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INTRODUCTION

Let & = {(Sy, ty); Quvs X} be a presheaf of closure spaces over a topological
space X, P its covering space and &’ = {Ay; pyy; X } its natural representation.
That is to say, we know that every a € S;; can be regarded in a natural way as a section
a(x) over U in P. Denoting the assignement a — a(x) by py, then to the set Sy there
corresponds a set Ay = py(Sy) of sections over U. Moreover, let us denote by
puy : Ay > Ay the map defined as follows: a(x)e 4y, a(x) - pyy(a) = a(x)[V =
= [ovv(a)] (x). Then & = {Ay; fyy; X} is a presheaf of sets over X. If & satisfies
convenient natural requirements, every py is injective and thus &’ is a natural repre-
sentation of & with help of the presheaf of certain sets of sections in P.

Let us denote by #(X) the set of all open subsets in X. We say that a nonempty
family 2" of subsets of a set Lis cofilter base if the folowing holds: M, N € " =
= M U N < K for some K € 4.

We say that for the presheaf & = {Sy; uy; X} there is given a cofiltration x =
= {#];UeB(X); ae Sy}, if for every U e B(X), a e Sy there is given a cofilter
base A} in U such that for Ve #(U) we have: For every K € A~ ;'w(a) there exists
Le o'V such that K < L.

Let be given a closure ¢ in P. Further let for every U € #(X) qy be some method
which enables us to form a closure g(t) in Ay from ¢. Then &’ = {(A4y, qu(?)); puv; X}
is a presheaf of sets A, with the closures qv(t) Now, we can try to find a closure ¢ in P,
so that the all natural maps py : (Sy, tv) = (4u, qU(t)) would be homeomorphisms.
Every such a closure will be called normal.

Here we restrist ourselves to the case when the method gy is the closure of uniform
convergence on some cofiltration ». Now, two following questions can be studied:

1. If there is given a cofiltration x and if k(¢) is the closure of uniform convergence
u

on x, we study when there exists a normal closure ¢ in P.



2. We study if there exists in P a closure t generating a representation i.e. for which
the following is satisfied:

(a) There exists a cofiltration x for which ¢ is normal.

(b) If for Ue B(X)IT(U, 1) is the set of all continuous sections over U, then
I(U, t) = Ay for all U € #(X). That is to say, if ¢ generates such a representation,
then & = {(Ay, ky(t)); Puv; X} is not only a set representation, but even a topologi-
cal representation of & = {(Sy, 1y); euy; X}, i.e. & can be represented even topo-
logically using the presheaf of all continuous section sin its covering space (ky(?) is the
closure of uniform convergence on x).

Agreements and notations
The set of all open subsets of a topological space X will be denoted by #(X).

0.1. Definition. A presheaf of sets over a topological space X is a system
(0.2) & = {Su; evv; X}
where Sy for U € #(X) are sets and oyy for U, Ve B(X), V < U is a map gpy : Sy -
— Sy, such that the following holds:

(1) If W< V< U then guy = gyw o Quy»

(2) euy = iy — identity map of Sy.

We say the presheaf & is the presheaf of closure spaces (semiuniform spaces) if in
every set Sy there is given a closure 7y (a semiuniformity ’70) and the maps gy, are
continuous (uniformly continuous) maps of the closure (semiuniform) spaces

Quv * (Sw TU) - (SV’ TV) ((SU’ ’h/) - (SV9 ”IV)) .

Where it is not important to repeat the all data, we will speak only about a presheaf
and write simply & = {(Sy, 7y); X}.
If & is a presheaf over X from (0.2), we can to every x € X assign the system

(0.3) &= {Sy;00; U, Ve B(X); xeU,V}.

Because gy, satisfy the conditions (1), (2) from (0.1), we can form the set #, =
= lim &, — the inductive limit of &, (see [2], p. 744).

0.4. Definition. The set 7, is called stalk over the point x. For every U € #(X)
containing x there is a natural map of the set S, into #,.

0.5. Notation. Let x € U € #(X). The natural map of Sy into %, will be denoted
by &y, If a € Sy, then the element &y,(a) € # . will be called germ of a over x.
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Let us put P = U{# . | x € X}. Further let y be the map of P onto X constructed
as follows: If o € P, then there is the unique x € X such that « € #,. Let us set

Y(o) = x.

0.6. Notation. The set P is called covering space of the presheaf . The map y is
called projection.

0.7. Remark. Clearly there is %, = ¢~ '(x). Thus for the stalk over x will be more
frequently used the symbol ¢~ !(x). The capital P will in the next denote only the
covering space of &.

0.8. Definition. Let U € #(X). Every map r : U —» P for which ¢ o r = iy is the
identity map of U is called section over U.

If Ue%(X), aeSy, then we can to every x € U assign an element h,(x) € P as
follows: h,(x) = &y.(a) (see (0.5)).

According to our way of introduction of &, and y, there is (¥ o h,) (x) =
= yY(¢y,(a)) = x. Thus the map h, is a section over U. If we assign in this way to
every a € Sy the section h, over U, we get a certain sets of sections over U.

0.9. Notation. The map which to every a € Sy assigns the section h, over U will
be denoted by py and called natural map. The set of sections {py(a) | a € Sy} will
be denoted by Ay. Instead of h, we will write briefly a(x), where x denotes the variable
taking values from U. Thus a(x) is the section over U such that

(0.10) po(a) = a(x) .

The element &y,(a) will be denoted in accordance with our agreements by a(y). We
will say that the section a(x) goes through the point y € X. Thus we have

(0.11) Euyla) = a(y) .

0.12. Remark. If U, Ve #(X), V < U, and if a(x) € 4y is a section over U from
(0.9), we can to a(x) assign a section from A, as follows: a(x) — a(x)/V, i.e. the restric-
tion of a(x) to V. Let us denote this map by fyy. Then jyy(a(x)) € A, and we get the
commutative diagram

Sy——2— Ay

(0.13) l,,w lﬂ
S,——A4,

0.14. Remark. For y € U there exists a natural map &y, : 4y — Y~ !(y). Namely,
if there is a(x) € Ay, then we set &y(a(x)) = a(y). According to (0.10, 11) we have
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Euy(pu(a)) = £uy(a) = a(y)- Thus the following diagram is commutative:

pU
SLY-“v—é ALV

(0.15) :k\ e

F

y

0.16. Remark. The natural map py from (0.10) need not be injective. This can be
reached by adding this assumption:

0.17. Assumption. Let U e B(X), a, be Sy and let ¥ be an open cover of U.
If oyy(a) = ouy(b) for all Ve ¥, then a = b.

This assumption implies the injectivity of p, (see [5]). In the next we suppose
steadily, that this assumption is satisfied.

0.18. Definition. Let o P, y = y(a). Then there exists U € Z(X) such that for
some a €Sy we have &yy(a) = a(y) = a. Every such a will be called generating
element for a. Similarly the section a(x) € Ay will be called generating section for a.

0.19. Noetation. Let a € S, let A < U be an arbitrary subset. Let us denote
Zua(a) = U{u(a) | y e 4}
and further, more generally, if M < S, is an arbitrary subset,
Eua(M) = U{¢uaa) [ae M}
Thus £g4(a) and &y (M) are subsets of P. By (0.5) for y € A there is
Eoa(M) 0 Y7 (y) = Euy(M).

In the same way (with respect to (0.9,14)) we proceed if M < Ay,. Thus, for example,
ifAcU Mcy '(4):

éﬂ;(M) ={a; aeSy, a(y)eM, ye A},
Eii(M) = {a(x); a(x)e Ay, a(y)eM, ye A}.

0.20. Notation. The set &y 4(a) from (0.19) will be denoted by gr, a and called graph
of the section a(x) (resp. of the element a) over A. By (0.9, 11) we have £y4(a) =

= U{a(y) | y e 4}.

0.21. Notation. Let (X, t) he a closure space, M its subset.

. If M < X, then every filter-base of t-neighborhoods of M will be dcnoted by
A(M i 1).
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B. By the symbol ind,, ¢t will be denoted the closure in M induced by restricticn of ¢
to M. If x e M and A(x; 1) is a filter-base of z-neighborhoods of x, then the filter
of ind,, t-neighborhoods of x will be denoted briefly by M n A(x; t). The relation
““the closure u is finer than v”” will be denoted briefly by u < v.

C. If & is such a filter in X that for every F € % there is M < F, we say that & is
filter round M. If & and ¢ are two filter-bases and & majorises %, we write
briefly # < 9. f F < %, %9 < F,we write F ~ 4.

D. For U e B(X), M = U let us set
B(M;U) = {V|Ves(U),M cV}. .

0.22. Notation. In the set X let us have a nonempty family Q or closures. The
coarsest (finest) closure in X, finer (coarser) than every closure from Q will be denoted
by lim Q (resp. lim Q).

0.23. Remark. Let {(X,, 7,) | @ € 4} be a nonempty family of closure spaces, let X
be a set and for every a € 4 let ¢, be amap ¢, : (X,; 1,) = X (resp. ¢, : X - (X, 7,)).
Then if © = lim 7, (resp. T = lim 7,) is the closure in X, generated by the closures
{.| a € A} inductively (projectively), then (0.22) is inkeeping with this notation.

0.24. Remark. The map f : (Q, u) - (X, lim 7,) is continuous iff for every a the
map @, o f : (Q, u) > (X, t,) is continuous. A similar remark is true for lim ,.

0.25. Notation. If ¢ : M — N is a map, let § : M x M - N x N be the map
defined as follows: (x, y)e M x M = @(x, y) = (¢(x), ¢(»)).

0.26. Agreement. When speaking about a compact space in a topological space X,
we suppose that X is a Hausdorff space.

0.27. Agreement. Let U € (X). The set of all open covers (of all finite open
covers) of U will be denoted by IT,(TTp).

0.28. Notation. Let X, Y be two sets, let f: X — Y be a map and let & be a filter-
base in X. Then the filter-base {f(F) | F € #} in Y will be denoted by f(%).

0.29. Notation. For a semiuniform space (X, y) let us denote by 2(X; n) the filter
base of y-neighborhoods of the diagonal in X x X.

0.30. Notation. For a set X let us denote by d the discrete topology in X, and by h
the coarsest topology in X, where the only open sets are X and 0.
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0.31. Definition. We say, that the presheaf & = {Sy; uy; X} is projective, if the
following condition holds: “If U = UV, U, V, € #(X) and if there exist the elements
a, € Sy_ such that for V, NV, there is 0y.v,v,(82) = 0y,v.v,(a,), then there exists
a € Sy such that gyy (a) = a, for all a.

Because we assume that (0.17) holds, there exists the unique such a € Sy,

0.32. Definition. We say that the presheaf & is the presheaf with the unique con-
tinuation, if the following conditions are satisfied:

1. X is locally connected,

2. if U e #(X) is connected, a, b € Sy, and &y,(a) = &y,(b) for some y e U, then
a=b.

0.33. Remark. Let P be the covering space of the presheaf & = {S;; X}. If Ue
€ #B(X), then by (0.9) every a(x) € Ay is a section over U. Let us set Q' = {1 is
a closure in P such that for every U e #(X) every a(x) € Ay is a continuous map of U
into the closure space (P, t)}.

0.34. Definition, notation. The closure lim Q' is called sheaf topology and denoted
by t, (see [5]). If ¢ is a closure in P and U e #(X), then the set of all continuous sec-
tions over U is denoted by I'(U, ).

0.35. Remark. If the presheaf is projective, then I'(U, t,) = Ay (see [5]). #, is the
finest of the all closures f in P, for which 4, < I'(U, t) for all U € #(X).

0.36. Notation. Let (X,, u,) be closure spaces. The space (X, u) will be called topo-
ogical sum of the spaces (X,, u,) if X = UX, and u = lim u, (see [1], § 8).

0.37. Notation. A nonempty family %" of subsets of the set Lwill be called cofilter
base (cofilter) if the following holds: M,Ne # =~ M U N < K for some K € A
(M,NeAtA =MOUNeX).

0.38. Definition. A closure collection u = {ry; U € B(X)} of a presheal & =
= {(Sv, 7); euy; X} is defined to be projective if the following holds: ,,If U € #(X)
and 7" € Iy (see 0.27) is an open cover of U, then the closure ty(¥"), defined in Sy
proje():tive]y by the maps {gyy : Sy = (Sy, tv); Ve ¥°}, coincides with 7,,.” (See [8],
1.1.4.
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CHAPTER 1

UNIFORM CONVERGENCE ON COFILTRATION

1. Introduction of notions

Let & = {(Sy, tv); uy: X} be a presheaf of closure spaces, P its covering space,
¥ the corresponding projection of P onto X, Ay the set of sections over U in the cover-
ing space, corresponding to Sy, under the natural map py.

