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A NOTE ON GREEN'S RELATIONS IN ^^-SEMIGROUPS 

BRUCE W . MIELKE, Providence 

(Received November 6, 1970) 

I. INTRODUCTION 

The purpose of this paper is to describe the structure of Green's relations on ^È-
semigroups, i.e., semigroups in which the bi-ideals and the quasi-ideals coincide. We 
will divide this discussion into two parts. In the first part we will show (2.13) that an 
Jf-class contains an irregular element only when it consists of exactly that element. 

In the second part we will show (3.5) that in a ^^-semigroup 5, an element se S 
is regular if and only if it is quasiregular. We will also show (3.8) that if S is a ^ J -
semigroup and a, b e S with a ̂  b and R^ < R^ and L^ < L̂ „ then a and b are 
regular. Finally we will show (3.13) that in a J'J-semigroup any irregular ^-class is 
either an ^-class or an ^-class. 

The notation of CLIFFORD and PRESTON [2] will be used. 

IL r-CLASS STRUCTURE OF ^^^-SEMIGROUPS 

(2.1) Definition. A (non-empty) subset JB of a semigroup S is a bi-ideal if Б u 
и BSB ^ B. 

(2.2) Definition. Let S be a semigroup and x e S. Then the principal bi-ideal, 
Б(Х), generated by x is the smallest bi-ideal of S containing x. Clearly B{x) = 
= X u xS^x. 

(2.3) Definition. A (non-empty) subset g of a semigroup S is called a quasi-ideal 
if QSnSQ Ç 0. 

(2.4) Definition. Let S be a semigroup and x e S. Then the principal quasi-ideal 
generated, Q{x), by x is the smallest quasi-ideal of S containing x. Clearly Q(x) — 
= xt 
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(2.5) Definition. The class ^ J of semigroups will consist precisely of those semi­
groups whose sets of bi-ideals and quasi-ideals coincide. 

One can easily check the following Lemma. 

(2.6) Lemma. [3] Let S be a semigroup. Then for x, y e S, x Ж у if and only if 
Qix) = Qiy). 

(2.7) Definition. For a, b e S, a given semigroup, we write a ^ b iï 

1) a = b ov 

2) there exists u, v e S such that aua = b and bvb = a. 

Let B^ denote the ^-class containing a. 

(2.8) Proposition. [(L3) Proposition KAPP [4].] The relation ^ defined in (2.5) is 
an equivalence relation, indeed, J* ç Ж. 

(2.9) Lemma. [(1.8) Proposition MIELKE [5],] Let S be a semigroup. Then for 
X, y e S, X ^ y if and only if В{х) == B(y). 

(2.10) Lemma. If S e ^X then ^ = Ж in S. 

Proof. We know (2.8) ^ ^ Ж.LQtx Ж у. One easily checks that since S is a J ' J -
semigroup, B(x) = Q(x) for all xe S. Applying (2.6), we have B{x) = Q(x) = Q(y) = 
= B{y). Thus by (2.9), X J* j ; and the result follows. 

Although Se^l implies ^ = Ж,WQ may have ^ = Ж and S ф ^1. 

(2.11) Example. [[4] Example (l.lO).] Let S = {a, a \ a\ 0} where a^ = 0. In 
this semigroup, ^ — Ж — ^, but В — {0, a^} is a bi-ideal which is not a quasi-ideal, 
since {0, a^] S n S{0, a^} = S{0, a^} = {0, a^} ф В. 

(2.12) Lemma. [ ( l .H) Corollary Mielke [5].] Let S be a semigroup and a e S. 
Then either i) a is irregular and B^ = [a], or ii) a is regular and B^ = Я^. 

Combining (2.10) and (2.12) we have: 

(2.13) Theorem. Let S e J ' J . / / H^ is an Ж-class of S and a is irregular, then 
Ha = {«}. 
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III. S-CLASS STRUCTURE OF ^J-SEMIGROUPS 

In our study of the ^ , ^ and ^-relations, we will use the following theorem pre­
sented by CALAIS to the Semigroup Symposium at Bratislava, Czechoslovakia 
(1968). 

