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PERIODIC SOLUTIONS OF THE EQUATION u,, + u^^^^ = 8f{', -, u, щ)] 

HANA PETZELTOVA, Praha 

(Received February 4, 1972) 

INTRODUCTION 

The purpose of this paper is to prove the existence of 27r-periodic solutions of the 
equation 

(0.1) Lu = W,, + U^^^^ = 8f{', -, W, U,) 

(0.2) u(t, 0) = u^,{u 0) = u{t, n) = u,Xt, n) = 0 

under the assumption that / is 27c-periodic in t. 
The main point in the method of the proof is that the problem is solved in a Banach 

space Ä, which can be decomposed into two complementary subspaces В and C, 
where В is the null space of the operator Land Lis boundedly invertible only on C, 
the complement in A of B. If we denote by P^, P2 respectively the projectors of A 
onto B, С and seek the solution in the form и = v Л- w, where v e B, w e C, then 
the equation (0.1) is equivalent to the system 

(0.3) P^F{v + w) = 0 

(0.4) Lw = £P2F{v + w) 

where F{u) (t, x) = f(t, x, u{t, x), и^{г, x)). 
This method is used in several papers, e.g. in [1], [2], [3], [7], [8], [9], [10] to 

prove the existence of a solution to the equation (0.1) or to the wave equation. The 
essential assumption for solving the bifurcation equation (0.3) is 

(0.5) /«, ^ У > 0 

or 

(0.6) / „ è 7 > 0 
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in the case that / depends only on t, x, u. The assumption (0.6) is used for solving 
the bifurcation equation for the wave equation in [2], [3], [7], [9]. HALL [1] and 
ToRELLi [10] found weak solutions of the wave equation under a weaker monoto-
nicity condition on / , which permitted /„ = 0 to occur but at the expense of a growth 
condition on / . In a later paper [8] RABINOWITZ extended the results of [7]. He 
found classical solutions of the wave equation under the monotonicity condition 
which permitted /„ = 0 and which required no growth condition on / . The existence 
of periodic solutions of a class of equations 

is proved in [1], [2]. 
In this paper the problem is solved in a slightly different way than in [2] which 

allows the function / to be dependent also on u^ under weaker conditions on the 
smoothness of/. 

The general sufficient conditions for the existence of periodic solutions to the 
equation Lu = g + в/{% %и,и^,и^^,и^, s) have been investigated by KRYLOVA^ 
VEJVODA [5]. KRYLOVA [4] proved the existence of periodic solutions to the equation 

Uft + A^u + CM + Wf + w,|wfj = / 

for n-dimensional Laplace operator. 
In Section 1 some properties of the used spaces are established. The necessary 

and sufficient condition for the existence of a solution to the linear equation is given 
in Section 2. In Section 3 the nonlinear equation is treated. The special case of the 
equation (0.1) is investigated in Section 4. The case when / depends only on t, x, и 
is solved in Section 5. 

1. PRELIMINARY 

We begin with some notations. Let / = <0, In} x <0, n}, G = R x <0, n}. 
Let D be the set of real valued, 27r-periodic, infinitely differentiable functions on G 
such that {d^^jox^^) (p{u 0) = {d^^jdx^^) (p{t, n) = 0, к = 0,1,... for cp e D, 

Denote by A„ the completion of D under the norm 

(1.1) '"'-(ГЯ — u(t, x) 
df ^ + — Г - Щ1, X) I dx dn . 

Л„ are Hilbert spaces with the inner product 

"̂'"̂" = (S"' df. v\ + 
3^ 

«> —r ^ 1 
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where {и, v) = Jo"" JS u{t, x) v{t, x) dx dt. For n = 0 we shall simply write A, || • ||, 
(% •). If k, I are integers, I > 0, define the functions e^i by 

(1.2) eki{t,x) = e ' '4 in Ix . 

The functions ej^iju form a complete orthonormal system in the space A. Denote 
by {uj^i} the sequence of Fourier coefficients of the function и e A. 

(1.3) uj,i = (w, e^i) 

By means of integration by parts we get the following lemma. 

Lemma 1.1. The functions e^i = ej,iln{k^" + /^")^/2 form a complete orthonormal 
system in A„. 