1.1.1. Assumption. For % let us have a cofiltration » = {# | U € #(X), a € S},
i.e. for every U € #(X) and every a € Sy, let us have a cofilter 5, (see (0.37)) of sets
in U such that for every Ve (U) the following holds: “If K € 2}, (4> then there is
Le #'¥ such that K = L” — see [8], (1.2.15).

Let be given a closure ¢ in P. We provide every set A, with the closure k(z) of
uniform convergence on the cofilters {} | a € Sy}. Then we try to find the closure ¢
in P in such away, so that the all natural maps

(1.1.2) pu : (Su: 70) = (Ao, k(1))

are homeomorphisms.

1.1.3. Definition. A closure t in P will be called normal if the all pj are homeo-
morphisms.

1.1.4. Notation. Let U € B(X), a € Sy, K € A’} Let us take the set gry a (see (0.20))
and its r-neighborhood 0, i.e. O € A(gry a: t). We set

(1.1.5) B(a(x); K, 0) = {b(x) | b(x) € Ay, b(y)e O for yeK} =
= £50(0 Ay (K)).

see (0.19),

(1.1.6) #(a(x)) = {B(a(x); K, O) | £ e #, O eAgrga:1)}.

It is clear, that %(a(x)) is a subbase of a filter in Ay round a(x). Therefore we can
take it for subbase of the filter of neighborhoods of a(x) with respect to some closure
in Ag.

1.1.7. Definition. The closure in Ay generated by the subbases (1.1.6) will be called
uniform convergence closure on the cofiltration » from 1.1.1. Its dependence on the
closure ¢ can be expressed by introducing for it the symbol k().
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From 1.1.5 we can see, that the form of the sets B(a(x); K, 0) is not influenced by
the whole filter A(grg a; 1), but only by the induced filter A(grg a; t) N " *(K) of
neighborhoods of grg a in the space ( ~*(K); ind, -1(x, t). From this we get

1.1.8. Proposition. The closure k(t) in the sets Ay depends only on the closure,
which is induced by the closure t in the sets ™ (K) for U e #(X), ae Sy, Ke A~

1.1.9. Corollary. All the closures t in P can be divided into classes with respect
to the equivalence

(1.1.10) ty ~t, iff indy-sgy ty = indy-ig) ts

From t; ~ t, follows the equality k(t,) = k(t,) in all 4. The example (3.4.12)
shows, that from ¢, ~ ¢, does not follow the equality ¢, = ¢, even for the topologies
11, t,. From k(t;) = k(t,) does not follow the relation t; ~ t, — see example (3.4.13).

1.1.11. Condition. Let the closure ¢ in P have the property: “If U, Ve #(X),V < U,
aeSy, K< Ay @y Le?, K < L, then Agr,, a; t) n Yy~ }(K) < A(grg as 1).”

1.1.12. Condition. Let the cofilters %Y have the property: “For U, Ve #(X),
V < U, a e Sy there is
(1.1.13) K)oy ={K|Kex!, K<V}

1.1.14. Remark. For U,Ve B(X), V< U the map pyy : (Ay, k(1)) = (4y, k(1))
need not generally be continuous for any closure t in P.

Naturally, such a closure can not be normal. But when the closure ¢ satisfies (1. 1.1 1),

we can see from (1.1.5) and (1.1.1) that the all jy,, are continuous for this ¢. If the
cofilters 7 satisfy (1.1.12), we can easily see, that the all jy, are continuous for any t.

2. Homeomorphie of pj,

First of all we are going to check condition for the continuity of py. The following
trivial proposition we state in order we could paraphrase it in the next assertion into
the form, which will be more convenient for us.

1.2.1. Proposition. Let U € #(X). Then py is continuous iff the following condition
holds: “If a € Sy, B(a(x); K, 0) € A(a(x); k(2)), then there is W e A(a; ty) such that
pu(W) < Ba(x): K, 0)”

According to (0.14, 15) we paraphrase 1.2.1 in this way:
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1.2.2. Proposition. Let U € B(X). The map py is continuous if]‘"'the Sollowing
condition holds: ““ If a € Sy, B(a(x); K, O) € A(a(x); k(1)), then thereis We A(a; ty)
such that

(1.2.3) cox(W) € 0 a Y~ I(K)

Now we can already find without difficulties, what a neighborhood O of the set
grg a in (y “'(K)); indy -1k, t) must contain in order that the all py would be conti-
nuous. Let U € #(X), ae Sy, K € A, O € Agrg a; t). We suppose, that the all pj,
are continuous. The continuity of pj; at the point a gives by 1.2.2 that 1.2.3 holds
for some WU e A(a; ty). If Ve B(K, U) — see 0.21 —, again from the continuity
of pj, at the point gyy(a) follows (by 1.2.2) that &, (W") = 0 Ny~ !(K) for some
WY € A(oyv(a); Tv). (We suppose that 1.1.12 holds.) Thus for the continuity of all p;
the following condition is necessary:

1.2.4. Condition. Let U € #(X), a€ Sy, Ke XY, 0 e Agrg a; t). Then for every
Ve B(K; U) there exists W e A(gyy(a); 1)) such that

(1.2.5) U{&x(W")|VeB(K; U)} = 0 ny~Y(K).

From 1.2.1. is qute clear that the condition 1.2.4. is also sufficient for the continuity
of all py. Thus we get

1.2.6. Proposition. All p}; are continuous iff 1.2.4 holds.

1.2.7. Proposition. Let U € B(X), ae Sy, Ke 4., 0€Agrg a;t) and let there
exists U’ € B(K; U) such that for every Ve B(K; U’) there exists W{ € Auy(a); tv)
such that U{&x(WY)|VeB(K;U')} = O ny~Y(K). Then for every VeB(K; U)
there exists W* € Aouy(a); ©) such that Y{&,x(W") |VeB(K; U)} = 0 n ¥~ '(K).

Proof. We use the continuity of oyy. For Ve B(K; U) we set W = oy, ., (W¢ ™).
Then the neighborhoods W have the requered property.

Proposition 1.2.7 says, that if the condition 1.2.4 holds locally, i.e. in the form
from 1.2.7, then it holds in the original form from 1.2.4.

1.2.8. Notation. Let U € #(X), a € Sy and let K = U be an arbitrary set. Every
map 7 of the set B(K; U) into the cartesian product [] A(eyy(a); 7y) such that for
KeVecU

VeB(K; U) we have (V) = W e A(euy(a); ) will be called choice.

1.2.9. Definition. Let U € #(X), a € Sy, K = U, K an arbitrary set,  a choice. The
chain round a from U to K is the family

(1.2.10) R(U,a,K, W) = {W"|VeB(K;U), W = n(V)}.
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1.2.11. Agreement. Let K = X, M < §~'(K) be such sets, that for some U € 2(X)
and some a € Sy, there is K € " and M = grg a.

With such 4-tuples (K, M, U, a) we will often meet later. In order, that we need
not describe them again, we will say briefly, that (K, M, U, a) is a 4-tuple from 1.2.11.

1.2.12. Notation. Let (K, M, U, a) be from 1.2.11. Let us choose a chain
R(U, a, K, WY) and let us set

(1213) F=SRU, oK W)= U &W) <y (K),
VeB(K;U)

(12.14) #,(U, a,K) = {F|F = S(R(U, a, K, W")), R(U, a, K, W¥)

is a chain round a from U to K} .
~ We have clearly

1.2.15. Proposition. If (K, M, U, a) is from 1.2.11, then (U, a, K) is a filter
base in Y~ (K) round M.

1.2.16. Lemma. Let U, Ve #(X),ae Sy, be Syand let K = U n V be an arbitrary
set that gry a = gry b. Then for some VeB(K; U nV) we have oyp(a) = oyp(b).

Proof. Because of grya = grg b, for every x € K there exists an open neigh-
borhood V, = U NV such that gyy (a) = oyy(b). Let us set V= U{V,|xeK]}.
Then Ve B(K; U n V) and for the elements a’ = gyp(a), b’ = gyp(b) we have: For
every V,, x € K there is 0y (a’) = 0pyx(b’) (by 0.11). Because of ¥ = U V,, there is
by 0.17 a’ = b'".

1.2.17. Corollary. Let (K, M, U, a), (K, M,V,b) be two 4-tuples from 1.2.11.
Then the filter bases F (U, a, K) and F (V, b, K) are equivalent.

Proof. Let F, = S(R(U, a, K, Wy'*)) € # (U, a, K). For U and V' let us choose ¥/
such that the assertion from 1.2.16 holds.

For V, € B(K; V) let us set W) = oy}, .p(W)>"7). Then we have F, = S(R(V, b,
K, W)?)) e Z (V. b, K) and F, < F;, which finishes the proof.

1.2.18. Corollary. Now we can write simply &, or & gry a instead of fM(U, a, K)
and use always the more convenient base P/*"M(U, a, K) which we do in the following.

1.2.19. Proposition. All the maps py are continuous iff for every U € %(X), a € Sy,
A € A the base F gry a majorises the base A(gry a; 1) nyy~(K) (briefly # grya <
< Algrg a; 1) n Y~ (K)).

Proof. If we take into consideration the corollary 1.2.18 and 1.2.12—15, we see,
that we have only paraphrased Proposition 1.2.6.
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Now, for Ue B(X), ae Sy, # €A, FeF grga let us take the set Emé(F) =
= {b(x) | b(x) € Ay, grx b = F} (see 0.19) and let us set : .

(1.2.20) : {&k(F)|Ke #7, Fe F grya} .

We have obviously
1.2.21. Proposition. Thefamily 1.2.20 is a filter subbase in A, round a(x). ,,

1.2.22. Definition. The closure in the sets A4, generated by the filter-subbases
1.2.20 will be denoted by k. The natural map,

(1.2.23) ot (Sur 70) = (g, k)
will be denoted by pk.

1.2.24. Corollary. Let 4 = {1y} be a closure collection of our presheaf. From 1.2.13
we can see, that for U € Z(X), a € Sy, K € #7 the form of the base # gry a depends
on the form of the collection p, and thus k from 1.2.22 depends also on u. Therefore
in cases if necessary, we will denote the closure k by the symbol k,, understanding
under it the closure k from 1.2.22, which is formed from p. .
1.2.25. Corollary. A. All the maps p; are continuous.

B. All the maps py are continuous iff we have k < k(1) in all Ay.

Proof. A. Let Ue #(X), aeSy, KeA., F=S(R(U, a,K, W))eF grg a.
Then D = &;4(F) € A(a(x); k) and py(WY) < D, thus p} is continuous.

B. If all the pj, are continuous, then by 1.2.19 (comparing 1.2.20 and 1.1.6) it
follows, that in all Ay there is k < k(f). Conversely, if in all 4, k < k(f), then A
implies the continuity of all py,.

1.2.26. Proposition. Let for the closure t in P all the maps (py)~"' be continuous.
Then k(f) < k in every Ay.

Proof. By 1.2.25A the all pj; are continuous. From the continuity of all (py)~*
follows the continuity of the map i = p}; o (p})~", which is the identity map i, :
(s K(0) — (A 1),

1.2.27. Corollary. If the closure t is P is normal (see 1.1.3), then k(t) = k in all Ay.

Proof. If ¢ is normal, then every p}, is continuous and thus by 1.2.25B we get k <

< Kk(t) in every Ay. Because every (py)~" is continuous, 1.2.27 follows from 1.2.26.

1.2.28. Definition. A closure ¢ in P is called seminormal, if k(f) = k in all 4,,.
From 1.2.27 follows immediately:
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1.2.29. Theorem. Every normal closure is seminormal. A necessary condition for
the existence of a normal closure in P is the existence of a seminormal one.

1.2.30. Theorem. A necessary condition for the existence of a normal closure in P
is the continuity of all (p})™*.

Proof. Let ¢ be normal, i.e. all the p}, are homeomorphisms. By 1.2.27 the all p,
are homeomorphisms and therefore the all (p})~" are continuous.

1.2.31. Theorem. A. Let all the (p})~" be continuous. Then there exists a normal
closure in P iff there exists a seminormal closure t, in P. If this condition is
satisfied, then t, is normal.

B. If there exists a seminormal closure t, in P, then there exists a normal closure t
in P iff all the (p§)~" are continuous. If this condition is satisfied, then t, is normal.

