the sets W^ e Ь{^иу{а)\ Xy^ 
and У^еЩ{а)\У\ such that ^vvSy^^ ^ ^vvSy^"^)- Then there is К с F«̂  u ... 

к 

... u F«̂  where a ,̂ ..., a„ e gr̂ ^ a. Let us set PF̂  = f) ^^ .̂(PF .̂)' where we have put 

F, = F,,, f = 1,..., n. Then we have ^кк(^ '̂̂ ) <^ L(W^'') = ^L/K(^'') П ф''\К) с 
с F n lA"^^). For F' - .S(R(i[7, a, X, Ж^)) e #- gr̂ ^ a we have F' cz F n ф~\К). 

2.4.5. Corollary. Lê  X be locally compact. Then the assertion 2.4.3 and the 
assumption 2.3.2 are equivalent. 

5. Generating closure for X not locally compact 

If X is locally compact and the assertion 2.4.3 holds, we can construct the generating 
closure r^, since 2.3.2 holds. The property included in 2.4.3 can be extended to the 
spaces which are not locally compact. 

30 



For a G P, и e ЩХ), ae Su generating for a let 

(2.5.1) J f (a; U, a) = {èuM{W) \ We A{a; т^), M e В{ф{ос); U)} . 

2.5.2. Definition. The presheaf ^ = {(Suytu); QUVIX} is called topologically 
trivial (briefly t.t.), if all the bases ^ ( a ; U, a) are equivalent for all aeP. 

2.5.3. Remark. The topological triviality is the strengthening of the property 
from the assertion 2.4.3. If the presheaf is t.t., the bases Ж(а; I/, a) can be denoted 
by Ж{а) and we may always use the most convenient one. 

2.5.4. Notation. For the 4-tuple {K, M, U, a) from 1.2.11 let 

(2.5.5) ^(M; U, a) = {еак{^) | We A{a; Xy)} . 

2.5.6. Proposition. Let the presheaf be t.t. If U e ^{X), ae Su, К с U compact, 
then ^ = ^ (M; U, a) ^ ^ gr^ a. Thus the presheaf is simple with respect to the 
compact cofiltration (see 1.5.2). 

Proof. Clearly ^ ^ #- gr^ a. Now, let G - ^ик{^) e ^ . If Ve B(X; U) we can 
for every xeK find (as a consequence of t.t.) V^ e B(x; V) and W^ e A{QUV{(^)\ T^V) 

n 

such that èvvlK) <= ^wS^)- Therefore X c= K,̂  u .. . u V^^. For W^ = f) W^^ 

we have ^ук{^^) ^ ^икО^)- Let us form W^ for every Ve B{K; U) in this way. 
Then S = S{R{U, a, K, W)) e^gr^a and S a ^ик{^)' 

2.5.7. Corollary. If{K, M, I/, a) is from 1.2.11 and if the presheaf is t.t., then all 
the bases 2.5.5 are equivalent. 

Thus we may denote them only by ^j^. Where we need the bases ^ gr̂ ^ a, we may 
use the equivalent bases ^ gr̂ ^ a if it is convenient for us. So, for example, the filter 
base A{a{x); /) is of the form 

(2.5.8) {^üäivKiW)) \Kc:U compact, We A{a; Ти)} , 

instead of more complicated form described in 1.2.20. For example, Theorem 2.2.1 
has the more clear form 

2.5.9. Theorem. Let the presheaf be t.t.. The all {р1)~^ are continuous iff the 
following holds: ""If U e ^(X), aeSu, We A{a;i:u\ then there exists К c: JJ 
compact and W'e A{a; Тц) such that ^ик^ик{^') ^ Pi/(^)-" 

The advantage of t.t. presheaves consist in the fact that the relations are more easy 
to survey and can be more easily verified. Moreover we can construct for them the 
generating closure without the assumption of local compactness of X. 

For t.t. presheaves the bases Jf (a) from 2.5.1 generate a closure in P. 
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2.5.10. Notation. The closure generated in JP by the bases Ж{сс) will be denoted 
by tt. 

When X was locally compact and 2.3.2 held, We constructed the closure f^ following' 
1.4.14. On the other hand, the closure t^ was constructed for t.t. presheaves. If 
moreover the presheaf is t.t., X is locally compact and 2.3.2 holds, then the bases Ж((х) 
from 2.5.1 and the bases Ш((х; Ü, a) from 2.4.2 coincide. Hence (by 2.4.1 and 2.5.10) 
f^ = ti . Therefore we may the closure from 2.5.10 denote by t^ and we will really 
do so. Condition 2.5.10 is only the extensipn of the definition of the closure t^ from 
1.4.14 to presheaves over the spaces, which are not locally compact. So that we could; 
reahse this extension, the presheaf must be t.t. 

2.5.11. Theorem. Let the presheaf be t.t. Then the closure f^ from 2.5.10 is 
a generating one. "-'> 

Proof. We use 2.5.6. Let G = ^ик(^) e ^ ЕГк a. By 2.5.10, 11 we have ^ÜV{W) e 
e A(grj^ a; t"-)^ Here we have G = iuvi"^) ^ ^"Щ- Thus A(gr;, a; 1+) n i/^^X^) ^ 
^ ^gx^a. Conversely, let О e A(grj^ a; ^"^). By 2.5.10 we can assume that О = 
= ^{^VMS^O) \^^&K ^}y where M^ e B(i/^(a); U) and W^ G А(а; т ;̂) for every 
a e gïj^ a. The compactness on К implies that only finite number of the sets M^ 
covers K. For convenience we may assume that they are only two. Let M^. = M^, 
W,^ = W,, X, = iA(a,), i = h 2. Then G = ÇuK{W,r^ W^) cz {^UMX^^I ^ ^2) u 
^ ^UMX^^I ^ ^2)) П il/''\K) cz On ir\K) and G e ^ gr̂ ^ a. 

2.5.12. Remark. The topological triviality of ^ = {(Sy, r^-); Qf_^^y; X} can be 
localised as follows: 6^ is locally t.t. (briefly l.t.t.) if the following holds: "If a G P, 
и e ^{X), aeSu, К a U compact, у = ф{(х) G К, а{у) = а, then there exists 
U' e B{K; U) such that for every F, F ' G В{у; U') the bases Ж{(х; F, Quv{^))y ^{^\ У'^ 
Quv'i^)) from 2.5.1 are equivalent. If У is l.t.t., we can define as in 2.5.10 the closure 
t'l' and easily (similarly as in the case when 6^ is t.t.) prove, that 2.5.6, 11 hold. 