(3.1) Theorem. [Calais; Reims, France.] Let S be a semigroup. Let Б(х, у) denote 
the minimal bi-ideal of S containing x, y e S, and let Q[x, y) be the minimal 
quasi-ideal of S containing x and v. Then Se ^ J if and only if B{x, y) = Q(x, y). 

It is easily seen that Б(х, у) = {x, y} u xS^x u yS^y u xS^y u yS^x, and that 
Q(x, y) = {xS' n S^x) u {yS' n SV) u (xS^ n S^y) u (yS' n S'x). 

In the same paper, Calais speculated that another necessary and sufficient condition 
for S e J*J might be that BS n SB = B^ и BSB held for every bi-ideal В of S. The 
condition is clearly sufficient, but the following example shows that it is not necessary. 

(3.2) Example. Let S = (2/(4), .), the integers modulo 4 under multiplication, 
S e ^1. Its only proper ideal of any type is В = {Ö, 2}, and BS n SB = {Ö, 2}, 
S n S{Ö, 2} = S{Ö, 2} - {Ö, 2}, but В^ п BSB = {Ö, 2}^ u {Ö, ly S = {Ö}. 

(3.3) Definition. A non-zero dement, a, of a semigroup S is said to be quasi-
regular if there exist elements b, c, d, ее S for which we have a = baca = adae. 
A semigroup is said to be quasi-regular if each of its elements is quasi-regular 
{cf. [1]). 

The following proposition generalizes [[2] 2.11 (i)] since regular elements are 
quasi-regular. 

(3.4) Proposition« Let S be a semigroup. Then if a e S is a quasi-regular element 
of S, every element of D^ is quasiregular. 

Proof. Let a e S be a quasi-regular. We will show that every element of L^ is 
quasi-regular. Dually, every element of R^^ will be quasi-regular, and the result will 
then follow for JD .̂ 

Suppose a is quasi-regular, then a = auav = sara for some u,v,r, se S. Let 
X e L^, if X Ф a, then there are ti, t2e S such that a = t^x and x = ^2^- We then 
have X = ^2« = Î2sara ~ (t2Sti) x[rti) x, and x = ^2^ — (h^) ^^^ = xu{tix) v = 
= x(uti) XV, hence x is quasi-regular. The result now follows. 

(3.5) Lemma. If S e Ш^ an element a e S is regular if and only if it is quasi-
regular. 

Proof. If a is regular, then there exists a' e S such that a = aa'a. Then a = 
= aa'a[a'a) = (aa') aa'a so that a is quasi-regular. 
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If a is quasi-regular, a G SaSa and a G aSaS. But aSa is a bi-ideal and since 
S G ^1, aSa is a quasi-ideal. Therefore, a G (aSa) S n S[aSa) Я a Sa. Whence a is 
regular. 

(3.6) Proposition. Let S e ^ J , f/ien S is regular if and only if S is quasi-regular. 

(3.7) Definition. We partially order the J5f-classes and ^-classes in the usual 
fashion: L^ ^ L ,̂if S^x Ç S^y and R^ ^ Ry if xS^ ^ ySK 

(3.8) Theorem. L^r 5 G J*^ . Ifa.beS with a^b and both L^ < L^ and R^ < Rf,. 
then b is regular (i.e., both a and b are regular).,-