Proof. A. If all the (p})~* are continuous, then by 1.2.25A the all p}, are homeo-
morphisms. If ¢, is seminormal, then p}; = p{f for all U e #(X), hence t, is normal.
Conversely, if ¢, is normal, then by 1.2.29 is seminormal.

B. If t is normal, then by 1.2.27 all the (p}) ! are continuous. Conversely, from the
continuity of all (p};) ~* follows by 1.2.25 A that all p}; are homeomorphisms. Then the
seminormality of ¢, implies that ¢, is normal.

1.2.32. Theorem. The necessary condition for the existence of a normal closure
in P is the simultaneous validity of both necessary conditions 1.2.29, 30. Conversely,
the simultaneous validity of both these conditions provides the existence of a normal
closure in P.

Proof. Follows immediately from 1.2.31 A.

So that we could decide, whether there exists a normal closure in P, we must study
the simultaneous validity of 1.2.29, 30. In the following paragraph we study the second
condition.

3. Continuity of (p})~*

For sake of completeness we state the necessary and sufficient condition for the
continuity of all (p§)~".

1.3.1. Theorem. All the (p'{,)_1 are continuous iff the following condition holds:
“If Ue%B(X), aeSy, Wel(a; 1), then there exist Ky, ...,K,e A. and F;e
€F grg,a,i=1,...,nsuchthat

(1.3.2) N & (F) = po(W) 7
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Proof. By the definition 1.2.22, 1.3.1 is only the verification of the definition of the
continuity of all (pp)~*.

We will study when the condition in 1.3.1 holds. For that we need to stronger
Condition 1.1.1 for the cofilters 7.

1.3.3. Assumption. From now up to the end of the chapter we assume that 1.1.12
holds, i.e.: “If U, Ve #(X), V < U, a € Sy, then

(1.34) Kl ={K|Kex],KcVv}.”

euv(a)

Let p = {ty} be a closure collection of our presheaf and let U € #(X), a € Sy,
Kexl. Letus put

(1.3.5) P(a,K) = {¢gk(F) | Fe # grg a},
(1.3.6) P(a) = {P(a,K)|KeX]}.

Then 2(a) is a filter-subbase in Sy round a. Thus the sets #(a) form a closure
in Sy. If we form the closure 7J) in all S, then by 1.3.3, 1.2.18, 13 we have obviously

1.3.7. Proposition. Let us denote u° = {tJ}. Then pu° is a closure collection
coarser than p.

1.3.8. Theorem. Let & be a presheaf over X, p and v its closure collections,
u < v. Let all the (p}y) ™! be continuous (see 1.2.24). Then p°® < v.

Proof. Let Ue #(X), ae Sy, p = {1y}, v = {15}, We A(a; 7). From the con-
tinuity of (p})~! and from 1.3.1 follows the existence of the sets K, ..., K, € A,
and the chains R(U, a, grg, a, W{?), i = 1, ..., n such that

n
(1.3.9) Si=N&i[ U &Gu(W] < po(W).
i=1 Viep(K;i;U)
Here for the all W} in 1.3.9 there is W}* € A(oyy (a); 7). Because u < v, we can for

every W}* from 1.3.9 find some W"* e A(eyy (a); tv,) such that W¥* = WY*. Then
we have

(1.3.10) S=0N&x[ U &uxW)l<s,.
i=1 V iep(Ki;U)
If we denote by F; the sets in the brackets, then F;e & gry.a, i =1, ..., n and by

1.3.5—7 we have p; '(S,) € A(a; tp) and py '(S,) = W.

1.3.11. Theorem. For every collection u = {ty} there exists the unique collection
@i = {Ty} coarser than p with these properties:
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(@) k, = kzinall Ay, ... -~ : C SRR
(b) the all (piF)~* : (Ay, kz) - (Sy, Ty) are continuous, '+

(¢} if vis a coarser collection than p and all(py)~" are continuous, then i < v
And simultaneously we have ji = u°. : ’

- Proof. Let us set i = pu° By 1.3.7 we have g < 1% (c) holds according to 1.3.8.
Let U e #(X), a € Sy, K € #".. Let us form the base & grg a from the collection u°
and let us denote it by %! gr, a. Because p < p°, #! gry a is coarser than the base
Z gry a formed from the collection p. '
Conversely, let Fe % grya. Let us set W = &g(F) for Ve B(K; U). Then
S =S(R(U, a,K,W"))e F' grya and S < F, which proves the equalence of
F grya and F! gry a. This proves (a) Let U € #(X), a € Sy. Let us choose D =
= CUK(F)GA(a 1y} for some K € #°C and some Fe %' grga. Then D = fUK(F) e
€ A(a(x); k,0) and py(D) = D, which proves (b). \

1.3.12. Definition. Because the collection u° from 1.3.7 has the properties described
in 1.3.11, we call it cofilter-modification of the collection u with respect to the given
cofiltration » = {7 | U € #(X), a € Sy}

1.3.13. Corollary. By 1.3.11 u® is thefinest of the all collections v which are coarser
than p and for which the all (p§)™" are continuous. These three properties are
equivalent:

(a) The all (pir)~* are continuous,
©] for the collection u the condition from the theorem 1.3.1 holds.

1.3.14. Remark. Let & = {(Sy, ty); 0ur; X} be a presheaf over a locally compact
space with the unique continuation, (see 0.32) and with projective closure collection
(see 0.38, or [8]), 1.1.4, for which 1.2.13, 18 from [8] holds. By [8], 1.2.20 for &
there exists its natural cofiltration x. Let k(f) be the closure under the uniform con-
vergence on % and let k be the closure from 1.2.22 formed for ». Then the all (pf;)~*
are continuous. For such a presheaf and its natural cofiltration we have u = u°.

Proof. Let U e %(X) be connected, a € S,, We Aa; t). We can assume (see
1.2.13 in [8]) that K = M(W)e x']. By [8], 1.2.1-3, for every Ve B(K; U) there
exists W¥ € A(oyy(a); ty) such that

(1.3.15) ooy(W) = W.

Then S = S(R(U,a,K, W"))e # grg a and L = &;5(S) = py(W), Le A(a(x); k).
Thus (p§)~! (L) = W, which finishes the proof for connected U. For an arbitrary
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U € %(X) let us notice the commutative diagram for every component V of U:

(Pv) 1

(S U» TU)

Puv Y| Puv

(SVa TV) Lk (AV, k)

(Au, k)
(1.3.16)

The projectivity of g = {ry} and the local connectedness of X (see 0.32) imply
that (p})~! is continuous iff oyy o (pU) ! is continuous for all components V of U.
By 1.3.16 there is oy » (P§) ™" = (P¥) ™"« pyy. From [8] 1.2.20 and from 1.2.20—22
follows the continuity of all gy, which with the first part finishes the proof.

1.3.17. Remark. Let all the (Sy, 7y) be compact topological spaces and let all
the (4y, k) be HausdorfT topological spaces. By 0.17 all the pj; are injective, and by
1.2.25 also continuous and thus homeomorphic.

Now, we are going to show that in some cases the modification can be also construct-
ed in an other way than in 1.3.5—7.

1.3.18. Notation. Let U € #(X), K = U be an arbitrary set and uy resp uy a closure
in U resp in K, induced from X. Let ryx be a map: a(x) € 4y, = ryx(a(x)) = a(x)/K
of the set 4, onto I'y = ryx(A4y). For all Ve B(K; U) there exists a natural map
Syk 1Sy x K> Y !(K) defined as follows: aeSy,, yeK = d,k(a,y) = a(y) =
= &y,(a). Let us denote A, = {§,x | Ve B(K, U)}. We can define a natural closure tx
in ¥ ~!(K), with respect to the set Ay, of the maps dy, namely the finest of the all
closures 7, such that all the §y,x €&y, Sk : (Sy x K, 1y x ug) = (¥ ~Y(K); t) are
continuous, i.e.

(1.3.19) ty = lim {r, x ug |VeB(K; U)}.

(See 0.21.D) For U, Ve #(X), Ve B(K; U) let us define the map Ryy : Sy x K —
— Sy x K as follows: aeSy, xeK = Ryy(a, x) = (oyy(a), x). Clearly the map
Ryy : (Sy x K, 1y X ug) = (S, x K, 1, x ug) is continuous.

Let U, U’ € B(X), K = U n U'. We will prove that ty = ty . Let ¢ be such a closure
in y~!(K) that the all maps 8,k €A, are continuous. Let §,.x €Ay for some
V' €B(K; U’). Then we have §,.x = &y npx o Ryry-ap- From the fact that the map
SV'r\UK is from Ay, follows, that it is continuous. Therefore the continuity of Ry -y ay
implies the continuity of §,.x. Thus 1% < tY, which proves the equality ty = t%.
Now we can instead of t write briefly #.

Let U € #(X), ae Sy and let K = U be compact. Similarly as in 1.2.8—18 we can
construct a base & grg a round gry a in ¥ ~*(K). From 1.3.19 we get A(grg a, tx) <
< F gry a. Conversely, let O € A(gry a; ty). We may assume that 0 = U{0, | ae
€ grg a} (where O, € A(x; ty) for all e grg a) such that the following holds: “If
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aegrya, y = w(a), then
(1.3.20) 0,= U fvw(V)(Way) »
)

VeB(K;U
where for every Ve B(K; U) we have ¢,(V) € B(y; V). Now, let Ve B(K; U). For every
aegrga we take @ (V) from 1.3.20. A family A = {¢ (V)| € grga} covers K.
Thus K = U{p,(V) | @ € 4} for some finite A. We may assume that 4 = {a;, a,}.
Then W = W, n W, € Aoy, (a); 7). We construct WY for every Ve B(K; U) in
this way. Then S = S(R(U, a, K, W")) e # gry a and S = 0. We have proved

1.3.21. Proposition. Let U € #(X), ae Sy and let K = U be compact. Then the
bases A(grg a; tx) and F gry a are equivalent.

For Ue #(X), K = U, beTy, 0eAgrg b, tg) let us set D(b; 0) = {c|ceTy,
«(y)e O for all yeK}, 2(b) = {D(b; 0)| O € A(grg b; tx)}. Then 2(b) is a filter
base in I'y round b. The closure in T’y generated by these bases will be denoted by vy.

If for all U e #(X) the following condition

(1.3.22) (@) # =0y =4V forall a,beSy,
(b) Ke#V = K iscompact

is satisfied, let us set

(1.3.23) my = lim {vx | K e 4"},

with respect to the set of maps {ryx | K € #V}. (See 1.3.18).

Comparing 1.3.23 and 1.3.5—6, we get immediately from 1.3.21 m, = tj, for all
U € #(X). Thus if 1.3.22 holds, then the cofilter modification u° of u can be con-
structed also using 1.3.23.

1.3.24. Examples. (1) Let for every U € #(X) and every a € S, A, be the cofilter
of all finite sets in U. It can be easily seen, that u° is projective (see [8], 1.1.4 or 0.38).
Thus we have p' < pu° (see [8], 1.1.6-7).

(2) Let & be a presheaf over X, where for U € #(X) Sy, is some set of continuous
functions on U and 7, the closure under the uniform convergence in Sy. It can be
easily seen, that for every U € #(X) 1y, is the closure under the pointwise convergence
in Sy. (The cofiltration is the same as in (1)).

4. Seminormal closure

Here we study whether the necessary condition 1.2.29 for the existence of the
normal closure holds.

1.4.1. Definition. We say that the closure ¢ in P is a generating one, if the following
condition holds: “If U € #(X), ae Sy, K € A then the filter bases A(grg a;t) N
A Y~ Y(K) and # gry a are equivalent.”
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Comparing 1.2.20 and 1.1.5, we get
1.4.2. Proposition. Every generating closure is seminormal.

1.4.3. Remark. The seminormal closure need not be a generating one — see example
3.4.13.

1.4.4. Proposition. For the existence of a generating closure is P the foloswing
condition is necessary: “If U e #(X), ae Sy, K, Le #Y, K < L, then F gixa ~
~ F grpa 0 Y (K) (see 0.21 C).

Proof. Let ¢ be a generating closure, U € Q(X) K,Le#',K c L, F,e Z gr, a.
Then O Ny~ (L) = F, for some O e Agr, a; t). But there is also O e A(gr a; t).
Hence F; < 0 n y~(K) for some F, € F grg a. Therefore F, = F, n y~'(K) and
thus # gry a < F grp a 0y~ '(K). Conversely, if F; = S(R(U, a, K, W")) e F grg a,
then F, = S(R(U, a, L, W"))e # gr, a and F, n Y~ !(K) = F,, which finishes the
proof.