We can easily see that if X is locally compact and 2.3.2 holds, then .9^ is l.t.t. (see 
2.4.1, 2). Thus 2.5.10 for the l.t.t. presheaves is an extension of 1.4.15. 

6. Natural closure 

For every U e ^{X) there is a natural map оц : S^ x U -^ P defined as follows: 
ae Su, у eU => Su{a, y) = a(y) (see O.U). Then we have the family of maps 

(2.6.1) A = {öa\UE 

of the sets S^ x U into P. We can define a natural closure in P with respect to the 
set A, namely the finest of all closures t, for which all the maps ôfj e A, ou : {Su x U, 
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Tu X и) -> (P, t) are continuous [и is the closure in U induced by the closure from X), 
i-e. Hm Xu x u. 

A 

2.6.2. Definition. The closure Hm т^ x и will be denoted by Г* and called natu­
ral closure. ^ 

Let us notice how the sets Л(а; t^) look like. 

2.6.3. Agreement. Let ae P,U e 0ê{X), y = î//(a) e t/ and let a e 5 /̂ be a generating 
element for a. Every map cp^y of the set B{y\ U) into itself such that for Ve B(y; U) 
we have ^uyiV) a F will be called choice. (Li 1.2.8 something else was called choice, 
but there is not danger of confusion, because the both choices are clearly different.) 

Let ae P, U e ^{X), y = i^(a) eU, a e S^ a generating element for a. If 
R(U, fl, V, W^ is a chain from 1.2.10 and cp^y a choice from 2.6.3, let us form 

(2.6.4) S'{R{U,a,y,W^),<Pa,)= U ^vM^l 
Veïiiy;U) 

(we put (piT^^ = (p) 

(2.6.5) if (a; [/, a) ::- {S'{R{U, a, y, Pf ^), (p^,) | R{U, a, y, Ж^) 

is a chain from C/ to y, cpuy is a choice] . 

2.6.5. Proposition. Let a e P, 1(71, 1/2 e ^(X), 
n 172, öi(j) = a2{y) = Ci- Then the sets J*i = J*(a; U^, a^) and f^^ = ^{^l ^2^ ^2) 
are equivalent filter-bases in P round cc. 

Proof. Let Si = S'{R(Ui, a^, y,Wi), (puiy)e ^y. Then we have QuiUsi^i) = 
= QuiUii^i) for some 1/3 e B(j;; 11^ n [/2)- For Ve B(y; 1̂ 2) let us set W2 = 
= QvLu:M''''') and cpu,y{V) = cpu,y{Vn С7з). Hence ЗЩи^. «2, у, ^2^ , Фс/..) =̂  
= ^26 J^2 and S2 c: Si. 

2.6.7. Corrolary. Instead of ^{a: U, a) we may write simply J*(a) and use always 
the more convenient base ^(a; U, a). 

2.6.8. Corollary. The bases ^(oc) form a closure in P. From the form of these 
bases we can easily see, that they are filter-bases of t^-neighborhoods of the ele­
ments a. 

2.6.9. Proposition. Let X be locally compact and let 2.3.2 hold. If t"^ is the closure 
from L4.14, then f^ = Г*. 

Proof. By 2.4.1, 2 we get from 2.6.4 that f^ ^ Г*, because J ( a ; U, a) from 2.4.2 
is finer than J'(a) from 2.6.5. Now, we show (using 2.4.1), that ^(a) is finer than 
^'{a;U,a) from 2.4.4. Let F^n ф'^У) e ^ia;U, a). For every V еВ{ф{(х);У) 
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we can find (p{V') e В{ф{(х); V) such that <p(K') с V is compact. By 2.3.2 we have 

^v'iFWli^'^') "=" ^ ^Ф~\^)) f<̂ ^ some W^' e A{QUV'{^)I-^v)- Thus we get 
^FV(F')(V^') ^Fr^ ф'~\(р{У)). Hence 5 ' = S'{R{U, a, i^W, T '̂̂ '), cp) c: F n ф^\У) 
and S' e A(a; ?*), which proves the proposition. 

2.6.10. Proposition. Let the presheaf be tJ. (see 2.5.2), let f^ be the closure from 
2.5.10. Then f^ = Г*. 

Proof. It follows immediately from the t.t. of ^ that the bases Ж(а) from 2.5.1 
and A(a; ^*) from 2.6.5 are equivalent. Further Ж{а) is a base of the filter of f^-
neighborhoods of a. 

2.6.9, 10 can be generalised as follows: Let 6^ be Lt.t. (see 2.5.12), r"*" the closure 
from 2.5.10 (see 2.5.12). Then t^ = Г+. 

The p r o o f follows easily from 2.5.12 and 2.4.1. 

2.6.11. Corollary. We can see the importance of the natural closure t*. The clo­
sures f^ from 1.7.14 and 2.5.10 coincide with ï*. 

2.6.12. Proposition. All the maps p^J are continuous. 

Proof. Let Ue ^(X), aeS^, К cz U compact, О e A(gr̂ ^ a, t^) n ф-^К). We 
can assume that О = \J {O^ n ф~^(К) | a e gr̂ ^ a}, where for every a G gVj^ a there is 
Од G A(a; f*). By 2.6.4 for every a e gr^ a there exist F« G В{ф{а); U) and PF̂  G A(a; т̂ у) 

/I 

such that èuvX^) ^ 0^- Then we have К cuV^^n ... n V^^. For Ж = П W^^ we get 
^UKO^) ^ ^5 which finishes the proof. '"^ 

2.6.13. Proposition. Let ^ be a presheaf over a regular space X. Let t be a closure 
in P such that for every U e ̂ {X) and every compact К c: U we have ^ gi^ a ^ 
â A(gr^ a\ t) n ф~\К). Then A(gr^. a; /*) n ф~'{К) й A{grK ̂ l 0 ^ Ф'Щ-

Proof. Let и e ̂ {X\ aeSu, К a U compact, О n ф''^{К) e A(grx a; t) n 
n ф~^(К). It suffices to prove: If a G gr̂ ^ a, then for some .S G A(a; r*) we have S n 
n ф~НК) a О n ф^^К). Let a G gr̂ ^ a and F --= S{R{U, a, K, W^)) e ̂  %т^ a such 
that F ci 0 ГЛ ф~\К). For VеВ{К\ U) let us set W^ = Pf̂  and cp{V) = V. For 
F G В{ф{а); и) - В{К\ U) we can find (p{V) e В{ф{(х); U) such that ^(F) с F Then 
ф(К) n X == L is a compact subset in K. Because #" gr2̂  a ^ A(grĵ  a; t), we have 
F^ cz О n ф~\L) for some F^ = S{R{U, a, L, Ж^О) ^ «^ ĝ L <̂ . and thus ^VL{W^) ^ 

с F j . Hence S'{R{U, a, <A(a), 1?^), cp) = S e A{a; /*) and S n vV"X^) ^ <̂  ̂  ^ " 4 ^ ) ' 
which finishes the proof. 