By Parseval's equality and Lemma 1.1 we get using the integration by parts 

00 (X> 00 

(1.4) 7г |̂|.||„^ = X |(„, ег,)„|^ = Y (к'" + П \{и, e,,f = E (к'" + ПЫ' -
к=—оо к~ — оа к—— со 

1=1 1=1 1=1 

This norm is equivalent to that used in [2] for и ^ 0 

№= ZCĉ  + n-M 
because 

k = — cxD 
1 = 1 

In the sequel, the following two theorems from [2] will be used. 

Theorem 1.1. If и e Aj,, then W^Dlu are continuous when к ^ m + in + 1 and 

(1.5) | IorO>lU = sup iDTDluiu x)\ ^ const ЦмЦ,. 
I 

Let Co denote the upper bound of the embedding operator А^э и -^ и e C^, C^ 
being the space of continuous functions. 

(1-6) | | " l |oo й Co\\u\\^ . 

Let /depend on t, x, w ,̂ ^2- For и e A^ denote by F{u) 

(1.7) F{u) {t, x) = f{t, X, u{t, x), u,{t, x)) . 

Theorem 1.2. Let и and v e A„for n ^ 2 with ||w||„ and ||i?||„ ^ b. Suppose f and 
its derivatives up to order In are continuous and bounded whenever the arguments 
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Ui are bounded. Then there are constants c ,̂ C2 such that 

(1.8) | |F(u)| |„_,^c, 

{1-9) ||/«,(% %w, w,)t^i||„-i ^ C2|H|„, i = l, 2 , v^ = v, V2 = v,. 

Remark 1.1. To prove the condition (1.8) it suffices to suppose 2(n — 1) contin
uous derivatives of/. 

Remark 1.2. The assertion (1.9) and the mean value theorem give immediately 
the relation 

(1.10) \\F{u)-F{v)l^,u2c,\\u-vl. 

Lemma 1.2. The set A^„ = {u e A„, \\u\\„ ^ r] is a closed subset of A. 

Proof. Let {uj} be a sequence of the elements of A^„ and let Uj -^ w in the space A. 
We prove that и e A^, By the Banach-Saks theorem there is a subsequence {vj] of 
arithmetic means of {uj} converging strongly to an element v e A^. But Uj -^ и in A. 
Thus Vj -^ uin A and so w = i;. Hence и e Л .̂ 

2. THE LINEAR EQUATION 

We turn our attention to the existence in A„ of solutions to the equation 

(2.1) Lu = Utf+ ŵcx̂cx = 9 

(2.2) u{t, 0) = u^^{t, 0) = u{t, n) = u^^{t, 7г) = 0 . 

Definition. We say that ue A„ is a, solution to the problem (2.1), (2.2) for g e A„, 
if (w, L(p\ = {g, cp\ for all cpeD. 

Remark 2.1. The choice of the space D implies immediately that the boundary 
conditions (2.2) are fulfilled in the weak sense. 

Let w G Л„ be a solution of the equation 

(2.3) Lw = 0 . 

It is easily seen that и has the representation 

(2.4) . w -^ Z WfcAz-
fc2=/4 
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Denote the set of such solutions by B„. The coefficients of an element in B„ are zero 
when \k\ Ф /̂  and hence for such и the norm reduces to 

2 
dx dt, (2.5) H,̂  = f2/-K,.J^ = 2rT|^^.(/,x) 

In [2] the following lemma is proved: 

Lemma 2.1, If ueB^for n^l and 2a^-\-a2U 2{n - 1), then D^.'Dl^u is Holder 
continuous with the exponent i and 

(2.6) ||Z)-'Z)>||,/2^ const ||ы||„ 

where 

|]w||,/2 = sup {\u{t + К x + k) -u{t,x)\,\h^ + e\-^'^. {t,x,h,k)el]. 

Denote by C„ the complement of B„ in A„. Then the function и e C„ has the repre
sentation и '^ YJ ^ki4i- Clearly, (w, v\ = 0 for м e Б„, t; e C„. 

Lemma 2.2. The problem (2.1), (2.2) has a solution in >4„+i if and only if g ̂  C„. 
The solution is unique if its component in B„+i is zero. The unique solution is given 
by и — Kg where К is defined by 

(2.7) Kg{t,x)~ ^ ^ M ^ e „ 0 , x ) . 
к2ф14 Г — к 

Finally, К : Cn~> C„+i and 

(2.8) \\Kgl^,u\\gl. 