1.4.5. Agreement. Let the following holds up to the end of the paragraph: “Let
UeB(X), aeSy;

(a) every#" e Y is compact,

(b) every x € U has a base f of the filter of neighborhoods such that § = #'.”

From 1.4.5 follows immediately

1.4.6. Corollary. Let 1.4.5 hold. Then

A. X is locally compact,
B. ifUe B(X), ae Sy, Ke ¥, then K < int Lfor some Le ;.

1.4.7. Assumption. Let the following hold up to the end of the paragraph: “Let
Ue%B(X),aeSy, K,Le #?,K = L. Then # grya ~ F gr a n Yy~ Y(K).”

1.4.8. Agreement. Let x e P, y = y(a). In some S, there exists a generating
element a for a. By 1.4.5b there exist K € #"C and M € #(U) such that ye M < K.
Such 4-tuples will often appear later. In order that we need not describe them steadily,
we will only say that («, U, a, M) is a 4-tuple from 1.4.8. Sometimes we also write
(¢, U, a, K), where K € ' has the property that y = y(«) € int K.

1.4.9. Notation. For a 4-tuple from 1.4.8 let us denote
(14100  GU,K,y)={M|Mex, y=y(®)eint M =« M < K}.
1.4.11. Proposition. For («, U, a, K) from 1.4.8 the set

(1.4.12) L;U,a,K)= U ZFgrya(U,a, M) (see 1.2.14)
MeG(U Ky)

is a filter base in P round a.
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Proof. Let F,, F2 eL(o; U, a,K), y = Y(«). Then F;eF gry, (U, a, M;) for
some M;eG(U,K,)» i =1,2. There exists M;e G(U.K,y), M3 = M;nM,.
By 1.4.7 we find a set F1€ # gry, a(U, a, M5) for F,, such that F,cF,i=1,2
Then F; = Fy n F, © F1 0 Fyand Fy€ % gry, a(U, a, M;) c L(«; U, a,K).

1.4.13. Proposition. Let (2, Uy, a1, Ky), (2, Uy, a5, K,) be two 4-tuples from 1.4.8.
Then Ll = 14((1; UI’ alaKl) ~ LZ = L((X, U29 a, KZ)'

Proof. Let F,e L;. Then F,e # gry, a(U;, a;, M;) for some M;e G(U, K, y),
i =1,2. By 1.4.5b and 1.3.3 there exist U € #(X) and M; e A @y O f:fék(az)
(we have put P = Uy, Q = U,, R = Uj;) for which there is y = y/(@) eint M5 =
© M, = R © M, n M, such that gpz(a,) = ggr(a,).- By 1.4.7 we can for F,; find
Fie F gry, a{U,, a;, M,) such that F; = F;, i = 1,2. Because gry, a; = gry, a,,
it is possible following 1.2.17 to find F e & gry, a,(U,, a,, M3) = L, such that
Fc F,nF, c F, nF, = Fy. The proof is completed.

1.4.14. Corollary. All the bases L(«; U, a, K) can briefly denoted by L(x). We can
use that L(«; U, a, K) which seems to be most convenient. This we will do in the fol-
lowing.

1.4.15. Definition. The closure formed by the bases L() in P will be denoted by ¢*.

1.4.16. Corollary. Let U € B(X), ae Sy, Ke A, intK + 0. If v egrg a, Y(o)e
eint K, then every set F e & gry a is a t*-neighborhood of a.

Proof. By 1.4.14 we have F € # grg a(U, a, K) = L(a).

1.4.17. Theorem. The closure t* in P'is a generating one.

Proof. A. Agrga;t*) < # grya: Let Fe & grga where Ue B(X), aeSy,
K e By 1.4.6B we can find M e #_ such that K < int M. If F = S(R(U, a, K,
W")), then F = S(R(U, a, M, W"*)) e F gr); a and by 1.4.16 we get F e (grg a; t*),
because Fe A(x;t*) for any o egrga. Here we have Fn Y~ '(K) = F, which
proves A. -

B. 7 grya < Mgrga; t%): Let O e A(grg a;t*). For any « € gry a we can find
0, € A(a; 1™) such that (a) U{O, |xegrga} = O, (b) by 1.4.15 there exists a set
M, e A" such that x = y(a) eint M, and O, = F, € & gr,,_a. Because the family
{int M, | x € K} covers K, its finite subfamily covers K, too. For the sake of simplicity
let us assume that it consists of only two sets M; = M, , i = 1, 2. Let us write F,, =
= F;, where Y(¢;) =x;, i =1,2. Thus Kc M;UM, cU and grgxac F,u
U F, < 0. Here we have F;e & gry, a, i = 1,2. By 1.2.17, F; = S(R(U, a, M,,
W), i = 1,2. Let us set F' = S(R(U, a, M, U M,, W/ 0 W})). By 1.4.7 we can
find Fe# grga such that F < F' ny~'(K). Because of F' ny }(K) < (F, u
U F,) n Yy~ Y(K), we get F = (FyUF,)ny '(K) < 0y~ !(K) which proves B.
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By 1.4.4 the condition 1.4.7 is necessary for the existence of a generating closure.
But if we have moreover 1.4.5, we can form the closure t* from 1.4.15, which is
a generating one. Thus we get

1.4.18. Proposition. Let 1.4.5 hold. Then the condition 1.4.7 is necessary and
sufficient for the existence of a generating closure. If it is fulfilled, t* is a generating
closure.

1.4.2 implies:

1.4.19. Proposition. t* is seminormal.

5. Appendix

The bases .7 gry a from 1.2.18 have with respect to 1.2.13 rather complicated form,
which can be simplified for some presheaves.

Let (K, M, U, a) be from 1.2.11. Let us set

(1.5.1) C(M; U, a) = {&g(W) | We Aa, 1)} .

1.5.2. Definition. A presheaf will be called simple with respect to the given cofiltra-
tion x = {A') | U e B(X), ae Sy} if the following holds: “If (K, M, U, a), (K, M,
V, b) are from 1.2.11, then C(M; U, a) ~ C(M;V, b).”

In case of simple presheaves we may write simply C,, or C gry a instead of
C(M, U, a). If the presheaf is simple, it is clear that C grya ~ & grya for all Ue
€eB(X),aeSy, KeA U. For the simple presheaf the all objects constructed from the
bases & gry a will be simpler, namely the closure k, Theorem 1.3.1 etc. For example,
1.3.1 for simple presheaves is as follows:

1.5.3. Theorem. Let &% be a simple presheaf. All the maps (p,})' are continuous
iff the following holds: “If U € #(X), a € Sy, We A(a; ty), then there exists K € 4"
and W' € A(a; ty) such that EggEux(W') = py(W).”

1.5.4. Remark. Let & = {(Sy, Ty); 0uys X} be a subpresheaf of a presheaf &' =
= {(Sp, t); evys X}, ie. Sy < Sy, Qur = 0uv/Suvs Ty = inds, Ty for U, Ve %(X).
Let us denote by P’ resp. P the covering space of &’ resp. of &. Then we have P = P,
If ¢’ is a closure in P’, then ¢t = indp ¢ is a closure in P. Let ¢ be a method which
enables us from the closure ¢’ to construct a closure g(#') in the sets 4y and let the all
natural maps (Sy, ;) = (Ap. q(')) be homeomorphisms. Let q(t) be a closure in 4
constructed from ¢ with use of g.

If g has the property
(1.5.5) ind, g(1') = q(7)
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i.e. the diagram

N — t

]

q(t') — a())
is commutative, where the horizontal arrows are the corresponding restrictions and
the vertical arrows represent the formation of the closure g(f) and g(t'), then ¢ is
normal. Thus from the normal closure ¢’ for P’ we get a normal closure ¢ for P. If we
succed in embedding of the presheaf in question into the presheaf for which there
exists a normal closure, then if 1.5.5 holds, then there exists a normal closure for P.
For example the closure t = ind, t' is normal.

CHAPTER 2

UNIFORM CONVERGENCE ON COMPACT SETS

The symbols & = {(Sy, Tv); Quv; X}, P, 1, ¥, Ay, py have the same meaning as
in Chapter 1. The results of Chapter 1 are used here in the case, where for every
U e #(X) and a e Sy A 2is the cofilter of all compact sets in U. The special way of
choosing of the cofiltration alows us to derive a series of further relations which we
did not study in Chapter 1.

1. Introduction of notions and existence of a normal closure

For every U € #(X) and every a € Sy let
(2.1.1) X7 ={K|K < U compact} .
Then o7 satisfy 1.3.3. Following 1.1.4—7 we introduce the closure of uniform con-

vergence on the cofiltrations 2.1.1, in all A4,

2.1.2. Definition. This closure will be called closure of uniform convergence on
compact sets and denoted by I(¢). The closure ¢ in P will be called normal, similarly
as in 1.1.3, if all the maps

(2.1.3) Py < (Su, 1) = (Au, 1(£))

are homeomorphisms. We study again the existence of a normal closure. For this
sake we use the results developed in Chap. 1.

Following 1.2.8—18 we may construct for every Ue #(X), aeS,, Ke X,
(i.e. K = U compact) the filter base & gry a. Then 1.2:19 gives
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2.1.4. Proposition. All the maps py; are continuous iff for every U € #(X), a € Sy,
K < U compact there is F gry a < Agrg a; t) n ¢~ (K).

Following 1.2.20—22 we may construct the closure k from the bases % gry a.
With respect to the special choice of cofilters 'Y we will denote it in this chapter by
the letter I. The closure I depends on the collection p from which it was constructed.
Therefore, when necessary, we will denote it by /,. The closure ¢ in P is called semi-
normal, if I(t) = 1in every Ay.

The propositions 1.2.25—27 have the form

2.1.5. Proposition. A. All the maps py; are continuous.
B. All the maps py are continuous iff | < I(¢) in all Ay.

2.1.6. Proposition. Let for the closure t in P all the (py)~" be continuous. Then
in every Ay I(t) £ 1.
The conditions 1.2.29 —32 have the form

2.1.7. Theorem. Every normal closure is seminormal. Thus a necessary condition
for the existence of a normal closure is the existence of a seminormal closure t in P.

2.1.8. Theorem. A necessary condition for the existence of a normal closure in P
is the continuity of all (py)~".

2.1.9. Theorem. A. Let all the (py)~" be continuous. Then there exists a normal
closure t in P iff there exists a seminormal closure t, in P. If this condition is
satisfied, then t, is normal.

B. If there exists a seminormal closure t, in P, then there exists a normal closure
in P iff all the (py)~* are continuous. If this condition is satisfied, then t, is normal.

2.1.10. Theorem. The necessary and sufficient condition for the existence of
a normal closure in P is the simultaneous validity of both necessary conditions
2.1.7,8.

So that we could decide whether there exists a normal closure in P, we must study
the simultaneous validity of 2.1.7, 8. In the following paragraph we study the second
condition.

2. Continuity of (p!)"

Theorem 1.3.1 has the form

2.2.1. Theorem. All the the (py)~' are continuous iff the following condition
holds: “If U € #(X), a € Sy, We A(a; ty), then there exist compact setsK,, ..., K, <
cUand Fie # grg,a,i=1,..., nsuch that

(2.2.2) E;,g__(Fi) < p(W).”

ﬁ.Da
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Following 1.3.5, 6 we can construct for our collection u ='{z} its modlﬁcatlon u°
which is again a collection, p < p°. By 1.3.8 we get :

2.2.3. Theorem. Let & be a presheaf over X, u and v its closure collections, p < v.
Let all the (py)™" be continuous. Then we have p°® < v.

By 1.3.11 we get

2.2.4. Theorem. (a) l,0 = I, in all Ay,
(b) the all py are continuous. (We have put 1,0 = I,.)

Because 2.2.3, 4 hold for u°, we will call it cofilter modification of the collection p
with respect to the cofiltration » from 2.1.1. Then from 1.3.11 we get.

2.2.5. Corollary. The collection p° is the finest of the all collections v which are
coarser than y and for which the all (py')™" are continuous. These three properties
are equivalent:

(a) The all (pt)~* are continuous,

(c) the collection p satisfies the condition of Theorem 2.2.1.

2.2.6. Proposition. Let ¥ be a full presheaf (see [8], 1.1.46) over a locally compact
space X with the projective closure collection (see [8], 1.1.4). Then the all (py)™!
are continuous.