2.6.14. Theorem. Let Sf be a presheaf over a regular space X. If there exists 
a generating closure in P, then Г* is a generating one. 
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Proof. Let Ue^{X), a e S^, К c: U compact. By 2.1.4, 2.6.12, we have 
^ gî'x ^ S à{gïj^ a; f*) n XI/~^{K). If t is a generating closure, then we get by 2.6.13 
A(gr;̂  a; r*) n II/~\K) й A(gr̂ ^ a; t) n ф''\К) g ^ gVj^ a, which finishes the proof. 

2.6.15. Theorem. Let ^ be a presheaf over a regular space X, If there exists 
a seminormal closure in P, then *̂ is seminormal. 

Proof. By 2.6.12 and 2.1.4 we have / й (̂̂ *) in all Ay. If t is seminormal, then by 
2.1.4, 5 #" gr̂ .̂ a g A(grj^ a; t) n ф^'^К), where U e Ш{Х), aeSu^Kcz U compact. 
By 2.6.13 we have A(gr̂ ^ a; t^) n \I/'^^(K) g A(gr^ a; t) n il/'~^{K), hence in every A^ 
we have /(r*) S KO = -̂ Thus Щ = I 

2.6.16. Theorem. Let S/' be a presheaf over a regular space X, If there exists 
a normal closure in P, then t^ is normal. 

Proof. Let t be a normal closure. By 1.2.29 in every Au we have l(t) = I. By 
2.6.15 in every Au we have also l(t^) = I and thus f* is normal. 

7. Sufficient conditions for the normality of t* 

2.7.1. Theorem. Let 6^ be a full presheaf over a locally compact X (see [8], 
1.1.46), with a projective closure collection fi = {т ;̂} (see [8], 1.1.4) for which 
2.3.2 holds. Then *̂ is normal. 

Proof. LQIU e^{X), aeSu, WGA{a; т^). Then for some F G ̂ ((7) (where V с U 
is compact) and for some W^ e A(QUV{CI); V ) we get QÜvi^^) ^ W{stQ 1.1.45 in [8]). 
Further we have ^vv^vv{W) ^ ^ ^ f^r some W e А(диу{^У:>'^v)- Let us choose 
U' e B(F; U) such that Ü' a U is compact. We set W = QÜ'v{W'). By 2.4.1, 2 and 
2.6.9 we have О - ^u'u'{W) e A(gr^ a; Г*). Then ^üv{0 n 1Г'{У)) ^ ^Üvi^ ^ 

Now we will construct one closure t^ in P, which will be used in the next. From 
now we assume X is locally connected. 

Let a e P, 17 e Ш(Х), a e Su, у = Ф{ос) e U, a(y) = oc. Let us set 

(2.7.2) J/{a; 17, a) = {S^(R{U\ QUUH У^ ^ 1 ) ^ U{fKF(^^) | Ve Ъ{у; V% 
connected} | U' e B(y; U), R{U\ Quv'{<^), 3% ^ 0 is a chain from 17' to 
y round Quu'i^)]' 

2 Л З . Proposition. Let l/, F 6 ^ ( Z ) , y = ф{а)еи nV, a e Su, b e Sy, a{y) = 
= b(y) = a. Then Jl(aL\ U, a) '^ Л(а; F, b). Thus we may denote these bases 
briefly by Л(а). These bases form a closure in P which is coarses than f̂  We will 
denote it by t^. 
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Proof. Let M = S^'iRiU^Quu'ia), y,W^))eJ/{a;U,ay We can find Ve 
ЕВ{У; U' П F) such that Quv{^) = Qvv{b). For connected V еВ(у; V) let us set 
Wr = W"". Then M, = 5 * ( 4 F , Qrç{b), y, wD) = U {^к'К'(^Г') | V^ ̂  B(y; F), Г 
connected} e c/#(a; F, b) and we have Mi cz M, which finishes the proof of the equi­
valence. The rest follows by comparing 2.7.2 and 2.6.3 — 5. 

2.7.4. Agreements and notations. For U e i^{X) and К cz U compact let us denote 
by n ^ the set of all finite open covers of К by open connected sets in U.lîi^ e IT^, 
then every map a^ : ^ -> f l ^{QUV{^Y '^V) of i''^ into the cartesian product of the 

Vei'" 

sets Л(^(/,/(«); Ту), such that for every Ve 'V we have Ö-^(K) G Ь{о>иу{а)\ Xy) will be 
called choice. If a^r is a choice, then 

(2.7.5) 5(X; r, О ^{Wl\ Ve Г, W^ = a^{V)} , 

will be called envelope. Further, let us set 

(2.7.6) S{B{K; r , O ) = \}{tvv{K) \Vei^} , 

(2.7.7) ^ gr^ a = { и S{B{K- f\ Wl)) \ В{К; Г, < ) 
ГеПкО 

is some envelope, f" E П ^ } . 

It is clear that ^ gr̂ ^ a is a filter base round gr̂ ^ a in P. 