Proof. Since a ^ b and R^ Ф Rt and L^ Ф L ,̂, there exists t, se S such that 
t e R^ n L^ and .s e Rf^ n L^, where t ^ a, b, s ф a, Ь. Since i?^ < jR̂ ,, t e R^ ^ 
Ç aS^ с bS^ and t e Lj, ^ S^b, it follows that tebS^ n S^b = bu bS^b. Every 
quasi-ideal is a bi-ideal, thus Ь u bS^b ^ bS^ n S^b, since Ь u bS^b is the smallest 
bi-ideal containing b. S e J*^, thus b u bS^b is a quasi-ideal containing b, but bS^ n 
n S^b is the smallest quasi-ideal containing b, so that Ь u bS^b 3 bS^ n S^b. 
Since ? Ф b, ?G bS^b. Similarly, se bS^b. Hence there exists r^, Г2 e S^, such that 
t = Ьг^Ь and 5 = br2b. Since teLfj\{b} and sGi^5\{b}, we have mi,m2eS 
such that Ь = mit = sm2. If both r^, Г2 G-S, we have Ь = m^t = m^br^b and 
Ь = sm2 = Ьг2Ьт2, hence b is quasi-regular, therefore regular. If r^ = 1, then 
t = br^b = b^, Ь = m^t = ш^Ь^ = т^Ьт^Ь^ = mib{mib) b and Ь = Ьг2Ьт2-> 
therefore b is quasi-regular, hence regular. Similarly, if Г2 = 1 and r^ e S, bis regular. 
Since t Ф s, we cannot have r^ = Г2 = 1 otherwise t = b^ = s, and in every case, 
we have b is regular. 

Using (3.8), we now discuss the restricted partial ordering of J^- and ^-classes in 
irregular ^-classes. 

(3.9) Proposition. If S e J ' J and D^ is an irreglar Q)-class, then either aS^a n 
n Da ^ Ra, or aS^a n D^ ^ L^. 

Proof. Suppose neither aS^a n D^ ç R^, nor aS^a n D^ ^ L^. Then we have 
elements b and с such that be{aS^a n D )̂ \ jR̂  and ce{aS^a n Da)\La. Since 
b ^ c, there exists t e Rj, n L ,̂ and R^ = R^^ < R^ for b e aS^a ^ aS^. Furthermore, 
Ц =^ L^ < L^ since с e aS^a с S^a. Thus by (3.8), a is regular contrary to hypothesis. 
Therefore we must have either aS^a n D^ ^ R^ or aS^a n D^ ^ L^. 

(3.10) Proposition. If S e ^1 and D^ is an irregular ^-class, then aS^a n D^ ^ La 
if and only if L^ is minimal among the ^-classes of S in D^-

Proof. If La is a minimal if-class of S in D^, suppose h e aS^a n D^ (if aS^a n 
П D« = П vve are done), then Lb ^ L^ and since L^ is a minimal if-class in D«, 
we have L^ = L^ and aS^a n Da ^ La-
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Suppose aS^a n D^ ç L«. Let b e D^ with Lf, g L«, then there exists r e Ц n R^. 
Hence reLb^ S^b ^ S^a and г e R^ ^ aS^; thus r e a S ^ n S^a = a u a5^a, for 
S e ^21- If r = a we are done, for then Lf, = L^ = L«. Otherwise r e aS^a n D^ ^ 
Ç L,̂ , L> = L^ and hence L« = L̂ ,. Thus L^ is a minimal .^-class of S in D^. 

We note that if aS^a n D„ =̂  П, then jR̂  and L^ are both minimal among the ^ -
and J^-classes of S in D,,. 

Combining (3.9) and (3.10) we get: 

(3.11) Corollary. / / S е^й and D^ is an irregular ^-class, then either L^ or R^ 
is minimal in the set of S^- or ^-classes of S in D^ respectively. 

(3.12) Lemma. If S e J*=â and D is an irregular ^-class, then for any two a, be D, 
either L^ and Lf^ are minimal in the set of ^-classes of S in D, or R^ and R^ are 
minimal in the set of ^-classes of S in D, 

Proof. For X e D we know that either L^ is minimal among the <^-classes of D, 
or R^ is minimal among the ^-classes of D. Let a, b e D, and suppose to the contrary 
that La and Rf^ are minimal while neither L̂ , nor R^ is minimal in the restricted partial 
ordering. Since Lf, is not minimal, there exists и e D such that L^ < L^,, and similarly 
there exists v e D such that R^, < R^, Let teL^^nR^^ and r еЬ^сл R^, then Ц = 
= L^ < Li, = Ц and Rf = R^ < Ra = R^. Therefore t is regular by (3.8), a contra­
diction since D is an irregular ^-class. Thus either both L„ and L̂ , are minimal, or 
both R^ and i?^ are minimal. 