" Proof. Let U € B(X), a e Sy, We A(a; tp). By [8], 1.1.44 we have ggy (W) =« W

for some Ve #(U), and some W" € A(oyy(a); ty), where V < U is compact. Further

we have g;,,ffw(W) = WY for some W' e A(QUV(G) 1y). For V' € B(V; U) let us set

WY = oyw(W'). Hence F = S(R(U, a,V, W) e # gry a and &xp(F) < &gy (F

Ny~ I(V)) < iUVCVV(W) < ﬁg‘}fvvav(W) < ppryf;;}fyy(W') < PUVPV(W )

= pyouy(W") = py(W), which finishes the proof. '
From 1.3.14 we get also one sufficient condition for the equality u = u°:

2.2.7. Proposition. Let all the (Sy, tp) be compact topological spaces, all the
(Ay, 1) Hausdorff topological spaces. Then we have: p = p°.

3. Seminormal closure

Here we study when the necessary condition 2.1.7 for the existence of a normal
closure holds, i.e. when there exists a seminormal closure in P. By 1.4.1, 2 every
generating closure is semmormal and therefore we try to find a generating closure in P.
1.4.4 gives
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2.3.1. Proposition. For the existence of a generating closure:in P the following
condition is necessary: “If U e %’(X), aeSyand if K « L < U are compact, then
Fgtya~Fgrany (K. . . .

So that we could construct the generating closure t* from 1.4.14, the conditions'
1.4.5; 7 must be satisfied. Because our cofilters are of the form 2.1.1, the condition
1.4.5a is satisfied and 1.4.5b requires local compactness of X. 1.4.7 gives

2.3.2. Assumption. Let the following hold up to the end of the paragraph: “Let
Ue B(X), ae Sy, K =« L < U compact. Then # grya ~ F grpa 0y~ !(K).”

Thus if X is locally compact and 2.2.2 holds, we may construct following 1.4.8 — 15
the closure t* which is by 1.4.17 the generating one. Thus the condition in 2.3.2,
which is by 2.3.1 necessary for the existence of a generating closure, is also sufficient
in the case of a locally compact X. Thus we have (by 1.4.18)

2.3.3. Proposition. Let X be locally compact. Then the condition 2.3.2 is necessary
and sufficient for the existence of a generatlng closure. If it is fulfilled, t* is the
generatmg closure. By 1 4 19 we see that t* is seminormal.

4. The importance of assumption 2.3.2.

The special form of cofilters 2.1.1, which we are studying here, allows us without
difficulties to show some further relations, which we did not study in the previous
chapter.

2.4.1. Proposition. Let X be locally compact and let 2.3.2 hold. Let xe P, U, U'e

€ B(X), let U = U’ be compact, a'€ Sy, y = Y(«) €U, a = gy(a’) a generating
element for o (see 0.18). Then the filter bases

(2.4.2) B(o; U, a) = {EuW)|VeB(y; U), We Aa; t)},
(24.3) 9(x;U,a) ={Fny ' (M)|FeZ grga, MeB(y; U), M = U compact} ,
(244) #(;U,a) ={Fny~'(M)|FeZF grya, MeB(y; U), M = U compact},

are equivalent with the filter base L(a; U, a’, U) of t*-neighborhoods of « (see
1.4.11—14).

Proof. From the local compactness of X follows immediately the equivalence of
D(x; U, a) and %'(«; U, a). Because 2.3.2 is satisfied, we get easily that 2(«; U, a)
and L(a; U’, a’, U) are equivalent. We are going to prove the equivalence of #'(a; U, a)
and #(x; U, a).
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1. Let Fny~*(M)e #'(«; U, a). Then Fe # grya and M < U. With respect
to the form of the sets F e & gry a from 1.2.13, there exists (by 2.3.2) We A(a; 7y)
such that &yg(W) = F ny~'(M). Hence Eyp(W) = Fn Yy~ '(M) and Eyp(W)e

'€ B(a; U, a).

2. Let &yy(W)e B(a; U, a). For VeB(U;U’) let us set W’ = g;}(W). Then
F=SR(U,a,T, W) eF grpa’ and Fnay~ (V)< EuW(W). Moreover F n
Ny~ (V)eB(x; U, a).

2.4.2. Corollary. Let X be locally compact and 2.3.2 hold. Then the filter base
of t*-neighborhoods of « is formed by any base from 2.4.1. For our purposes we
can choose that, which is most convenient for us.

2.4.3. Corollary. Let X be locally compact and 12.3.2 hold. Assertion: “Let a € P,
U,Ve #(X), let aeSy, beSy be generating elements for « and let U’ € A(U),
V'eBWV),y=y(a)eU' AV whereU' < U, V' < Varecompact, We Aloyy(a); y-)
and U" € B(y; U’).” Then there exists W' € A(gyyb); t,.) and V" € B(y; U") such
that &y (W) < Egg W).

Proof. Under this assumption we have &y.yAW) e B(«; U, a’), where @’ = gyy(a).

By 2.4.1 this base is equivalent to the base &(x; V"', b’) where b’ = gyy(b). And this
is our corollary.

2.4.4. Proposition. Let X be locally compact and let the assertion from 2.4.3
hold. Then 2.3.2 holds.

Proof. Let U’ e A(X), a’ € Sy, K = L = U’ compact. There exists U e B(L; U’)
such that U < U’ is compact. Let a = gyy(a’), F = S(R(U, a, L, W¥)) e # gr a.
For all Ve B(L; U) let us set W¥ = WY. If Ve B(K; U) — B(L; U), we can find for the
neighborhood WV and for « € gry a (by the assertion 2.4.3) the sets W, € A(eyy(a); tv)
and V, € B(y(a); V), such that &y (W,) = &y (WY). Then there is K = V,, U ...

... UV, where ay, ..., a, € grg a. Let us set W = ) o5y (W,,), where we have put
i=1

Vi=V,, i=1,...,n Then we have & x(W") < *yx(WY) = Ege(WY) n Y '(K) =
< Fny~(K). For F' = S(R(U, a,K, W")) e F grx a we have F' = F 0y~ '(K).

2.4.5. Corollary. Let X be locally compact. Then the assertion 2.4.3 and the

assumption 2.3.2 are equivalent.

5. Generating closure for X not locally compact
If X is locally compact and the assértion 2.4.3 holds, we can construct the generating
closure t*, since 2.3.2 holds. The property included in 2.4.3 can be extended to the

spaces which are not locally compact.
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For a € P, U € #(X), a € Sy generating for a let
(2.5.1) H(o; U, a) = {Egm(W) | We A(a; 1), M e B(y(a); U)} .

2.5.2. Definition. The presheaf & = {(Sy, ty); euy; X} is called topologically
trivial (briefly t.t.), if all the bases #(«; U, a) are equivalent for all o € P.

2.5.3. Remark. The topological triviality is the strengthening of the property
from the assertion 2.4.3. If the presheaf is t.t., the bases #(a; U, a) can be denoted
by #(«) and we may always use the most convenient one.

2.5.4. Notation. For the 4-tuple (K, M, U, a) from 1.2.11 let
(2:5.5) , G(M; U, a) = {&Egk(W) | We Aa; 1)} -

2.5.6. Proposition. Let the presheaf be t.t. If U € .@(X), ae Sy, K = U compact,
then 4 = 9(M; U, a) ~ F grg a. Thus the presheaf is simple with respect to the
compact cofiltration (see 1.5.2).

Proof. Clearly ¥ < & gry a. Now, let G = &y (W) e 9. If Ve B(K; U) we can
for every x €K find (as a consequence of t.t.) ¥, € B(x; V) and W, e A(oyy(a); Tv)

such that &,y (W,) < &,y (W). Therefore K < V,, u...UV,. For W' =NW,,
i=1

we have &yg(WY) < Eyg(W). Let us form WY for every Ve B(K; U) in this way.
Then S = S(R(U, a, K, W¥)) e # gry a and S < Eyg(W).

2.5.7. Corollary. If (K, M, U, a) is from 1.2.11 and if the presheaf is t.t., then all
the bases 2.5.5 are equivalent.

Thus we may denote them only by ¢,,. Where we need the bases & gry a, we may
use the equivalent bases ¥ gry a if it is convenient for us. So, for example, the filter
base A(a(x); 1) is of the form

(2.5.8) {E€ox(Euk(W)) | K = U compact, We A(a; )} ,

instead of more complicated form described in 1.2.20. For example, Theorem 2.2.1
has the more clear form

2.5.9. Theorem. Let the presheaf be t.t.. The all (py)~" are continuous iff the
following holds: “If Ue %(X), aeSy, WeA(a;1y), then there exists K = U
compact and W'e A(a; ty) such that E;g &y (W) < py(W).”

The advantage of t.t. presheaves consist in the fact that the relations are more easy
to survey and can be more easily verified. Moreover we can construct for them the
generating closure without the assumption of local compactness of X.

For t.t. presheaves the bases %(a) from 2.5.1 generate a closure in P.
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2.5.10. Notation. The closure generated in. P by the bases #(«) will be denoted
by t;.

When X was locally compact and 2.3.2 held, we constructed the closure ¢* follo{m'ng\'
1.4.14. On the other hand, the closure t1 was constructed for t.t. presheaves. If
moreover the presheafis t.t., X i is locally compact and 2. 32 holds, then the bases H (o)
from 2.5.1 and the bases 93(0: U, a) from 2.4.2 coincide. Hence (by 2.4.1 and 2.5.10)
tt = t1 Therefore we may the closure from 2.5.10 denote by t* and we will really
do so. Condition 2.5.10 is only the extension of the deﬁmtlon of the closure ¢* from
1.4.14 to presheaves over the spaces, which are not locally compact. So that we could,
realise this extension, the presheaf must be t.t.

2.5.11. Theorem. Let the presheaf be t.t. Then the closure t* frorﬁ 2.5.10 is
a generating one.

Proof. We use 2.5.6. Let G = &y (W) € % gry a. By 2.5.10, 11 we have Eyy(W) e
€ A(grg a; t*). Here we have G = &yy(W) n Y ~*(K). Thus A(grg a; %) n Yy~ 1(K) <
< & grg a. Conversely, let O € A(grg a; t*). By 2.5.10 we can assume that O =
= U{¢ym(W,) | € grg a}, where M, eB(y(x); U) and W, eA(a;t,) for every
o € gry a. The compactness on K implies that only finite number of the sets M,
covers K. For convenience we may assume that they are only two. Let M,, = M,,
W, =W X;=(a), i=1,2. Then G = Eu(W; \ W3) < (Conr(Wy O Wa) U
Ul (Wi n W) n Yy (K) = 0 ny~Y(K)and Ge ¥ gry a.

2.5.12. Remark. The topological triviality of & = {(Sy. 7y); 0uy; X} can be
localised as follows: & is locally t.t. (briefly L.t.t.) if the following holds: “If o € P,
Ue#(X), aeSy, K < U compact, y = y(x)eK, a(y) = a, then there exists
U’ € B(K; U) such that for every ¥, ¥’ € B(y; U’) the bases #(a; V, guy(a)), #(a; V',
ovy(a)) from 2.5.1 are equivalent. If & is Lt.t., we can define as in 2.5.10 the closure
t{ and easily (similarly as in the case when # is t.t.) prove, that 2.5.6, 11 hold.

We can easily see that if X is locally compact and 2.3.2 holds, then & is Lt.t. (see
2.4.1, 2). Thus 2.5.10 for the 1.t.t. presheaves is an extension of 1.4.15.

6. Natural closure

For every U € #(X) there is a natural map 6 : Sy x U — P defined as follows:
ae Sy, yeU = y(a, y) = a(y) (see 0.11). Then we have the family of maps

(2.6.1) A = {6,|UeB(X)}

of the sets Sy x U into P. We can define a natural closure in P with respect to the
set A, namely the finest of all closures ¢, for which all the maps 6, € A, 8y : (Sy x U,

32



7y x u) — (P, t) are continuous (u is the closure in U induced by the closure from X),
ie. lim 7y X u.
A
2.6.2. Definition. The closure lim t, x u will be denoted by * and called natu-
ral closure. 4
Let us notice how the sets A(a; #*) look like.

2.6.3. Agreement. Let € P, U e #(X), y = Y(«) e U and let a € S, be a generating
element for «. Every map ¢y, of the set B(y; U) into itself such that for Ve B(y; U)
we have 9, (V) < V will be called choice. (In 1.2.8 something else was called choice,
but there is not danger of confusion, because the both choices are clearly diﬂ‘erent.)

Let aeP, Ue%B(X), y=y(x)eU, aeS, a generating element for a. If
R(U, a, y, W¥) is a chain from 1.2.10 and ¢, a choice from 2.6.3, let us form

(2.6.4) S(R(U, a, 3. W"), o) = U & (W)
VeB(y;U)

(we put ¢, = @)

(2.6.5) B(a; U, a) = {S'(R(U, a, y, W¥), y,) | R(U, a, y, W")

is a chain from U to y, ¢y, is a choice} .