2.7.8. Lemma. Let U e ^{X), a e S^, К a U compact. Then A{grj^a;t^) n 
n ir\K) ^ ^ gVj^an ф-^К). 

Proof. Let В = [J{S{B{K; -Г, W^) \Г eUl}e^ gv^ a. Let us choose a cover 
i^ = {U^\XEK} of К such that for every x еК there is U^ e B(x; U). Let x e K, 
V^ e B(x, U^) connected. Then there exists f"' G П ^ such that V^ e f^. Let us set 
W"" = Wj''. For every x e К and every connected V^ e B(x; t/^) let us form this 
W^'eA{Q^yXa);xy^). Then we have 0 - U U {^к.к.(Й^") 1^ ^ F, cz [/,, F, 
connected} G A(gr;̂  a; t^) arid we have О a B. ""^^ ^"^ 

2.7J« Theorem. Let 6^ = {{Sj,, т^;); Qi,y;X} be a presheaf with the unique con­
tinuation over a locally compact space X with a projective closure collection ß ~ 
= (TC;} (see 0.32 and 1.1.4 in [8]). Then t^ is normal 

Proof. We will prove that the natural maps (pu)"^ • {^u^ Kt^)) ~^ (Sv^ ^^u) are 
continuous. Because (by 2.7.3) there is ?* ^ ^\ we have /(^*) ^ l{t^) and thus all 
the maps (p^*)""^ are continuous. By 2.6.12 f^ js normal. 

Let и e ^(X) be connected, a G S^, We A{a; Гц)- By [8], 1.2.1 - 4 there exists 
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a compact set M{W) = К с U such that if F G B ( X ; U) , then for some W^ e A(QVV(^)I 
Ту) we have 

(2.7.10) Qvv{W'')cz W. 

For reU^ let us set V,r = [J{V\Ver}. Then QUV.X^^''') ^ Ŵ  for some W''-^ e 
eA{Quy {a);xy ). Further, for every F e f " there exists W^ e A{Quy(a);tv) such 
that TF̂ ^̂  =э П ev\{^r) (see 0.32 and 1.1.4 in [8]). For these PF | , F e -Tlet us take 

the envelope ^^r = B{K;i^, W^^) (see 2.7.4-5). If we form such ^.^ for every 
'f'^ G П^, then we have 

(2.7.11) B= и 5(^r)= и и ^ivv{W^^e^gVj,a 

and (by 2.7.8) we have / = 1^1{В n ф'^К)) e Л(а(х); l{t')). Let b{x)eL Then for 
every yeK there exists (by 2.7.11) Г^у e П^ and Vy e i^y such that iuy{b) = Чз') ̂  
G ^K.F.C^ '̂̂ ')- Let {Fy^, ..., VyJ =i^EUl r cz {F, | j G X}. For f = 1, . . . , n let 
us write Vy. = Vi, W^' = TF\ Then for i = 1, ..., n we have Quvib) e W^ (F^ is con­
nected). Putting V,r = [jVi, we get Qvv^{b) e f) Qv^v^W) cz W""^'. Thus 6 G 

G ^ÛF^W^^^) С W, which imphes (̂ ^̂ (̂B n ф'^К)) cz Ж This proves the continuity 
of the all maps (Pv)"^ for connected U. Let U e ^(X) be arbitrary. For every com­
ponent F of I/ let us notice the following commutative diagram: 

(2.7.12) 
( S „ T , ) . ^ ^ 1 ^ ( ^ , J ( / ^ ) ) 

(Sy,Ty)<^^^-'~{AyJ{t')) 

The projectivity of /x = {т ;̂} implies that (pu)"^ is continuous iff Qvv{Pu)"^ ŝ 
continuous for every component F of U. By 2.7.12 this map coincides with the map 
{Pv)'~^ о p^y. By the first part of the proof, the map (pv)"^ is continuous, and the 
continuity of pijy is obvious (see 1.1.12—14). Theorem is proved. 

CHAPTER 3 

POINTW^ISE CONVERGENCE 

The results from Chap. 1 will be used here in the case, when for every U G i^(Z), 
a G Sil, Ж^а is cofilter of all finite sets in I/. 
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1. Existence of the normal closure 

For every U e ^{X), a e Su let 

(3.1.1) .r^ = {K\ К cz и is finite} . 

Then ,>r^ satisfies L3.3. Following 1.1.4 — 7 we introduce in all Au the closure of 
uniform cou vergence on the cofilters 3.1.1. 

3.1.2. Definition. This closure will be called closure of pointwise convergence and 
denoted by b(t). The closure t in P will be called normal (in accordance with 1.1.3) 
if the all natural maps 

(3.1.3) pb:{Su,Tu)-^{Äu,b{t)) 

are homeomorsphisms. 
We study again the existence of the normal closure. For this purpose we use the 

tools from chap. 1. Similarly as in 1.2.8 — 18 we form for every U e ЩХ), a e Sjj, 
К e Jfa ths bases #" gr̂ ^ a. For К = {x} we write here с^Да) instead of #" gr^ a. 
Following 1.2.20 — 22 we construct in every Au the closure к from the bases ^^i^) 
The closure к will be denoted in this chapter by b in accordance to the 
special choice of cofiltration.*) The natural map (Su, 'Си) ~^ {^u^ ^) will be denoted by 
p\j. The closure t in P will be called seminormal, if b{t) = b m every Au- The reader 
can easily rephrase the propositions 1.2.19, 251 — 27 and therefore we will not present 
them here. From 1.2.29, 30, 32 we get 

3.1.4. Theorem. Every normal closure is seminormal. Thus a necessary condition 
for the existence of a normal closure in P is the existence of a seminormal closure, 

3.1.5. Theorem. A necessary condition for the existence of a normal closure in P 
is the continuity of all (ри)~^-

3.1.6. Theorem. The necessary and sufficient condition for the existence of 
a normal closure in P is the simultaneous validity of both necessary conditions 
3.1.4, 5. 

Thus we must study these conditions. First of all we take the first one. 

*) Using bases ^^(a) , ( ^ &^ a), we get by 1.2.20—22 a filter-base { (J ?^i(F^); К cz U is 
xeK 

finite, F^ e -^^(a) for x e К}, resp. {«?c/x(/0; К cz U finite, F e ,W gr̂ ^ a}. These bases generate 
a closure b\ resp. b. We have only ^ gr̂ ^ a С\ц/~ ^ ix) 1^^^ ^x^'^)^ f̂î ŝ b ^ b\ The equality is not 
generally true. If t is normal, then b' sL b{t) and b f̂  b' 5j b{t) 5C 6, thus b' = b. To be precise, 
in 3.2.1 we do not prove the existence of a seminormal closure t for which b{t) =•• b, but the 
existence of a pseudonormal one from 4.1.10 (see the next chapter), for which b(t) == b\ 3.1.1 is 
a condition for the continuity of (p^)~^ : (Au^ b') ~̂> (Su, Ти). Theorem 3.3.3 is correct if the 
modification ß° concerns the bases ^y.{a) and the map p^f concerns the closure bu. 3.4.6, 3.4.10, 
3.4.11 are true for both b, b\ These questions are studied in the next chapter. 
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2. Seminormal closure 