Proof. For g e C„WQ have 

f ^ a \ ^ 
{Kg, L(p\ = Hm Y. 7 7 - ^ ^̂ '̂ ̂ ^ = ^™ (^ ^̂ ^̂ ^̂ ' ^)« == (^' ^)« 

iV-^00 V / = l / — /C /„ N-*oo 1=1 
k=-N k=-'N 

and so Kg is a solution of (2.1). On the other hand, if w is a solution of (2.1), then 
for (pe D n B„ {g, (p\ •= {u, L(p\ = 0. This implies that g e C„. Let м G C„, ve C„ 
be two solutions of (2.1). Then и — ve C„ and (u — v, L(p) = 0 for all cp e D. Hence 
и — v€B„. But C„ n B„ = 0. Hence и = v. Further 

T 2(n+l) , r4(n+l) T2 , 14. 

*2ФИ ( г - К^) ( г - к ) *2ф,4 

= max- к „. 
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Since |fc| + /^ we have (1"^ - k^f = {l^ - kf (f + kf ^ {f + \k\Y ^ /* + k\ 
Hence (fĉ  + /*) {I'' - k^)-^ é i and (2.8) holds. 

We conclude this section with lemma which will be useful in the sequel. 

Lemma 2.3. Let (peA and jji (p(t, x) dx dt = 0. Then for ф e A such that m g 
^ ф ^ M the following estimate holds. i 

(2.9) - i ( M - m) f f \(р{и x)\ dx dt ^ f f i<pф){t, x) dx dt й 

й i(M - m) ïï 

Proof. Denote by /^ = {{t, x)el, ç{t, x) ^ 0}, /2 = ^ - ^i- Then 

Я {(р\1/) {t,x)àxdt = \[ + = ^ ^(^' x) dx df + m (p{t, x) dx at = 

I J J II JJll J J II J J/2 

= (M - m) (p{t, x) dx dr + m (p(t, x) dx dt = i (M ~ m) \(p{t, x)| dx dt , 

On the other hand 

{(рФ) (̂ , x) dx dr = + à m cp{t, x) dx dt + M (p{t, x) dx dt = 

= m (p{t, x) dx dr + (M - m) (p{t, x) dx dt = 

= - - i (M - m) |^(f, x)\ dx dt, 

R e m a r k 2.2. For ue B^ we get that uu^ = ^{djdt) u^ fulfils the assumptions of 
Lemma 2.3. In this case we have the estimate 

- i ( M - m) ||w|| ||M,|| й f f (Фищ) (t, x) dx dr й i{M - m) ||t/[| \\щ\\ . 

In the space Б^ we have ||w|| ^ ||м^|| and \\ut\\ = i||w||i. Hence 

(2.10) - i ( M - m) \\u\\l g 2 ff (^ww,) (t, x) dx dt g i (M - m) ||м||? . 

This estimate will be used in the next section. 
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3. THE NONLINEAR EQUATION , 

Now we turn to the problem 

(3.1) Lu = 8f{% -,u,u^ 

with the boundary conditions (2.2). 
Let P i , P2 respectively denote the projectors of A onto Б, C. Then the equation 

(3.1) is equivalent to the system 

(3.2) P,F{v + w) = 0 , 

(3.3) Lw = eP2F{v + w) ; 

where v = P^w, w = P2U, Let us denote 

(3.4) B ^ = {WGB„, Wul^R}, R>0, 

C; = {ueC„. Ыпйг}, r > 0 . 

Theorem ЗЛ. Let the function f have continuous derivatives up to theorder2(n — 1), 
/ 1 ^ 2 , w/iic/i are bounded when the argument is bounded. If the equation (3.2) 
has a unique solution v e B^ for each w e C^„ such that v{w) is Lipschitz continuous 
in w in the norm of the space A^, then the system (3.2), (3.3) has a unique solution 
in B^ X CI for г Ф 0 and small. 

Proof. By Lemma 2.2 we can write the equation (3.3) as 

(3.5) w = ßKP2F{v{w) + w) . 

The operator Tw = KP2F(v{w) + w) is Lipschitz continuous and maps the set CJJ 
into Cn'. If we choose e Ф 0 small enough, we get that sTis a contraction in the norm 
of the space A^ of Clj into itself. Hence there is a fixed point of the operator sT 
in CJ], the closure of C^ in the space A^. But CJ) is a closed subset of A^ and by Lemma 
1.2 CJi = CJj. Thus there is WQ e CJj such that V{WQ) + WQ is a solution of the system 
(3.2), (3.3). 