2.6.5. Proposition. Let we P, U,, U, € #(X), a, € Sy,, a, € Sy,, y = p(a2) e U, N
N Uy, ay(y) = a,(y) = a. Then the sets B, = %(«; U, a,) and B, = B(«; U,. a,)
are equivalent filter-bases in P round o.

Proof. Let S, = S'(R(U,, ay, y, W)), ¢u,,) € B,. Then we have oyy(a;) =
= 0y,u,(a;) for some Uj e B(y; U; 0 U,). For Ve B(y; U,) let us set W, =
= Q;l}nU:.(WthUA) and (pUzy(V) = (pUly(Vm U3) Hence S,(R(U2~ as, y, WZV)’ (pUzy) =
=S,e4,and S, < S;.

2.6.7. Corrolary. Instead of %(a; U, a) we may write simply #(x) and use always
the more convenient base B(x; U, a).

2.6.8. Corollary. The bases %(o) form a closure in P. From the form of these
bases we can easily see, that they are filter-bases of t*-neighborhoods of the ele-
ments o.

2.6.9. Proposition. Let X be locally compact and let 2.3.2 hold. If t* is the closure
from 1.4.14, then t* = t*.

Proof. By 2.4.1,2 we get from 2.6.4 that t¥ < t*, because @(a; U, a) from 2.4.2
is finer than %(a) from 2.6.5. Now, we show (using 2.4.1), that %(«) is finer than
#'(o; U, a) from 2.4.4. Let Fny~'(V)e®B'(«; U, a). For every V' e B(y(a); V)
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we can find ¢(V") € B((a); V) such that (V") = ¥’ is compact. By 2.3.2 we have
Ersin(WY) = F oy~ o(V')) for some W' e Aleyy(a); 7). Thus we get
vy (W) < F 0y (o(0). Hence S' = S(R(U. a, (@), W), ¢) < F = (7)
and S’ € A(; t*), which proves the proposition.

2.6.10. Proposition. Let the presheaf be t.t. (see 2.5.2), let t* be the closure from
2.5.10. Then t* = r*.

Proof. It follows immediately from the t.t. of & that the bases Jf(cx) from 2.5.1
and A(x; t*) from 2.6.5 are equivalent. Further #(«) is a base of the filter of ¢*-
neighborhoods of «.

2.6.9, 10 can be generalised as follows: Let & be lL.t.t. (see 2.5.12), t* the closure
from 2.5.10 (see 2.5.12). Then t* = t*.

The proof follows easily from 2.5.12 and 2.4.1.

2.6.11. Corollary. We can see the importance of the natural closure t*. The clo-
sures ¢ from 1.7.14 and 2.5.10 coincide with t*.

2.6.12. Proposition. All the maps pl; are continuous.

Proof. Let Ue %(X), ae Sy, K = U compact, 0 e A(grg a, t*) n " '(K). We
can assume that 0 = U {0, n ¥y ~(K) | o € grg a}, where for every a € gry a there is
0, € Ax; t*). By 2.6.4 for every o € gry a there exist ¥, € B(y(«); U) and W, € A(a; )

such that &y (W) = O,. Then we have K < V,, ... 0 V,,. For W= (| W,, we get
Eux(W) = 0, which finishes the proof. i=1

2.6.13. Proposition. Let & be a presheaf over a regular space X. Let t be a closure
in P such that for every U e #(X) and every compact K <= U we have 7 grya <
< Agrg a; ) n Yy~ Y(K). Then Agry a; t*) n ™ '(K) < Agrg a5 t) 0 ¢~ 1(K).

Proof. Let Ue#(X), ae Sy, K < U compact, Oy~ (K)eA(grga:t)n
N Y~ Y(K). It suffices to prove: If « € gry a, then for some Se A(o; ) we have S N
Ny I(K) < 0Ny~ !(K). Let aegrga and F = S(R(U, a, K, W¥)) € 7 gri a such
that F = 0 ny~!(K). For Ve B(K; U) let us set W = W" and ¢(V) = V. For
Ve B()(z); U) — B(K; U) we can find ¢(V) e B(y(«); U) such that ¢(V) = V. Then
o(V) n K = Lis a compact subset in K. Because & gr; a < A(gr;, a; t), we have
F, < 0 ny~ (L) for some F; = S(R(U, a, L, W")) e # gr; a, and thus &, (W) <
< Fy. Hence S'(R(U, a, Y(a), W"), @) = S e Alw; t*)and S nyy~(K) = 0 n y~1(K),
which finishes the proof.

2.6.14. Theorem. Let & be a presheaf over a regular space X. If there exists
a generating closure in P, then t* is a generating one.

34



Proof. Let Ue %(X), aeSy, K =< U compact. By 2.1.4, 2.6.12, we have
F gy a < Mgrg a; t*) 0y ~1(K). If ¢ is a generating closure, then we get by 2.6.13
Algry a; t*) n Y~ Y(K) < Algrg a; 1) ny~Y(K) < F gry a, which finishes the proof.

2.6.15. Theorem. Let & be a presheaf over a regular space X. If there exists
a seminormal closure in P, then t* is seminormal.

Proof. By 2.6.12 and 2.1.4 we have I < I(t*) in all 4y, If ¢ is seminormal, then by
2.1.4,5 F gry a £ Agrg a; t) 0~ 1(K), where U € #(X), ae Sy, K = U compact.
By 2.6.13 we have A(grg a; t*) n = (K) < A(grg a; 1) 0y ~!(K), hence in every 4y
we have I(t*) < I(t) = 1. Thus I(r*) = 1.

2.6.16. Theorem. Let & be a presheaf over a regular space X. If there exists
a normal closure in P, then t* is normal.

Proof. Let t be a normal closure. By 1.2.29 in every A, we have I(f) = I. By
2.6.15 in every Ay we have also I(t*) = [ and thus ¢* is normal.

7. Sufficient conditions for the normality of t*

2.7.1. Theorem. Let & be a full presheaf over a locally compact X (see [8],
1.1.46), with a projective closure collection p = {t,} (see [8], 1.1.4) for which
2.3.2 holds. Then t* is normal.

Proof. Let U € #(X), a € Sy, We A(a; 1y). Then for some Ve %(U) (where V <= U
is compact) and for some W € A(oyy(a); 7,) we get ogy (W) = W (see 1.1.45 in [8]).
Further we have &,/ &,(W') « WY for some W’e A(eyy(a); ). Let us choose
U’ e B(V; U) such that U’ < U is compact. We set W = oyv(W’). By 2.4.1, 2 and
2.6.9 we have O = &, (W)e Agry a; t*). Then Ep(0ny (V) < Ep(0n
YY) < E (G (W) < dovEvvén(W') < Gup(WY) < pu(W).

Now we will construct one closure t' in P, which will be used in the next. From
now we assume X is locally connected.

Letae P,U e %(X),ae Sy, y = ¥(«) e U, a(y) = a. Let us set

(272)  #(e; U, a) = {SR(U", epua), y, W¥)) = U{&n(W") | Ve B(y; U'),
connected} | U’ € B(y; U), R(U", oyy(a), y, W") is a chain from U’ to
y round gyy(a)}.

2.7.3. Proposition. Let U,Ve #(X), y =y(x)eUnV, aeSy,, beSy,, a(y) =
= b(y) = a. Then M(o; U, a) ~ M(o;V, b). Thus we may denote these bases
briefly by 4 (x). These bases form a closure in P which is coarses than t*. We will
denote it by t.
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Proof. Let M = S*(R(U’, oyu(a), », W")) e M(x; U, a). We can find Ve
e B(y; U’ V) such that gyp(a) = opp(b). For connected V' e B(y; V) let us set
WY = WY Then M, = S*(R(7, 0yp(b), y, W) = U {Epr(W)) | V' € B(y; ), V"
connected} € #(a; V, b) and we have M, < M, which finishes the proof of the equi-
valence. The rest follows by comparing 2.7.2 and 2.6.3—5.

2.7.4. Agreements and notations. For U € (X) and K = U compact let us denote
by Ty, the set of all finite open covers of K by open connected sets in U. If 7 e II2,
then every map o, : ¥ - || A(oyy(a); t) of ¥ into the cartesian product of the

Vet
sets A(oyy(a); ty), such that for every Ve ¥~ we have 6,(V) € A(oyy(a); ty) willbe
called choice. If o, is a choice, then

(2.7.5) B(K; 7", W) = {W) | VeV, Wy = o, (V)},

will be called envelope. Further, let us set

(2.7.6) S(B(K; ¥, Wy)) = Ui (Wy) |[Vev},

(2.7.7) Bgrya= {,H OS(B(K; VW) | B(K: ¥, W)
is some envelope, 7" e TR} .

It is clear that 2 gry a is a filter base round gry a in P.

2.7.8. Lemma. Let Ue%(X), aeSy, K< U compact. Then A(grya;t')n
Ny~ (K) £ B grgany~(K).

Proof. Let B = U{S(B(K;¥", Wy)| 7 eIl}} € B grg a. Let us choose a cover
v = {U, | x €K} of K such that for every x € K there is U, € B(x; U). Let x € K.
V€ B(x, U,) connected. Then there exists ¥~ € Ily such that V,e¥ . Let us set
W* = Wy~ For every x € K and every connected V, € B(x; U,) let us form this
W* e Aoyy(a); 1y). Then we have O =U U{& (W) |xeV.cU,V,
connected} € A(grg a; t') and we have O < B. > 7~

2.7.9. Theorem. Let & = {(S,.7,): 0uv: X} be a presheaf with the unique con-
tinuation over a locally compact space X with a projective closure collection p =
= {7y} (see 0.32 and 1.1.4 in [8]). Then t* is normal.

Proof. We will prove that the natural maps (py)~ " : (Ay, I(t*)) = (Sy, 7y) are
continuous. Because (by 2.7.3) there is ¢* < ¢!, we have /(*) < I(t') and thus all
the maps (p;;) ™" are continuous. By 2.6.12 t* js normal.

Let U e #(X) be connected, a € Sy, We Aa; tp)- By [8], 1.2.1-4 there exists
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a compact set M(W) = K < U such thatif ¥ e B(K: U), then for some W" e A(ov(a);
7,)we have

(2.7.10) eov(W") = W.

For 7" eTIY let us set V, = U{V|Ve ¥'}. Then oy, (W) = W for some W' e

€ A(euy,(a); ty,). Further, for every Ve ¥ there exists Wy € Aoyy(a); tv) such

that W > Q;;,,(W;,/) (see 0.32 and 1.1.4 in [8]). For these Wy, Ve 7" let us take
Vey

the envelope @, = B(K; ¥, Wy) (see 2.7.4—5). If we form such %, for every
¥ e IIy, then we have

(2.7.11) B= U S(%y,)=U U &(W)eBgya

Vellg© Vell®x Vet
and (by 2.7.8) we have I = &g¢(B n z//"l(K)) e A(a(x); I(1')). Let b(x) € 1. Then for
every y € K there exists (by 2.7.11) 7", e [Ty and V, € ¥, such that &;(b) = b(y) €
€&y (W) Let {Vy,,...Vy} = v el v v, [yeK} For i=1,...,n let
us write V,, = V,, W¥i = W' Then for i = 1,..., n we have g, (b) € W' (V is con-

nected). Putting V. = UV,, we get vi,,(b)eﬂgv., (W) < w"r. Thus be

€ opy (W) = W, which 1mp]1es Eox(B t//”l(K)) < W. This proves the continuity

of the all maps (p)~* for connected U. Let U € %(X) be arbitrary. For every com-
ponent ¥ of U let us notice the following commutative diagram:

(Sur 0) <20 (A, 1(11)
(2.7.12) ;

pUV Puv

(Sys 1) <2270 (4,11

The projectivity of u = {t,} implies that (py;)~" is continuous iff gy o (py)~" is
continuous for every component V of U. By 2.7.12 this map coincides with the map
(pPy)~" < puy. By the first part of the proof, the map (py)~! is continuous, and the
continuity of jyy is obvious (see 1.1.12—14). Theorem is proved.

CHAPTER 3

POINTWISE CONVERGENCE

The results from Chap. 1 will be used here in the case, when for every U e %(X),
ae Sy, AV is cofilter of all finite sets in U.
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1. Existence of the normal closure

For every U € #(X), a € Sy let
(3.1.1) AH. ={K|K = U is finite} .

Then 'Y satisfies 1.3.3. Following 1.1.4—7 we introduce in all 4, the closure of
uniform couvergence on the cofilters 3.1.1.