Here we study the existence of a seminormal closure in P. The conditions 1.4.1, 2 
say, that every generating closure is seminormal. The special form of coulters JT^' 
allows us without using further results from Chap. 1 to prove directly 

3.2.1. Theorem. The natural closure *̂ is a generating and therefore a seminormai 
one. 

Proof. Let (XEP, U e^(X), y = il/{oc)eU, aeSu a generating element for a, 
F = S{R{U, fl, y, W)) = (J{iyy{W^) \ Ve B(y; U)} e ^^[a), let cp^ be any choice 
from 2.6.3. Then (we put cp^y = cp) 

(3.2.2) S' = S^R I U, a, y, Ж^, (p J == Ul^.MnC^'^) I ^e B{y; U} e Л(а; t^), 

hence S' n il/^^{y) c: F. Thus Л(а; f*) n ф~^(у) й ^y{a)' Conversely, let S' be an 
element from A(a; Г*) of the form 3.2.2. Then S' n ф'^у) E Л(а; Г*) n ф'^у). Let 
us set F = S{R{U, a, y, W^)), Then F e #"3,(0) and F = S' n ф^^у) which finishes 
the proof. 

Now, 3.L5 imphes 

3.2.3. Theorem. The necessary and sufficient condition for the existence of a nor­
mal closure is the continuity of all (p^)~^- If this condition holds, then f* is normal. 

3.2.4. Remark, In every stalk ф''^{х) let us take the closure u^^ = ind^-i(^) Г*. 
Let t be the closure in P, which is the topological sum of the closures u^. Under the 
closure t any two distinct stalks are separated, for every stalk is a clopen (closed and 
open) set in (P, î). Thus there is not A^ a T{U, t) (see 0.34). It can be easily seen that î 
is the finest closure in P, for which the all p\j are continuous. 

3.2.5. Notation. Let t^ be the sheaf topology in P (see 0.34). Let us denote by î the 
topological sum of the closures t and t^ (see 0.36). Then it is clear that for all x e X 

(3.2.6) md^-i(x) t = ind,/,-i(^) t* . 

It follows from 1.1.9 that b{t^) = b(t) in all A^. And 3.2.3 implies 

3.2.7. Theorem. / / there exists a normal closure in P, then t is normal, 

3.2.8. Proposition. The finest closure in the set of all closures t in P, for which 
every p{j is continuous and simultaneously Au a T(U, t) for all U e ^(X), is the 
closure t. 

39 



3. Continuity of (p^)""^ 

2.3.1 gets the form 

3.3.1. Theorem. All the (pu)^^ ^^^ continuous iff the following condition holds: 
''If и e if (X), a e Su, We A(a; т^/), then there exist x^, ..., x„ e I/ and Fi e ^х^{^) 
such that 

(3-3.2) n ШР.) ^ p^w)." 
i = l 

Following 1.3.5-6 we will form to our collection /i its ;nodification fi^. 
3.3.3. Theorem. The collection ß^ is the finest one in the set of all collections v 

which are coarser than fi and for which the all (p^)~^ are continuous. The following 
four properties are equivalent: 

(a) The all {p\f)'~^ are continuous, 

(b) ß = ß°, 
(c) for the collection ß the condition from 3.3.1 holds, 
(d) there exists a normal closure in P. 

Proof, a, b, с follow from the assertion of 1.3.13, (d) follows from 3.2.3. 

3.3.4. Definition. The collection ß^ (i.e. the modification of ß with respect to the 
cofilters 3.1.1) will be called pointwise modification of//. 

3.3.5. Proposition. Let all the (Sjj, т:и) ^^ compact topological spaces, all the 
(AU, b) Hausdorff topological spaces. Then ß = ß^. 

3.3.6. Remark. For the presheaf which is simple with respect to the cofilters 3.1.1 
(see 1.5.2) Theorem 3.3.1 has the simple form. From the special form of JT^ we can 
see that the simplicity with respect to this cofilters could be localised for example as 
follows: "If и e ^{X), aeSy, у eU, then there exists Ve B{y', U) such that the filter 
bases {^vy{^) \ "^^ ^{QUV{'^)'^ V ) } ^^^ ^yWi ^^^ equivalent." The form of 3.3.1 is 
sufficiently clear in this case. 

3.3.7. Remark. For the natural closure ï* and /(r*) from 2.1.2 we mention the 
commutative diagram 

(3.3.8) (Si„Tt,)^ 

( P o ' ' ) - ' \ 

H^b, Kt*)) 
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By 2.6.12 the all pu are continuous. Because the cofilter of all compact sets contains 
the cofilter of all finite sets, every i^ is continuous. If/i = /i^ (ß^ from 3.3.4), by 3.2.3 
every {pu)~^ is continuous. Hence the all three spaces in 3.3.8 are homeomorphic, 
thus /(?*) = b(?*) in all Ay and all the maps pu : (S^, т ;̂) -> (Ay, /(^*)) are homeo-
morphisms. Similarly, if q is any method of constructing of a closure q(t) in A^ 
from t, such that /(^*) ^ q{t^) in every Ay and if all the natural maps (Ay, q{t'^)) -> 
-> (Su, Tu) are continuous, then ^(f*) = /(r*) in all Л̂ .̂ and all the maps pu : (Sj^, т^) -> 
-» (Л^, J(/*)) are homeomorphisms. 

4. Examples 
* 

Theorem 3.3.1 solves the problem of the existence of a normal closure. In 3.4.1 we 
show, that sometimes it is possible to verify the continuity of all {p\j)~^ without the 
verification of 3.3.1. The expamles 3.4.11,12 refer to 1.1.9, Example 3.4.13 refers to 
1.4.3. 

3.4.1. Example. Let the presheaf 6^ = {{Su. '̂ iz); Quv'-> ^} have the property 

(3.4.2) If L / G ^ ( Z ) , aeSu, WeA{a;Tu), i'^ eUu (see 0.27) then there exists 
Vei"^ such that QUV{W) e A{QUV{^)^ ^K)-

Then we have: If 17 e ^(X), U compact, a e Su, We A{a; Ту), then there exists a point 
ye и which has the filter base A{y) of open neighborhoods such that VeA(y) => 

Proof. Easy, the negation leads to contradiction with 3.4.2. 