By Theorem 1.2 and (3.5) we get for WQ 

(3.6) ||wo||„ й eci . 

For we C^ we prove the existence of the solution of the equation (3.2) in B^. 
This will be done following Hall [2]. Let B{j), j = 1, 2 , . . . be the spaces 

J 
(3.7) B{j) = {ueB, u{t, x) = Y ^±i\ie±i\i{^^ ^)] 
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equipped with the norm || • Цз- Let P{ be the projector from A on B[j) and J be the 
operator on В defined by 

00 J 

1 = 1 и 

For w e с;; we define the operators 
(3.9) Siv = JP{F{v + w) , 

S^t; = JPiF(i; + w) 

and we shall prove that there is such v^ e B{j) that 

(3.10) 5 ^ = 0. 

Then also P{F(I? + W) = 0. 

Lemma 3.1. Let f be as in Theorem 3.1 and moreover let the following assumptions 
be fulfilled: 

(i) / „ ^ ^ y > 0 on G, = Gxi-Co{R + r),Co{R + r)y\ 

(ii) 7 - i(sup/„(f, x, Wi, W2) - inf/„(t, X, Wi, W2)) = a > 0 , 
Gl Gl 

(iii) sup|/^(f, x,M 1,112)1 < a R , 

then the equations (3.10) have unique solutions in B^{j) = B{j) n В2* 

Proof. For veôB\j) = {меБ(7), ЦыЦг = Я} we have (as |jt;,lj < R and by 
(2.10)) 

(S> , v)2 = 2 J"™ F(t; + w), v,)j = 

= 2[(Л, t̂ tr) + {fu{vt + w,), t;») + {fu,{v,, + w,,), i^„)] > 

^ jR^a - R[sup |/j(f, X, Ml, 1/2)! + 
Gl 

+ Ф^Р |/«(^' ^' " i ' ^2)! + sup | / J r , X, wi, ^2)!)] ^ ^ 
Gl Gl 

if we choose r small enough. Hence, by the known theorem (see e-g. {}\Ù there is 
such v^'eB\j\ that (3.10) is fulfilled. As for the uniqueness, if VuVz^^^O) are 
two solutions of (3.10), then by the mean value theorem 

0 = {Sivi - Siv2, 1̂ 1,, - 1̂ 2») = 

= -{F{v, + w) - F(ü2 + w), v,^ ~ V2) й --^ \\v, - m 

Hence Vi = V2. 
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Lemma 3.2. Let f and v^ be as in Lemma ЗЛ. Then \\v^l„ is bounded independently 
of]. 

Proof. Lemma is proved for n = 2. For n = 3 we have 

= (/» + Vtuu{ + 2/,„,Mi, + 2/„„.U^M/, + /„„uf + /„.„,«;f + fji{, + /„ .M/„, VQ 

where u-' = t)-' + w. Since we assume the continuity of the second derivatives of / 
and by Lemma 3.1 and Theorem 1.1 ||u„|| g Я and ||м,||;„ S c^R, we have for 
w 6 С'з 

(3.11) v l W | g c o n s t ( l + 11411). 

Rabinowitz has shown that if <p e D, then 

(3.12) \\cp]\\^aè'l*\\<p\l^,\\ç,,\\+b{S) 

provided ^̂ ^̂ ЦфЦх/г < ji- ^ere a is a constant and b depends on d, which itself can 
be chosen as small as needed. By Lemma 2.1 llf!||i/2 ^ ^ilW||i — ^ll '̂̂ lb- Thus if 8 
is sufficiently small, (3.11), (3.12) combine to prove that |]г;-̂ ||з ^ const. Estimates 
of ||t;-̂ ||„ for n > 3 are now quite evident. 

Lemma 3.3. Let f be as in Lemma 3.1. Then there is a unique element VQGB^ 
such that S^VQ = Ofor n = 2, 3 , . . . 