3.1.2. Definition. This closure will be called closure of pointwise convergence and
denoted by b(t). The closure ¢ in P will be called normal (in accordance with 1.1.3)
if the all natural maps

(3.1.3) Py (SU, TU) g (AU, b(t))

are homeomorsphisms.

We study again the existence of the normal closure. For this purpose we use the
tools from chap. 1. Similarly as in 1.2.8—18 we form for every U € #(X), a € Sy,
K e A" the bases # gry a. For K = {x} we write here & ,(a) instead of & gr, a.
Following 1.2.20—22 we construct in every Ay the closure k from the bases & ,(a)
The closure k will be denoted in this chapter by b in accordance to the
special choice of cofiltration.*) The natural map (Sy, t,) — (4y, b) will be denoted by
pb- The closure ¢ in P will be called seminormal, if b(f) = b in every Ay. The reader
can easily rephrase the propositions 1.2.19, 251 —27 and therefore we will not present
them here. From 1.2.29, 30, 32 we get

3.1.4. Theorem. Every normal closure is seminormal. Thus a necessary condition
for the existence of a normal closure in P is the existence of a seminormal closure.

3.1.5. Theorem. A necessary condition for the existence of a normal closure in P
is the continuity of all (py)~".

3.1.6. Theorem. The necessary and sufficient condition for the existence of
a normal closure in P is the simultaneous validity of both necessary conditions
3.14, 5.

Thus we must study these conditions. First of all we take the first one.

*) Using bases & (a), (¥ grg a), we get by 1.2.20—22 a filter-base { UKZ(E(F"); K< Uis
XE.

finite, F, € #(a) for x € K}, resp. {¢g¢(F); K < U finite, F € # gry a}. These bases generate
a closure b, resp. b. We have only & grpya Ny~ lx) < Z [a), thus b = b’. The equality is not
generally true. If ¢ is normal, then b” == b(z) and b < b" = b(t) = b, thus b’ = b. To be precise,
in 3.2.1 we do not prove the existence of a seminormal closure ¢ for which b(¢) = b, but the
existence of a pseudonormal one from 4.1.10 (see the next chapter), for which b(z) = b’. 3.1.1 is
a condition for the continuity of (p’,’,’)_l 1 (Ay, b') — (Sy, 7y). Theorem 3.3.3 is correct if the
modification x° concerns the bases & (a) and the map p'l’," concerns the closure 6. 3.4.6, 3.4.10,
3.4.11 are true for both b, b’. These questions are studied in the next chapter.
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2. Seminormal closure

Here we study the existence of a seminormal closure in P. The conditions 1.4.1, 2
say, that every generating closure is seminormal. The spscial form of cofilters 4"V
allows us without using further results from Chap. ! to prove directly

3.2.1. Theorem. The natural closure t* is a generating and therefore a seminormal
one.

Proof. Let we P, Ue%(X), y = Y(x)e U, ae S, a generating element for «,
F = S(R(U, a, y, W")) = U{&,(W") | Ve B(y: U)} € #,(a), let ¢y, be any choice
from 2.6.3. Then (we put ¢, = ¢)

(322) S =S(R|U,a,y, W), 0y) = U{&,u\(W") | VeB(y; U} e A(x; t¥),

hence " N Y ~*(y) = F. Thus A(x; t*) n ¢~ !(y) < # (a). Conversely, let S’ be an
element from A(x; ¢*) of the form 3.2.2. Then S n ¢~ () € A(e; *) Ay~ !(p). Let
us set F = S(R(U, a, y, W¥)). Then F € # (a) and F = S’ n {y~*(y) which finishes
the proof.

Now, 3.1.5 implies

3.2.3. Theorem. The necessary and sufficient condition for the existence of a nor-
mal closure is the continuity of all (p}y)~". If this condition holds, then t* is normal.

3.2.4. Remark. In every stalk y~'(x) let us take the closure u, = ind-i, t*.
Let 7 be the closure in P, which is the topological sum of the closures u,. Under the
closure 7 any two distinct stalks are separated, for every stalk is a clopen (closed and
open) set in (P, 7). Thus there is not A, = I'(U, 7) (see 0.34). It can be easily seen that
is the finest closure in P, for which the all py are continuous.

3.2.5. Notation. Let ¢, be the sheaf topology in P (see 0.34). Let us denote by # the
topological sum of the closures 7 and ¢, (see 0.36). Then it is clear that for all xe X

(32.6) ind,,,-:(x)i = indw—x(x) .

It follows from 1.1.9 that b(t*) = b(?) in all A,. And 3.2.3 implies

3.2.7. Theorem. If there exists a normal closure in P, then t is normal.
3.2.8. Proposition. The finest closure in the set of all closures t in P, for which

every py is continuous and simultaneously Ay < T(U, t) for all U e B(X), is the
closure 1.
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3. Continuity of (p)~!
2.3.1 gets the form

3.3.1. Theorem. All the (p})~" are continuous iff the following condition holds:
“If U e B(X), ae Sy, We A(a; tp), then there exist xy, ..., x,€U and F,e #,(a)
such that

(33.2) N &R < W)
Following 1.3.5—6 we will form to our collection y its modification p°.

3.3.3. Theorem. The collection u° is the finest one in the set of all collections v
which are coarser than p and for which the all (p{’,”)"1 are continuous. The following
four properties are equivalent:

(a) The all (p}¥)~" are continuous,

(b) p =

(c) for the collection p the condition from 3.3.1 holds,
(d) there exists a normal closure in P.

Proof. a, b, ¢ follow from the assertion of 1.3.13, (d) follows from 3.2.3.

3.3.4. Definition. The collection x° (i.e. the modification of p with respect to the
cofilters 3.1.1) will be called pointwise modification of .

3.3.5. Proposition. Let all the (Sy, ty) be compact topological spaces, all the
(Ay, b) Hausdorff topological spaces. Then p = p°.

3.3.6. Remark. For the presheaf which is simple with respect to the cofilters 3.1.1
(see 1.5.2) Theorem 3.3.1 has the simple form. From the special form of %Y we can
see that the simplicity with respect to this cofilters could be localised for example as
follows: “If U € #(X), a € Sy, y € U, then there exists Ve B(y; U) such that the filter
bases {&,(W) | We A(oyy(a); 1)} and #,(a) are equivalent.” The form of 3.3.1 is
sufficiently clear in this case. 3

3.3.7. Remark. For the natural closure t* and [(r*) from 2.1.2 we mention the
commutative diagram

(A 1)

N

s .
(3.3.8) () . i v
(pu?) _\}‘\\

v
(4, b(t )



By 2.6.12 the all py are continuous. Because the cofilter of all compact sets contains
the cofilter of all finite sets, every iy is continuous. If p = u° (1° from 3.3.4), by 3.2.3
every (py)~" is continuous. Hence the all three spaces in 3.3.8 are homeomorphic,
thus I(t*) = b(t*) in all 4, and all the maps py, : (S, ©y) — (Ay, I(t*)) are homeo-
morphisms. Similarly, if g is any method of constructing of a closure ¢(f) in Ay
from 1, such that I(t*) < g(t*) in every Ay and if all the natural maps (A4y, g(t*)) »
— (Sy, Ty) are continuous, then g(r*) = I(r*) in all A, and all the maps py : (Sy, 7y) >
— (Ay, I(t*)) are homeomorphisms.

4. Examples

Theorem 3.3.1 solves the problem of the existence of a normal closure. In 3.4.1 we
show, that sometimes it is possible to verify the continuity of all (p})~* without the
verification of 3.3.1. The expamles 3.4.11, 12 refer to 1.1.9, Example 3.4.13 refers to
1.4.3.

3.4.1. Example. Let the presheafl & = {(Sy, 1y); 0uy: X} have the property
(342) If UeB(X). aeSy, Wel(a;ty), ¥ eIy (see 0.27) then there exists
Ve v such that gyp(W) € A(eyy(a), ty).

Then we have: If U € #(X), U compact, a € Sy, We A(a; 1), then there exists a point
y € U which has the filter base A(y) of open neighborhoods such that Ve A(y) =

= QUVﬁU(W) € A(QUVnU(a); TVnU)~

Proof. Easy, the negation leads to contradiction with 3.4.2.

3.4.3. Corollary. If 3.4.2 holds and if we have moreover
(3.4.4) “For U e B(X), ae Sy, We A(a; 1y) there exists Ve #(U), V < U such that
QUV(W) € A(QUV(“)§ TV),”
then even exists y € U satisfying the assertion of 3.4.1.

For example, it is in the case, when X is regular and 3.4.2 holds for any ¥ € IT,.

3.4.5. Definition. Let U € #(X), a € Sy. The base A(a; t,) will be called saturated
if the following holds: “If We A(a; 1y), then there exists W' e A(a; 7y) such that
Eonlu(W') = Wior all xe U.”

In the presheaf with the unique continuation (see 0.32), then A(a; 7y) is saturated
for any connected U € %#(X) and any a € Sy,.

3.4.6. Proposition. Let & satisfy 3.4.2,4 and let A(a; ) be saturated for any
U e #(X), a € Sy. Then the all (p})~" are continuous.
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Proof. Let U € #(X), a € Sy, We A(a; ty). For W we can find W’ € A(a; ty) such
that Wand W' satisfy 3.4.5. For W’ we can find y € U and A(y) which are mentioned
in 3.4.1. If Ve B(y; U), let us set W¥ = ovyQvy(W'), where V' is an element from
A(y) 0 B(y; V). Thenfor F = S(R(U, a, y, W")) € # (a) we have F ¢u,(W’). Hence
&, (F) = &;,'Y¢u(W') = py(W), which finishes the proof.

3.4.7. Remark. It can happen that 3.4.2, 4 hold, but & has not any saturated base
A(a; ty). Even then every (pp)~' may be continuous. The condition 3.3.1 can be
satisfied for the points x4, ..., x, € U which are all different from y (y from 3.4.1.).

3.4.8. Example. Let the presheaf & over a complete metric space X have this
property:

(3.4.9) If Ue #(X), aeSy, WeA(a;1y), then there exists U’ e (U) such that
for every Ve 2(U’) there exists W’ € A(oyy(a); 1) and V' € (V) such that
QVV’(WI) < QUV'(W)«

Then we have: If U € #(X), a € Sy, We A(a; 1y), then there exists y € U which has

a base A(y) of open neighborhoods such that if Ve A(y), then there exists W’'e

e Aloyy(a); Tv) and V" € B(y; V) such that gyyW') < ouy(W).

Proof. Let Ue #B(X), ae Sy, We A(a; ty). By the assumption we can choose
U’ € #(U) as in 3.4.9. By induction we can construct (according to 3.4.9) the sequence
{K,} of open balls round x, with radius r, and a sequence {V,} of open sets such that

@ U =V,oK,oK;2V,2K, 2K, 2V, > ..., 1,0,

(b)ifn =1,2,..., then gy, (W") < guy, (W) forsome W"e A(oyk,(a); Tx,)-

Thus there exists the unique y € () K,. It can be easily seen that y is the desired point
n=1
3.4.10. Remark. In the same way as in 3.4.6 we can
find out, that if & satisfies 3.4.8 and has the saturated
bases A(a; ty), then the all (p})~" are continuous.

3.4.11. Example. Let & = {(Sy, ty); uv; R} (R is the
real line) be a presheaf where Sy is the set of all con-
tinuous functions on U € QZ(R) and 7y is the topology of
uniform convergence. In the covering space of & we take
the discrete topology d. Then b(d) in Ay is not discrete.
The (p}) ™! are not continuous, nor p}, are continuous.

3.4.12. Example. Let & be the presheaf of all constant real functions over R.
Then P =R x R. If ae P, yey(x), then y~'(y) is the vertical line through a.
Let ¢, be the Euclidean topology, let ¢, be the topology, a neighborhood of which is
on Fig. 1.
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Then t; < t,, t, + t, but both they induce the same Euclidean topology in the
stalks.

3.4.13. Example. Let & be the same as in 3.4.12. Let us provide the sets S, with the
closure 7, of uniform convergence. We introduce the topology ¢, in P as follows:
If x + 0, o ey ~!(x) let A(o; 1;) be an ordinary Euclidean filter. For o e y~(0) let
A(; t;) = ¢~ 1(0). Let 1, be the Euclidean topology. Then there is not t; ~ t,, but
nevertheless b(t;) = b(t,) (see 1.1.9).