3.4.3. Corollary. / / 3.4.2 holds and if we have moreover 

(3.4.4) ''For и G ^{X), a e 5^, We A{a; Zy) there exists Ve 0ß{U\ V aU such that 
Quv{W)eA{Quv{a);Ty):' 

then even exists y eU satisfying the assertion of 3.4.1. 

For example, it is in the case, when X is regular and 3.4.2 holds for any f^ e Ily, 

3.4.5. Definition. Let L̂  e ^(X), a e Su- The base A{a; Ти) will be called saturated 
if the following holds: "If We А{а;т:и), then there exists W'e A(a; Ту) such that 
iüx4u.{W')^ P f f o r a l l x e l / . " 

In the presheaf with the unique continuation (see 0.32), then A{a; Хц) is saturated 
for any connected U e ^{X) and any aeSu-

3.4.6. Proposition. Let 9" satisfy 3.4.2,4 and let А{а;ги) be saturated for any 
и e^{X), a e Sy. Then the all (p^)""^ are continuous, 
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Proof. Let t/ e J^(X), aeS^, We A(a; T^J). For PFwe can find W' e A{a; Тц) such 
that FF and W' satisfy 3.4.5. For Pf ' we can find y eU and A{y) which are mentioned 
in 3.4.L If Ve B{y; U), let us set W^ = Qvv'QwiW'), where F is an element from 
Ä(j;) n B{y; V). Then for F = S{R{U, a, y, W)) e ^^a) we have F с: с̂;з,(ЖО- Hence 
| - ; ( F ) с t̂;;̂ ^c/y(W^O с Pt/(^X which finishes the proof. 

3.47. Remark. It can happen that 3.4.2, 4 hold, but S^ has not any saturated base 
А(а;т^;). Even then every (p^)~^ may be continuous. The condition 3.3.1 can be 
satisfied for the points Xj, > x „ e и which are all different from у {у from З.4.1.). 

3.4.8. Example. Let the presheaf ^ over a complete metric space X have this 
property: 

(3.4.9) If и eâ^{X\ aeSg, WeA{a;i:u), then there exists U'e ^U) such that 
for every Ve ^{U') there exists W e A{Quy{a); Xy) and F ' e ^(V) such that 

Then we have: If U e ^(X), a e S^, We A(a; ty), then there exists y eU which has 
a base A(y) of open neighborhoods such that if F e A{y), then there exists W' e 
e A{Quvia); Ту) and F" e B{y; V) such that Qyy'{W') с QUV'{W). 

Proof. Let Ue^(X), a e Su, We A{a;xu). By the assumption we can choose 
U' e ^{U) as in 3.4.9. By induction we can construct (according to 3.4.9) the sequence 
{K„} of open balls round x„ with radius r„ and a sequence {F„} of open sets such that 

(a) U" = Fo ZD Xi 3 Ki 3 Fl 3 ^ 2 =) Кз =) F2 =3 ..., r„ -> 0, 
(b) if n = 1, 2 , . . . , then икЛ^") c= QuvlW) for some W» e Ä(Ö, J a ) ; т J . 

00 

Thus there exists the unique у eÇ\ К„. It can be easily seen that у is the desired point 

3.4.10. Remark. In the same way as in 3.4.6 we can 
find out, that if ^ satisfies 3.4.8 and has the saturated 
bases A(a; Тц), then the all (pu)"^ are continuous. 

3.4.11. Example. Let ^ = {{Su, ty); QUV; R} {R is the 
real line) be a presheaf where Su is the set of all con­
tinuous functions onU e ^(R) and Ти is the topology of 
uniform convergence. In the covering space of .9" we take 
the discrete topology d. Then b{d) in Ли is not discrete. 
The (Ptr)~ ^ are not continuous, nor p^ are continuous. 

3.4.12« Example. Let 5^ be the presheaf of all constant real functions over R. 
Then P = i^ X i^. If a e P , y e ^ ( a ) , then ij/'^^y) is the vertical line through a. 
Let 2̂ be the Euclidean topology, let ti be the topology, a neighborhood of which is 
on Fig. 1. 
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Then ti S Î2, ?i Ф 2̂ but both they induce the same Euclidean topology in the 
stalks. 

3.4.13. Example. Let ^ be the same as in 3.4.12. Let us provide the sets Su with the 
closure T[7 of uniform convergence. We introduce the topology t^ in P as follows: 
If X Ф 0, a G il/'~^{x) let Л(а; t^) be an ordinary Euclidean filter. For a e i/̂ ~^(0) let 
A(a; ti) = \l/~^{0). Let 2̂ be the Euclidean topology. Then there is not t^ ^ Î2, but 
nevertheless b(ri) = ^(^2) (see 1.1.9). 

CHAPTER 4 

ANOTHER METHOD FOR THE STUDY OF THE EXISTENCE 
OF A NORMAL CLOSURE 

We get another method for the study of the existence of a normal closure. We use 
it for the study of uniform convergence. This method we compare with the method 
developed in Chapter 1. 

1. Introduction of notions and the existence of a normal closure 

4.1.1. Assumption. Let the assumption 1.3.3 for the cofiltration к = { jr^ | U e 
E^{X\ aeSjj] of the presheaf ^ = {{Su,4)\ Qvv\X} hold, i.e. if (7 ,Fe J^(Z), 
VczV.aeSu. then jr^^^(,) = {K | К G J T . ^ К c: F}. 

Similarly as in 1.1.7 let us denote by k{i) the closure of uniform convergence on x. 
Let -plj be the natural map p\j : {Su, x^) -^ {A^, k{t)). 

Let the all Pu be continuous, U e ^{X), a e S^, КеЖ^. By 1.2.19 we have 
^gr^au A(gr^, a; t) n ilz-^iK). Let 

(4.1.2) jr(K) = {L\LeJr^, LczK}, 

The continuity of all p^ and 1.2.19 imply that for every LGJVÇK) 

(4.1.3) ^grj,aS A(gr^ a; t) n ф-\Ь) й A(gr^ a; t) n ф-Щ . 

We can see the following: If we denote by 

(4.1.4) ^ gr^, 0 = lim {J^ gr̂ ^ a I L 6 ^{K}} 

the finest base of the all filter-bases in ф''^(К), which are coarser than every #" gr̂ , a, 
ЬеЖ{К), then we have obviously 

(4.1.5) Ж gTj, a ^A{gr^ a; 1)пф-\К), 
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Thus the continuity of all p[j implies 4.1.5 for every U e ЩХ), a e Su, KeJf^. 
Obviously for every U e ^{X), aeSjj.Ke Ж^^ 

(4.1.6) ^ %х^а^Ж%1^а. 