Proof. By Lemma 3.1 and 3.2 there is a unique v^ e B(j) for each j = 1, 2, ... such 
that Sl,v^' = 0. Further {v^} is bounded in Б„ for n ^ 2. By Lemma 2.1 and Theorem 
1.1 the assumptions of Arzela's theorem for v{ are fulfilled. Hence there is a sub
sequence, also denoted by {v-^}, and t̂ o ̂  ^ i such that 

(3.13) !|t>{-.o,||oo^o. 

In the same way as in Lemma 1.2, with help of Banach-Saks theorem one proves 
that Vo e B^, 

Sy^vo = S^vo - Sivo + Sivo - Siv^ -> 0 

for j -> 00, because F(v^' + w) -^ F(vo + w) when (3.13) holds. 

Lemma 3.4. Let f be as in Lemma 3.1. Then v{w) is Lipschitz continuous in w in 
the norm of the space B^. 
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Proof; t e t Wi, W2e с;; and i;i, t;2 ei5jf be the corresponding solutions of the 
equation S^.Vi = 0. Then 

0 = {S^,v^ - S^^V2, Vi - V2)i = 2(F(t;i + w^) - F{v2 + W2), v^, - V2t) = 

= 2[(/(*' •' ^1 + ^ 1 ' ^it + Wu) - / ( • , -, V2 + Wi, i;i, + Wi,), t;i, - t;2t) + 

4- ( /(• , % V2 + Wi, Vu + Wi,) - / ( • , -, V2 + W2, Vu + Wi,), z;ij - V2t) + 

+ (/(• , -, V2 + W2, t^i, + Wu) ~ / ( • , -, î̂ 2 + ^2, У2Г + Wi,), i;i, - V2t) + 

+ (fi% % ^2 + W2, 1̂2̂  + Wu) - / ( • , -, t̂ 2 + ^2, V2t + W2,), V^, - V2t)] = 

= 2[(/„(int. pt.) (vj, - V2), Vu ~ V2t) + (/«(int. pt.) (wi - W2), i;i, - V2t) + 

+ ( / J i n t . pt.) (vu - î̂ 2t), ^it - ^2t) + (/«,(int. pt.) (wi, - W2,), t^i, - V2t)'] . 

By Lemma 2.3 
2(/„(int. pt.) (v^ - V2), Vu - V2t) ^ 

à - i ( s u p / ^ r , X, Wi, W2) - inf/„(r, X, Wi, W2)) ll̂ î - ^iWh 
Gl 

Thus 

Hence 

Ф1 - ^iWl й sup \fj^t, X, uu U2)\ ||wi - W2II ||Î;I - Î;2||I + 
G l 

+ s u p \f^lt, X, Uu «2)1 | | w u - W2t|| ll̂ l̂ - î^2||l . 
Gl 

hl - î^2||l ^ - ( s u p \fu{t, X, Uu «2)1 + SUp | / J ^ X, Ml, W2)|) | |wi - W2II1 . 
a Gl Gl 

We summarize our results in the next theorem. 

Theorem 3.2. Let the function f fulfil the following assumptions. There are R > 0, 
r > 0 such that 

(i) fhas continuous derivatives up to the order 2(n — 1) on G^ = G x (^ — CQ{R + r), 
Co{R + r)y, Co is given by (1.6); 

^2k ß2k 

(ii) F{u){t,0) = —-J(u){t,n) = 0, k = 0,h..„n-U ueA,; 

(iii) / „ ^ ^ y > 0 on G,; 

(iv) y - i(sup/„(f, X, uu U2) - inffXt, X, u^ U2)) = oc> 0; 
Gl Gl 

(v) sup |/,(r, X, Wi, 1/2)1 < OCR, 
Gl 

Then if s is sufficiently small, (3.1) has a unique In-periodic solution in B^ x CJ 
satisfying the conditions (2.2). 
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R e m a r k 3.1. I f / fulfils the assumptions of Theorem 3.2 for n ~ 3, then by 
Theorem 1.1 we get a classical solution of the problem. 

R e m a r k 3.2. Let/depend on t, x, u, Uf, u^, u^^. Then if we substitute the condition 
(iv) in Theorem 3.2 by the condition 

У - i (sup/„ - inf/„) - sup |/„J - sup |/„^J = a > 0 
Gl Gl Gl Gl 

where G2 = G x < —Co(JR + r), CQ{R + r)>'*, we can prove in the same way the 
existence of a 27r-periodic solution of the equation 

Lu = г/(% \u,u„u^,u^^) 
in the space Л2. 