CHAPTER 4

i

ANOTHER METHOD FOR THE STUDY OF THE EXISTENCE
OF A NORMAL CLOSURE

We get another method for the study of the existence of a normal closure. We use
it for the study of uniform convergence. This method we compare with the method
developed in Chapter 1.

1. Introduction of notions and the existence of a normal closure

4.1.1. Assumption. Let the assumption 1.3.3 for the cofiltration » = {#[|Ue
€ B(X), ae Sy} of the presheal & = {(Sy, 1y); euy; X} hold, i.e. if U, Ve B(X),
V< U aeSy then 4}, = {K|KexH],K <V}

uv(a)
Similarly as in 1.1.7 let us denote by k(r) the closure of uniform convergence on x.

Let py be the natural map py : (Sy, To) = (Ay, k(t)).
Let the all pj, be continuous, Ue #(X), ae Sy, Kex.. By 1.2.19 we have
F grga < Agrg a; t) 0y~ (K). Let

(4.1.2) N(K)={L|Le#?, Lc K}.
The continuity of all p and 1.2.19 imply that for every Le A7(K)
(4.1.3) Fapa < Aegrpast)ny (L) £ Algrg a; ) n Yy~ Y(K).
We can see the following: If we denote by
(4.1.4) H grya =1im {F gr a | Le /(K)}

the finest base of the all filter-bases in tp"(K), which are coarser than every & gr; a,
Le A°(K), then we have obviously

(4.1.5) H grea < Agrg a; t) Yy~ Y(K).
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Thus the continuity of all pj, implies 4.1.5 for every U e #(X), ae Sy, Ke A7.
Obviously for every U € #(X), ae Sy, Ke A",

(4.1.6) Fgrya < A grga.

By 1.1.19 we get from 4.1.6, that if for every U € #(X), a e Sy, K € 4. 4.1.5 holds,
then the all py are continuous. We have proved

4.1.7. Proposition. All the maps py, are continuous iff for every U € #(X), ae Sy,
K e xY 4.1.5 holds.

For U e #(X), ae Sy, K € #° let us set
(4.1.8) Fla(x)) = {&x(H) | He # grya},

which is a filter base in 4, round a(x).

4.1.9. Notation. The closures in the sets 4, formed by the bases #(a(x)) will be
denoted by m. The natural map py : (Sy, ty) = (4y, m) will be denoted by pf.
Obviously we have k < m in every A (see 1.2.22).

4.1.10. Definition. A closure ¢ in P will be called pseudonormal, if k(f) = m
in all AU‘

In the quite obvious way (similarly as in 1.2.25—32) we could prove

m

4.1.11. Proposition. A. All the maps p;; are continuous.

B. All the py, are continuous iff m < k(t) in everv Ay.
C. Let all the (py)~* be continuous. Then k(t) £ m in every Ay.

D. If the closure t is normal, then it is pseudonormal.
3

4.1.12. Theorem. A necessary condition for the existence of a normal closure in P
is the existence of a pseudonormal closure.

4.1.13. Theorem. A necessary condition for the existence of a normal closure in P
is the continuity of all (pf)~*.

4.1.14. Theorem. The necessary and sufficient condition for the existence of a nor-
mal closure in P is the simultaneous validity of both necessary conditions 4.1.12,13.

4.1.15. Remark. Comparing 1.2.20—22 and 4.1.6—10 we can see, that k < m
in every Ay. If ¢ is normal then by 1.2.26 and 4.1.11 D k(f) < k < m < k(1) in
every Ay and thus k = m = k(z).
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Now, we could deal with the continuity of (pf) ™" and inthe same way as in Chap. I,
§3 construct for a collection p = {ry} its modification p', for which we could get
a similar proposition as in 1.3.11. Similarly as in Chap. |, §4 we could construct
under the assumption 1.4.5 a pseudonormal closure ¢ in P. We will not do so, because

the method has already been described in Chap. 1.

2. Pseudonormal closure in the case of compact cofiltration

We will notice which results we get in the case of compact cofiltration from 2.1.1
if we use the results from the previous paragraph. If we study the existence of a normal
closure, we study following 4.1.14 the conditions 4.1.12, 13. Now, we are going to
treat the first one.

4.2.1. Definition. A closure 7 in P will be called m-generating, if for every U e
e B(X), ae Sy, K = U compact, we have # gry a ~ Agrg a; t) n ™ '(K).

Let % = {(Sy, tv): 0uy; X} be a presheaf over a locally compact X. If yeU,
Ve B(y; U) then there exists K = V compact, such that yeintK. As in 1.4.9 we
denote

(4.2.2) G(K,y) = {L|yeint L= L < K, Lis compact} .

Let € P, Ue %#(X), K = U compact, y = y(«) eintK, a e Sy a generating ele-
ment for o (see 0.18). Let us set

(4.2.3) T(«; U, a.K) = {H|He # grya. Le G(K, y)} .

Let U,Ve #(X),K < U, L = Vcompact, y = Y(e) eint K nintL,ae Sy, be Sy,
a(y) = b(y) = « (see 0.18). Then we get easily from 1.2.17, 18 that T(; U, a, K),
T(«; V, b, L) are equivalent filter bases round o in P. Thus we write briefly T(a).

4.2.4. Notation. The closure in P generated by the bases T(«) will be denoted by 7.

The definition of the bases # gry a in 4.1.4 implies easily that if M, N < U are
compact, M = N, He H grya, then H ny~'(M)e s gry a. Conversely, for
every H, € 3# gry, a there exists H € # gry a such that H n y~'(M) < H,.

4.2.5. Proposition. Let Ue #(X), aeSy, K = U compact. Then # grya ~
~ A(grg a, 1) n y~Y(K). Thus T is a m-generating closure.

Proof. Let He # grxa. There exists L < U compact, such that K < int L.
Then by the definition of 7, every H; € # gr, a is a f-neighborhood of gry a. We
can find H, € # gr, a such that H; 0 Y~ (K) = H. Because H, € Agrg a; i), we
get A(grg a; ) nyy='(K) < A grg a. Conversely, let O € A(grg a; 7). By 4.2.1, 2 we
can ssume, that 0 = U{0, | % € grx a}, where 0, € # gr;_a, () € int L, and that
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L, = U is compact for every « € gry a. It follows easily from 1.2.14—18 that for
M,N < U,M,N compact, M = N we have % grya ny (M) < F gry;a. Let
L < K be compact. Let us choose a finite subcover {L,,, ..., L, } from the cover
{L, | o€ gry a}. For every i = 1,..,n let X; = Ln L;. Because of X; = L, there
exist F; € & gry, a such that F; < 0,, i = 1,...,n. Then we can find F, e &# gr, a
such that F; n l//_l(Xi) c F;, i=1,..,n. For every compact set L < K let us
form such a set F,. Then U{F, | L= K compact} = H e # grg a (by 4.1.4) and
H = 0. Thus o grg a < A(grg a; 1) n y~(K).

4.2.6. Corollary. Let & be a presheaf over a locally compact space X. Then the
necessary and sufficient condition for the existence of a normal closure in P is the
continuity of all (p))~*. If this condition holds, then i is normal and thus the natural
closure t* from 2.6.2 is normal.

Proof. Follows from 4.1.14, 2.6.16.

4.2.7. Remark. Let & be a presheaf over a locally compact space X. The necessary
and sufficient condition for the existence of a normal closure in case of compact
cofiltration is the simultaneous validity of 4.1.12, 13 or 2.1.7, 8. The conditions 2.1.8
and 4.1.13 are similar. The first one requires the continuity of all (py)™* : (4y, 1) -
— (Sy, Tp), the second one the continuity of all (py)~" : (4y, m) — (Sy, Ty). Because
by 4.1.9 there is I < m, 4.1.13 requires more than 2.1.8 and thus 2.1.8 holds more
often than 4.1.13. It can be expected than conversely 4.1.12 is weaker than 2.1.7.
Indeed, we see that for the compact cofiltration and a locally compact X we can
always construct a pseudonormal (even a m-generating) closure, whereas the seminor-
mal closure t* from 1.4.15 we have constructed under the assumption 2.3.2. (More
generally in the case when & is L.t.t. (see 2.5.12).)

3. Uniform convergence
We study the case where for U e #(X), ae Sy
(4.3.1) a7 ={U}.

Then the cofilters #Y satisfy 1.2.1. Following 1.1.4—7 we may introduce in every Ay
the closure of uniform convergence on the cofilters 4.3.1.

4.3.2. Definition. This closure will be called closure of uniform convérgence and
denoted by s(z). The closure 7 in P will be called normal if the all natural maps

(4'3'3) Py (SUa Ty) = (Ays S(t)) *

are homeomorphisms.
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Following 1.2.8—18 we may form the bases & gry a for every U € #(X), a € Sy,
KeAl. According to 4.3.1 we denote them by & gry a. Following 1.2.2 —22
(resp. 4.1.8,9) we can form the closure k (respA m) in every A;. We will denote it here
by s (resp. o). The natural map py : (Sy, 1) = (4es 5)s ((Su, Tv) = (Ay, 0)) will be
denoted by p}, (py). The closure ¢ in P will be called seminormal (pseudonormal) if
in all Ay we have s(t) = s, (s(t) = o). For the maps pj. p}, and p{, Theorems 1.2.29 —
32 (resp.4.1.12—14)hold. The form of these theorems in this case is clear and therefore
we will not present them here.

With respect to 4.3.1 Theorem 1.3.1 is of the form

4.3.4. Theorem. All the (p})~" are continuous iff the following condition holds:
“If U € B(X), ae Sy, We A(a; ty), then for some W' € A(a; ty) there is

(4.3.5) 551} 5UU(W’) < PU(W) -

Thus by 1.1.46 from the all (p};)~" are continuous iff the presheaf is full. (See [8],
1.1.46).

Because the cofilters 4.1.1 do not satisfy 1.3.3, we can not further use the results
from chapter 1.

4.3.6. Theorem. All the (pj;)~" are continuous iff the following condition holds:
“If UeB(X), ae Sy, We Aa; ty), then for every Ve B(U) there exists W e
€ Aevy(a); ty) such that

(4'3'7) EJ[}( U 5VV(WV)) < PU(W) 2
Ves(U)
Proof. Easily follows (with respect to 4.3.1) from 4.1.4—9.
4.3.8. Remark. 4.3.6 is a much stronger condition for the existence of a normal

closure than 4.3.4.

4. Pseudonormal closure

Here we study the condition 4.1.12 in the case of open cofiltration from 4.3.1. The
pseudonormal closure will be constructed in a certain quite special case.

4.4.1. Definition. Let U, Ve %(X), ae Sy, beSy,. The clement b will be called
continuation of a if U < Vand g,(b) = a.

Using the maximality principle we get easily

4.4.2. Lemma. Let & be a projective presheaf (see 0.31), U e B(X) connected,
a € Sy. Then there exists a connected Ve #(X) and b € S, such that b is a continua-
tion of a. Moreover, if V' € #(X) is connected and b’ € Sy. is a continuation of b
thenV =V', b = b'. Thus b is a maximal continuation of a on the connected set.

47



Let & be a projective presheaf (see 0.31) over a locally connected space X, o € P.
Then there exists a connected U € #(X) and a € Sy, such that a is a generating element
for a. Every such a can be continued following 4.4.2 to a maximal one. For every «
let A4, be the set of all its maximal elements.

4.4.3. Assumption. Let & = {(Sy, 7y); 0yv; X} be a projective presheaf (see 0.35),
X locally connected. Then for every o € P the set /4", is a single point.

If 4.4.3 holds, then every « € P has the unique maximal generating element (on the
connected set). No two maximal elements b e S, ¢ € Sy. form anywhere the same
germ.

4.4.4. Definition. Let 4.4.3 hold, let € P, be A4",, b € Sy. Then the base 5 gr, b
from 4.1.4 is a filter base in P round «. The closure generated in P by these bases will
be denoted by t,. All germs S of a maximal generating element have the same set
A(B; t,). The space (P, t,) is not Hausdorff space except some very special cases.

4.4.5. Proposition. Let & = {(Sy, 7y); euy; X} be projective, X locally connected,
let 4.4.3 hold. Then the closure t, is a m-generating closure. Therefore it is pseudo-
normal. Thus the normal closure in P exists iff 4.1.13 holds. If it is satisfied, then t,
is normal.

Added in proof: After the paper was accepted for publication, the author was told by pro-
fessor Frolik about the paper [10], where related problems are studied. That paper concerns the
uniform fields of algebraic structures and the question of representation is studied here in
a more natural and useful way than we have done in the first chapter of [9]. The case which is
studied in the first chapter of [9] is more special, the tools are quite different, and perhaps not so
natural.
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