By 1.1.19 we get from 4.1.6, that if for every V e ^{X\ a e S^, К e Jf^ 4.1.5 holds, 
then the all p^ are continuous. We have proved 

4.1.7. Proposition. All the maps p% are continuous iff for every U e ^ ( Z ) , a e Sy, 
К E JfH 4Л.5 holds. 

For и e ЩХ), aeSu.Ke Ж^ let us set 

(4.1.8) /{a{x)) = {eüäfi) \HEjegr^a}, 

which is a fiher base in A^ round a(x). 

4.1.9. Notation. The closures in the sets Au formed by the bases J^{a{x)) will be 
denoted by m. The natural map Pu ' (Su, '^u) -^ {Ли, m) will be denoted by Pu-
Obviously we have к -^ m in every Au (see 1.2.22). 

4.1.10. Definition. A closure t in P will be called pseudonormal, if k(t) = m 
in all Au-

In the quite obvious way (similarly as in 1.2.25 — 32) we could prove 

4.1.11. Proposition. A. All the maps pu are continuous. 

Б. All the Pu are continuous iff m ^ k{t) in every Au-
C. Let all the (pu)"^ be continuous. Then k{t) ^ m in every Au-
D. / / the closure t is normal, then it is pseudonormal. 

i,.., 

4.1.12. Theorem. A necessary condition for the existence of a normal closure in P 
is the existence of a pseudonormal closure. 

4.1.13. Theorem. A necessary condition for the existence of a normal closure in P 
is the continuity of all (p'^)~^. 

4.1.14. Theorem. The necessary and sufficient condition for the existence of a nor­
mal closure in P is the simultaneous validity of both necessary conditions 4.1.12,13. 

4.1.15. Remark. Comparing 1.2.20 — 22 and 4.1.6—10 we can see, that k^ m 
in every Au- If t is normal then by 1.2.26 and 4.1.11 D k{t) ^ к ^ m S KO ^^ 
every Au and thus к = m = k(t). 
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>^ow, we could deal with the continuity of (pu)" ̂  ̂ i^d in the same way as in Chap. 1, 
§3 construct for a collection JLX = (ту) its modification д^, for which we could get 
a similar proposition as in 1.3.11, Similarly as in Chap. 1, §4 we could construct 
under the assumption 1.4.5 a pseudonormal closure t in P. We will not do so, because 
the method has already been described in Chap. 1. 

2. Pseudonormal closure in the case of compact cofiltration 

We will notice which results we get in the case of compact cofiltration from 2.1.1 
if we use the results from the previous paragraph. If we study the existence of a normal 
closure, we study following 4.1.14 the conditions 4.1.12, 13. Now, we are going to 
treat the first one. 

4.2.1. Definition. A closure t in P will be called m-generating, if for every U e 
E ^(X), a G Sjj, К с и compact, we have Ж gr̂ ,̂  a ^ A(gr^ a; t) n ф~^{К). 

Let ^ ~ {{Su.Tx^; QUY'.X} be a presheaf over a locally compact X. If yeU, 
Veb[y\V) then there exists К a F compact, such that ye'miK. As in 1.4.9 we 
denote 

(4.2.2) G{K, y) = {LI )' G int L c: L с К, Lis compact} . 

Let a G P, и e J'(X), К a U compact, у = i/<(a) G int K, a e Sy SL generating ele­
ment for a (see 0,18). Let us set 

(4.2.3) T(a; U, a. K) = {H \ H e Ж gr̂ ^ a. LE G{K, y)} . 

Let U, VE ^(X), iC С Ï7, L CZ F compact, y = i/̂ (a) G int X n int L, aE S^, b E Sy, 
a[y) = b{y) = a (see 0.18). Then we get easily from 1.2.17, 18 that Т(а; U, a, K), 
Т(а; F, Ь, L) are equivalent filter bases round a in P. Thus we write briefly Г(а). 

4.2.4. Notation. The closure in P generated by the bases T(a) will be denoted by L 
The definition of the bases Ж gr̂ ^ a in 4,1.4 implies easily that if M,N a U are 

compact, M a N, H E Ж gr^ ci, then Я n \I/~^(M) E Ж gXj,^ a. Conversely, for 
every HI E Ж gYj^ a there exists H ЕЖ gr^ a such that H пф \М) cz Н^. 

4.2.5. Proposition. Let U E ЩХ), a E Su, К a JJ corn-pact. Then Ж gVf^a ^ 
'^ A(gr̂ '̂ a, t) n i/^'"^(i^). Thus t is a m-generating closure. 

Proof. Let H E Ж g^K^' There exists L cz U compact, such that К <= int L. 
Then by the definition of t, every H^ E Ж gv^a is a. ^-neighborhood of gr̂ ^ a. We 
can find Н^ЕЖ gYj^ a such that H^ n ф'^К) с H. Because Н^ G A(gr̂ ^ a; t), we 
get A(grj^ a; t) n ф''^{К) й ^^ ^^к a- Conversely, let О E A(gr̂ ^ a; t). By 4.2.1, 2 we 
can ssume, that О = Ul^a | ^ ^ gr̂ ^ a}, where O^ E Ж gr^^ a, ф{(х) E int L^ and that 
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L^czU is compact for every aegXj^a. It follows easily from 1.2.14—18 that for 
M, N cz U,M,N compact, M cz iV we have ^ gr^ a n II/~^{M) g #" gr̂ ^̂  a. Let 
L с X be compact. Let us choose a finite subcover {L^ ,̂ ...^L^^} from the cover 
{L^\ae gv^ a}. For every i = 1, ..., и let Xt = Ln Ц. Because of Xt cz Ц, there 
exist Ff G #" gr̂ ^̂ . a such that F^ cz O^., f = 1, ..., n. Then we can find Fj, e #" gr̂ ^ a 
such that FL n i/^~^(Zf) cz F^, i = 1, ..., n. For every compact set L cz К let us 
form such a set Fj,. Then U{i^L | Ь cz К compact} = Я e ^ gXĵ  a (by 4.1.4) and 
Я cz O. Thus J f gr̂ ^ a g A(gr̂ ^ a;t)n ф'^К). 