4. THE EQUATION Lu = e[aw> + / ( . , .,w)] 

This problem will be solved in a shghtly different way. No assumptions on the 
behavior of/„ will be needed. We shall prove the following lemma first. 

Lemma 4.1. Letf be continuously differentiable up to the order 2(n — 1), n ^ 2. 
Then the equation 

(4.1) w = sKP2F{v -h w) (F(w) = (ХЩ + / ( - , -, u)) 

has a unique solution w e C^for each ve B^ such that 

(4.2) И\пй<^с,, 

(4.3) \\w{vi) - w{v2)\\i è sKi\\vi - Ü2II1 , 

(4.4) ||w||„ g - i - («I|.||„ + | | / ( - , ., . + w)|l„_,) for a < 1 . 
1 — ea a 

Proof. The existence of the solution of (4.1) and the relation (4.2) is proved in the 
same way as in Theorem 3.1. (4.3) is established by means of the method of successive 
approximations and Theorem 1.2. Let Vi, V2 ^ Bf, UQ = w{v2), w„+i = sKP2F{v^ + 
+ u„). Then if 2̂ 2 < 1 is the Lipschitz constant of the operator гТ, Tu = KP2F{vi + и) 

\\w(v,) - w(i;2)||i = lim \\uj - Uo\\i й 
jf-».oo 1 — 

\\sKP2{F{v, + w(t>3)) - F{v, + w{v,))% й 

1 -к ''"̂  """"̂  " 

1 -K, 

< 

^2 

e 

K, 
F{v, + w{v2)) - F{v, + w{v2))\\ S sK.Wv, - v , l 
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||w||„ = e\\KP,F{v + w)l й e\\F{v + w)||„_i g 
^ 4 l | w i „ + | H i „ ) + e | | / ( . , . , . + w)|l„_, 

1 — ea 1 — ea 
This proves (4.4). 

Now, it suffices to prove the existence of a solution to the equation P2F{v + w(i;)) = 
= F(v + w(i;)), or, which is the same, PiF{v + w(v)) = 0. We shall investigate this 
problem again in the spaces B(j) defined by (3.7), equipped in this case with the norm 
II • II1. As in Section 3, we define the operators S-' on B{j) by 

S^v = JP{F{v + w{v)), Sv = JP^F{v + w{v)) . 
Then for V e B\j) 

{S% v), = 2{cc{v, + w,{v)) + / ( - , -, V + w{v)), V,) ^ 

^ ^ll^lli - ikl|i(o«e î + sup \f{t, X, u)\) 
G3 

where G3 = G x {-Co{R + r), Co{R + r)>, CQ given by (1.6). If we suppose 
sup {\f{t, X, i/)|, (r, X, u) E G3} < ocR and choose s small enough, we get (S^v, v) "^ 0 
on dB^(j). Hence there is such г;-' e B^{j) that S V = O.We proceed as in Section 3 
and we show that ||г;̂ *||„ ^ const independently of j . We have proved that \\v^\\i ^ R-
If Цг̂ -'Цп-! S const, then 

^ ^ \ dt" df df-'^ ' df ) 

Ik̂ lln й \\Я + - l|/(•. •> ^' + H')ll-i => f 1 - 7 - ^ ) П̂^̂Цп ^ a \ 1 — ea/ 
^ c | | / ( - , •,г;^ +w)||„_i g const 

by Theorem 1.2. Hence \\v^'\\n S const, if e is small enough. In the same way as in 
section 3, with help of (4.3) one proves that for w ^ 2 there is a unique VQ e B^ such 
that Svo = 0. 

Theorem 4.1. Let us suppose that there are R > 0,r > 0 such that/ is continuously 
differentiable up to the order 2(n — 1) on G3, 

c\2k ^2k 

— - F{u){t,ö) = -—- F{u) = (r, Ti) = 0, /c = 0, 1, ..., /z - 1, ueA, 

and is In-periodic in t. Further let sup {|/(f, x, w)|, (^ x, w) e G3} < аЯ. Then 
there is a unique solution of the problem Lu = е[ам^ + / ( • , •, w)] with the bound
ary conditions (2.2) in B^ x C^, provided that в is small enough. 
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5. THE MORE DIMENSIONAL CASE 