(3.13) Theorem. Let Se^â and D^ be an irregular QJ-class of S, Then either 
D, = L, or D, = R,. 

Proof. If D^ Ф L^ and D^ Ф R^, then there is an element b e D^ such that L̂ , ф L^ 
and Rf^ Ф Ra- By (3.12), either both R^ and Rf^ are minimal among the ^-classes of S 
in D^, or both L^ and Lf, are minimal among the if-classes of S in D^. Assume R^ 
and Rij are minimal. Since S e M21 we have: 

(*) {a, b] u aS^a u bS^b u aS^b и bS^o = B{a, b) = Q{a, b) = 

= {aS' n S'a) u {bS' n S'b) u {aS' n S'b) u {bS' n S'a) . 

Let ue R^n Lfj and r e R^ n L .̂ Clearly we must have u,r ф [a, b}, and r Ф м. 
Then и G aS' n S'b sou e В(а, b). We examine (*). Since и is not regular, и ф uS'u = 
= aS^b. If w e bS'a or bS^b, then Ra == Ru ^ Rt^ and since i?̂ , is minimal, R^ = î b» 
contrary to our assumption. Thus и e aS^a and Lf^ = L^ ^ L^. Similarly, re bS^b 
and La = L^ ^ Lb- Thus L« = L̂ ,, contrary to our assumption. Hence if с e D^, 
either с G L^ or с 6 Я^, and we have D^ = î ^ u L^. *. 

Suppose i /GK^\{a} and veLa\{a], then let w G R„ n L̂ , Ç D« = L« u Я^. 
Now either R^ = Я^ or L^ = L ,̂ and thus either {v} = R^ n L^ = R^ n L^ = {a} 
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or {и} = R,, n L„ = R^ n L^ = {a}, contrary to the hypothesis that и e R^\{a} 
and veLa\{a}. Thus either j^^ \{a} = П or L^\{a} = П, and therefore either 
D^ = L„ or D^ = R^. 

Within a J^J-semigroup, one irregular ^-class may be an j^-class, and another 
irregular ^-class may be an ^-class as in the following example: 

(3.14) Example. Let D^ be a Baer-Levi Semigroup [[2] § 8.1] of all one-to-one 
mappings, a, of an infinite countable set / into itself such that / \ / a is infinite. D^ is 
a right simple irregular semigroup. Let D^ be an anti-isomorphic copy of Dj. D* is 
a left simple irregular semigroup. Let S be the 0-direct union of D^ and D* where 0 
is not in Dj or D*, S is clearly a semigroup and D^ and D* are irregular ^-classes. 
Using (3.1), one can check that S e J*^, and finally, D^ is an ^-class of S and Df is 
an if-class of S. 

Bibliography 

[1] / . Calais, Demi-groupes quasi-inversifs, C.R. de I'Acad. des Sei. Paris 252 (1961), 2357—59. 
[2] A. H. Clifford, and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I, 11, Math. 

Survey 7, Am. Math. Soc., 1961, 1967. 
[3] Kenneth M. Kapp, Green's Relations and Quasi-ideals, Czechoslovak Math. J. 19 (94) 1969, 

8 0 - 8 5 . 
[4] Kenneth M. Kapp, On Bi-ideals and Quasi-ideals in Semigroups, Publ. Math. Debrecen 16 

(1969), 179-85. 
[5] Bruce W. Mielke, A Note on Bi-ideals and Quasi-ideals, to appear Publ. Math. Debrecen. 
[6] O. Steinfeld, Über die Quasiideale von Halbgruppen, Publ. Math. Debrecen, 4 (1956), 

262-275. 
[7] О. Steinfeld, Über die Quasiideale von Halbgruppen mit eigentlichem Suschkewitsch-Kern, 

Acta Sei. Math. Szeged 18 (1957), 235-242. 

Author^s address: Rhode Island College, Providence, Rhode Island 02908 U.S.A. 

229 


		webmaster@dml.cz
	2020-07-02T22:31:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