4.2.6. Corollary. Let ^ be a presheaf over a locally compact space X. Then the 
necessary and sufficient condition for the existence of a normal closure in P is the 
continuity of all (p^!)~^. If this condition holds, then t is normal and thus the natural 
closure t"^ from 2.6.2 is normal. 

Proof. Follows from 4.1.14, 2.6.16. 

4.2.7. Remark. Let ^ be a presheaf over a locally compact space X, The necessary 
and sufficient condition for the existence of a normal closure in case of compact 
cofiltration is the simultaneous validity of 4.1.12, 13 or 2.1.7, 8. The conditions 2.1.8 
and 4.1.13 are similar. The first one requires the continuity of all (Pu)"^ ' {Ли, Ï) -> 
-> (Su, Tu), the second one the continuity of all (pu)'^ • (^c/, w) -> {Su, Ти)- Because 
by 4.1.9 there is / ^ m, 4.1.13 requires more than 2.1.8 and thus 2.1.8 holds more 
often than 4.1.13. It can be expected than conversely 4.1.12 is weaker than 2.1.7. 
Indeed, we see that for the compact cofiltration and a locally compact X we can 
always construct a pseudonormal (even a w-generating) closure, whereas the seminor­
mal closure f^ from 1.4.15 we have constructed under the assumption 2.3.2, (More 
generally in the case when ^ is l.t.t. (see 2.5.12).) 

3. Uniform convergence 

We study the case where for 17 G ̂ (X), a e SU 

(4.3.1) Jf,^ = {U} . 

Then the cofilters Jf^ satisfy 1.2.1. Following 1.1.4 — 7 we may introduce in every Au 
the closure of uniform convergence on the cofilters 4.3.1. 

4.3.2. Definition. This closure will be called closure of uniform convergence and 
denoted by s(t). The closure t in P will be called normal if the all natural maps 

(4.3.3) РЬ : (Su, т ;̂) -> {Av, s{t)) 

are homeomorphisms. 
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Following 1.2.8 — 18 we may form the bases #" gr̂ ^̂  a for every U e ^(X), a e S^, 
KeJf^' According to 4.3.1 we denote them by .'^ gi'u a. Following 1.2.2 —22 
(resp. 4.1.8, 9) we can form the closure к (resp. m) in every Ajj. We will denote it here 
by s (resp. a). The natural map pu : [Su, ijj) -> [Au, s), {{Su, Ти) -^ {Au, (j)) will be 
denoted by Pu, {pu)- The closure t in P will be called seminormal (pseudonormal) if 
in all Au we have s{t) = s, {s{t) = a). For the maps pu, pi, and p'̂  Theorems 1.2.29 — 
32 (resp. 4.1.12—14) hold. The form of these theorems in this case is clear and therefore 
we will not present them here. 

With respect to 4.3.1 Theorem 1.3.1 is of the form 

4.3.4. Theorem. All the {pb)"^ are continuous iff the following condition holds: 
" / / и e ^{X), ae Su, We A{a; Ти), then for some W e A{a; tu) there is 

(4.3.5) iûkuv{W^) c: pu{W) r 

Thus by 1.1.46 from the all {рЬ)~^ are continuous iff the presheaf is full. (See [8], 
1.1.46). 

Because the cofilters 4.1.1 do not satisfy 1.3.3, we can not further use the results 
from chapter 1. 

4.3.6. Theorem. All the (pJJ)""^ are continuous iff the following condition holds: 
' 7 / Ue^{X), aeSu, Р Г е А ( а ; т Д then for every Ve ^{U) there exists W^ e 
e A{QUV{^)I'^v) ^^^h that 

(4.3.7) e^J( и ^vviW'')) c^ p,{W) r 

Proof. Easily follows (with respect to 4.3.1) from 4.1.4-9. 

4.3.8. Remark. 4.3.6 is a much stronger condition for the existence of a normal 
closure than 4.3.4. 

4. Pseudonormal closure 

Here we study the condition 4.1.12 in the case of open cofiltration from 4.3.1. The 
pseudonormai closure will be constructed in a certain quite special case. 

4.4.1. Defmition. Let U,Ve ЩХ), a e Su, b e Sy The element b will be called 
continuation of aifU a Fand Qvv{b) = ^• 

Using the maximality principle we get easily 

4.4.2. Lemma. Let 6^ he a projective presheaf (see 0.31), IJ e ^{X) connected, 
a e Su' Then there exists a connected Ve ^{X) and b e Sy such that b is a continua­
tion of a. Moreover, if V e ^{X) is connected and b' e Sy is a continuation of b 
then V — V, b = b'. Thus b is a maximal continuation of a on the connected set. 
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Let ^ be a projective presheaf (see 0.31) over a locally connected space X, осе P. 
Then there exists a connected U e ЩХ) and a e S^ such that a is a generating element 
for a. Every such a can be continued following 4.4.2 to a maximal one. For every a 
let Ж^ be the set of all its maximal elements. 

4.4.3. Assumption. Let ^ = {(Su, '^u)l Quv\ ̂ } be a projective presheaf (see 0.35), 
X locally connected. Then for every a G P the set УГ^ is a single point. 

If 4.4.3 holds, then every aeP has the unique maximal generating element (on the 
connected set). No two maximal elements b e Sfj, ce Sy^ form anywhere the same 
germ. 

4.4.4. Definition. Let 4.4.3 hold, let a e P, be Ж^, b e Sy. Then the base Ж gVy b 
from 4.1.4 is a filter base in P round a. The closure generated in P by these bases will 
be denoted by ÎQ. AU germs ^ of a maximal generating element have the same set 

A(ß; ÎQ). The space (P, ÎQ) is not Hausdorif space except some very special cases. 

4.4.5. Proposition. Let 6^ = {{Su, tu); Qu vi ^ } ^^ projective, X locally connected, 

let 4.4.3 hold. Then the closure tg is a m-generating closure. Therefore it is pseudo-

normal. Thus the normal closure in P exists iff 4ЛЛЗ holds. If it is satisfied, then tg 
is normal. 

Added in proof: After the paper was accepted for publication, the author was told by pro­
fessor Frolik about the paper [10], where related problems are studied. That paper concerns the 
uniform fields of algebraic structures and the question of representation is studied here in 
a more natural and useful way than we have done in the first chapter of [9]. The case which is 
studied in the first chapter of [9] is more special, the tools are quite difi'erent, and perhaps not so 
natural. 
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