We shall treat the equation 

(5.1) LkU = u,t + A^u = e/(-, -, u) 

for the fc-dimensional Laplace operator, fc = 1, 2, 3, on the domain 

(5.2) Q,==RxQ,, Q, = <0, пУ 

with the boundary conditions 

(5.3) "(äQ. = 0 . 
dhA. 

dxj 
= 0 , i = l, ..., A:, 

Let A„^. denote the completion of the set D^ of infinitely differentiable 27r-periodic 
functions on gjt, such that 

dx 2m Xi = 0 
0 , m = 0 , 1 , 2 , . . . 

in the normes 

(5.4) " ' - L ( i 
d"u{t, x)f ^ \ô^"u{t, x) 

df dxl 
dx dt, 6 , = <0, In) X Qj,, 

X — [Xi, . . . , Xf^) 

Л„ fe are Hilbert spaces with the inner products 

(5.5) {и, v)„^^ = /d"u(t, x) d"v{t, x) ^ d^"u{t, x) d^"v(Ux)\ 

In the same way as in Section 1 one proves that the functions 

[ ^k + l к - 1 - 1 / 2 

•-^ (r^" + ^ s f ) e''' sin SiXi . . . sin Sj^Xj,, r integers , 
s = ( s j , . . . , Sjt), Si > 0 integers , 

form a complete orthonormal systems in A„^j,. 
We say that и e Л„д is a solution to the problem L^u = g, (5.3), g e A„^k, if 

(w. L(PX^J, = (g, (p\^k for all cp e Dj,. 
As in Section 3 we shall write У1„Д = B„j^ + Ĉ ĵ̂ , where B„j, is the null space of 

the operator L̂^ and С„д is the orthogonal complement of Б„^ in A^j^, Clearly, 

(5.7) 

(5.8) 

1 

w e C„,fe , w = E^rs^rs => w„ = 0 for \r\ = £ 5? . 
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The equation L^u = g has a unique solution и = Kg e C„ ^ for each g e С„^^^ g = 
= Jidrs^s and for Kg we have 

{5-9) Kg=Z ^V-^'-
r 

к 
2 /"^^242 (S^?)^ 

1 

(5-10) \\Kgl,,u\\g\U. 

Indeed, |ö„(r2 - iis^yr'l й Ы for g e C„,,. 

Lemma 5.1. и e /1„д => и e C" and 

(5.11) ||M||„ ^ b,||u|U for n è 2 . 

Proof. Let M 6 Л„д, M = X!"« r̂s- Then 

Zl"»l = W + èn^'^ l"«l ('•'" + ЬГ)-'" й 
1 1 

g 11"11»л(Н'-'" + i:4")-')^'' ^ ь*||"1к. 
1 

because r^" + j^s*" ̂  r" Пх?"'* and the series Дг" fl«?"'*)"^ converges for n ^2, 
к = 1,2,3. ' ^ ^ 

Lemma 5.2. и e fii ̂  => u e C° and 

(5.12) | | M | U ^ 4 | | U | | I . , . 

к 
Proof. For functions from B^j, only the coefficients Urs, where \r\ = ̂ s? are dif-

rent from zero. Hence 

r r = - o o . . 

| r l= | s i2 

^ r = l '̂  

where I>;t(r) = Y, ^^ ^i integers. By RANDOL [13] the following estimate holds: 

1 
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A^{x) = Cx"'^ + o(x''<''"^>'^^''+^') for fc ^ 2, where /1^(х) = Xl L î integers. Then 

(5.13) D,{r) = Л(г) - Л('- - 1) = О^г"!'-') + 0(r*(*-i>/2"'+*>) 

Thus the series ^^ 1/r̂  converge for /<: = 1, 2, 3. 

We solve the nonhnear equation under the assumptions 

(5.14) /„ ^ у > 0 on G4.fc = Q,x i-{d,R + V ) , ^it^ + hr} 

for some R , r > 0 

(5.15) sup |/,(^, X, M)| < yR 
G4,k 

in the same way as in Section 3. We prove that there is a unique v(w) e Б„ ^ to 
each w e С„,^, n ^ 2 such that PiF(t; + w) = 0 and this v is Lipschitz continuous in w 
in this case in the norm of the space AQ^^, because/does not depend on the derivatives 
of u. We work again in the spaces of finite dimension Bj^j) 

(5.16) MJ) = {weJ5o,fc, w = Z ^rs^rs} 
\r\aj 

equipped with the norm || • || ^ .̂ We define the operators S{;^ = P{'^F{v + w), 
where P{'^ is the projector of AQJ, on Bj,{j) and under the assumptions (5.14), (5.15) 
and г > 0 small enough we get (5^4'V t̂ )i,fc ^ 0 on dB^(j) = {u e В^{])у ЦмЦ д̂ = i ^ } . 
With help of the following two lemmas we prove in the same way as in Section 3 
the existence of such VQ E B^^ 1^^^ 

(5.17) Sivo = 0. 

Lemma 5.3. / / we define co{ô) by 

(5.18) co{ô) = sup sup \u{t + h, x) — u{t, x)\ 
veBkR(j) (t,x)eQk 

\h\âô 

we get co{ô) -> 0 for S -^ 0. 

Proof. 

\u{t + /ï, x) - u{t, x)\ = IZ' w,,(4(f + к x) - e'^lt, x))\ й 

й Г i"..i к'*" - 1 | ^ miud ^ W'' - 1 | ^ 2pf M ^ \e^^' -1|. 
r= l r^ r= l r^ 

The series converges uniformly and its value for /i = 0 is zero. 
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Lemma 5.4. Let и have two continuous derivatives. Then 

(5.19) j t;t(f, x) dx dt (1 ~ 6co(5)) g 3œ{ô) j vl{t, x) dx dt + C{ô) 
JQk JQk 

where œ{ô) is given by (5Д8) and ö > 0 can be chosen as small as needed. 

Remark. Integrating (5.19) over Qj^ we get an estimate which we use instead of 
(3.12). 

Proof is due to Rabinowitz [7]. Let {?7?} be a finite partition of the unity of 
<0, In} by 2^-periodic dififerentiable functions. Let the norm of the partition be ^ 5. 
Integrating by parts and using the periodicity of Y\I and i?,, we have 

Yilv'i dt= " 3 r\]\y{x, t) - v{x, Tf)] v^,v,, dt -
Jo Jo 

- 2 Viriit[v{x, t) - v{x, Ti)] D? dt 

where т̂  e supp tji. Thus 
f*2n ^2n /•2я ^2% 

Jo Jo 

Here we used the Holder inequality and a > 0 can be chosen arbitrarily. We sum. 
over i. We can assume ^ 1 ^ 2/5. Taking a = {ojiy^"^ we find 

['"vt àt й Mo) [ ' " к + vi) àt + 3<o{ö) ïlô-' X Г{тПиУ àt + С\^ dt] . 
Jo Jo L » Jo Jo J 

vt dt{l - 6œ{ô)) g 3œ{ô) f \^,, dt + C{ô) 

Hence 
•27t i: J 0 

where 

c(5) = 6co(5)r^5:f%„,)*dr 
' Jo 

Now we prove that |lt>(wi) — î (w2)|l é -fî lwi - ШгЦ where v{w^ are solutions of 
the equations (5.17) in 5*^ corresponding to W; e C'„^^. 

0 = {S„^Vl - S^^V2, «1 - V2) = 
= {F{vi + wi) - F(üi + W2) + Fivi + wj) - F{v2 + W2), vi - V2) = , 

= (/«(int. pt) (wi -'W2), ui - ^2) + (/„(int. pt) (pi - ^2), Di - V2) , 
î̂ i = 4w,) . 
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Thus 
y\\Vi - V2\\- ^ 

G4,k 
y\\vi - V2\\^ й sup \Ut, X, u)\ \\v, - V2\\ \\w, - щ\\ 

G4,k 

\\Vi - V2\\ й - sup |/„(t, X, U)\ ||wi - W2II . 
У G4,к 

Thus the following theorem holds. 

Theorem 5.1. Let n ^ 2 and assume that there are R > 0, r > 0 such that 

(i) / Ï5 continuously differentiable up to the order In on G^^ 

- V ^ U o ^ ^ ' m = 0,1,..., П - 1 , i = l,..., К UGA„^^ 

<ii) fuky >0 on G^^j,, 

(iii) sup {|/,(r, X, u)\, {t, X, u) e G4,J < yR • 

Then there is a unique solution to the problem (5.1), (5.3) in B^j, x ^n,k provided 
that e > 0 is sufficiently small, к = 1, 2, 3. 
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