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INTRODUCTION

The purpose of this paper is to prove the existence of 2n-periodic solutions of the
equation

(01) Lu = Upy + Uprrx = gf(" *5 Uy ut)
(0.2) u(t,0) = u,(t,0) = u(t, m) = u(t,m) =0

under the assumption that f is 2z-periodic in t.

The main point in the method of the proof is that the problem is solved in a Banach
space A, which can be decomposed into two complementary subspaces B and C,
where B is the null space of the operator Land Lis boundedly invertible only on C,
the complement in 4 of B. If we denote by P,, P, respectively the projectors of A
onto B, C and seek the solution in the form u = v + w, where ve B, we C, then
the equation (0.1) is equivalent to the system

(0.3) P,Flv+w) =0
(0.4) Lw = ¢P,F(v + w)

where F(u) (1, x) = f(t, x, u(t, x), u(t, x)).

This method is used in several papers, e.g. in [1], [2], [3], [7], [8], [9], [10] to
prove the existence of a solution to the equation (0.1) or to the wave equation. The
essential assumption for solving the bifurcation equation (0.3) is

(05) fuc g v> 0
or
(0.6) fuzy>0
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in the case that f depends only on ¢, x, u. The assumption (0.6) is used for solving
the bifurcation equation for the wave equation in [2], [3], [7], [9]- HALL [1] and
ToreLLI [10] found weak solutions of the wave equation under a weaker monoto-
nicity condition on f, which permitted f, = 0 to occur but at the expense of a growth
condition on f. In a later paper [8] RABINOWITZ extended the results of [7]. He
found classical solutions of the wave equation under the monotonicity condition
which permitted f, = 0 and which required no growth condition on f. The existence
of periodic solutions of a class of equations

o%?
u, + (—I)P(Eu = ¢f(t, x,u) .

is proved in [1], [2].

In this paper the problem is solved in a slightly different way than in [2] which
allows the function f to be dependent also on u, under weaker conditions on the
smoothness of f.

The general sufficient conditions for the existence of periodic solutions to the
equation Lu = g + &f(, *, u, u,, u,,, u,, €) have been investigated by KRYLOVA,
VEIvoDA [5]. KRYLOVA [4] proved the existence of periodic solutions to the equation

u, + A+ cu +u, + ufu| =f

for n-dimensional Laplace operator.

In Section 1 some properties of the used spaces are established. The necessary
and sufficient condition for the existence of a solution to the linear equation is given
in Section 2. In Section 3 the nonlinear equation is treated. The special case of the
equation (0.1) is investigated in Section 4. The case when f depends only on 1, x, u
is solved in Section 5.

1. PRELIMINARY

We begin with some notations. Let I = <0,2n) x <0, %), G = R x {0, n).
Let D be the set of real valued, 2zn-periodic, infinitely differentiable functions on G
such that (9%*/0x**) ¢(1, 0) = (6**/ox**) (1, ) = 0, k = 0, 1, ... for ¢ € D.
an =T

([
o Jo\/Ot

Denote by A, the completion of D under the norm
2 1/2
, ) dx dt) .
A, are Hilbert spaces with the inner product

(uv)— éiu @IU + ._aj.u _qz_n.v
T \er T ar x> ox*"

n 2 2n
r u(t, x)| + K u(t, x)
n axZn
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where (u, v) = (3% [ u(t, x) o(t, x) dx dt. For n = 0 we shall simply write 4, I
(¢, *). If k, I are integers, | > 0, define the functions e,; by

(1.2) et, x) = e**sin Ix .

The functions e,/r form a complete orthonormal system in the space A. Denote
by {u,,} the sequence of Fourier coefficients of the function u € A.

(1.3) U = (U, ekl)

By means of integration by parts we get the following lemma.

Lemma 1.1. The functions e} = ey[n(k*" + 1*")!/> form a complete orthonormal
system in A,.
By Parseval’s equality and Lemma 1.1 we get using the integration by parts

@

— z (an + l4n) l(”’ e“)lz =k=iw(k2n + l4”)|ukl‘2 i

k=—w
=1

(14wl = 3 [ P

This norm is equivalent to that used in [2] forn = 0

Jull = 3 (2 + 1

=1
because
an + l4n é (kZ + l4)n g 2n—1(k2n + l4n) .
In the sequel, the following two theorems from [2] will be used.

Theorem 1.1. If u e A,, then D"D"u 'are continuous when k = m + in + 1 and
k t x|

(1.5) [DyDru| . = sup |DyDIu(t, x)| < const |Jul .
I

Let ¢, denote the upper bound of the embedding operator 4; 3 u — u e C° C°®
being the space of continuous functions.

(1.6) lullow < cofluls -
Let f depend on ¢, x, u, u,. For u € 4, denote by F(u)
(1.7) F(u) (1, x) = f(t, x, u(t, x), u(t, x)) .

Theorem 1.2. Let u and ve A, for n 2 2 with |u|, and |v|, £ b. Suppose f and
its derivatives up to order 2n are continuous and bounded whenever the arguments
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u; are bounded. Then there are constants cy, ¢, such that
(19) [F@)]ar < e
(1.9) s wu) vy S ol i=1,2, vy=0, v,=1,.

Remark 1.1. To prove the condition (1.8) it suffices to suppose 2(n — 1) contin-
uous derivatives of f.

Remark 1.2. The assertion (1.9) and the mean value theorem give immediately
the relation

(1.10) [F@) = F)a-1 = 2¢a]u = o], -

Lemma 1.2. The set A, = {u€ A4,, |

u”,, =< r} is a closed subset of A.

Proof. Let {u;} be a sequence of the elements of A} and let u; — u in the space A.
We prove that u € 4. By the Banach-Saks theorem there is a subsequence {v;} of
arithmetic means of {u j} converging strongly to an element v € 4;. But u; — u in 4.
Thus v; - uin A and so u = v. Hence u € 4,.

2. THE LINEAR EQUATION

We turn our attention to the existence in 4, of solutions to the equation
2.1) Lu=uy;+ ty =49
(2.2) u(t,0) = u(1,0) = u(t, n) = u(t,7) = 0.

Definition. We say that u € 4, is a solution to the problem (2.1), (2.2) for g € 4,,
if (u, L), = (g, ¢), for all p € D.

Remark 2.1. The choice of the space D implies immediately that the boundary
conditions (2.2) are fulfilled in the weak sense.

Let u € 4, be a solution of the equation
(2.3) Lu=0.
It is easily seen that u has the representation

(2.4) = un~ Z Uik -

k2=14
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Denote the set of such solutions by B,. The coefficients of an element in B, are zero
when |k| = I? and hence for such u the norm reduces to

© 2n prm n
(2.5) = 3 21u | = 2 f f Z w1, %)
=1 04J0 ot

2
dx dt.

In [2] the following lemma is proved:

Lemma 2.1. If ue B, for n 21 and 2a, + a, < 2(n — 1), then D{*D%u is Hélder
continuous with the exponent + and

(2.6) | D¢ D2ul,,, < const ||uf,
where
lulls)2 = sup {|u(t + h, x + k) — u(t,x)| . |h* + k2|74, (t,x, h, k) eI} .

Denote by C, the complement of B, in A,. Then the function u € C, has the repre-
sentation u ~ Y uye,,. Clearly, (u,v), = 0 for ue B,, ve C,.
KEF4
Lemma 2.2. The problem (2.1), (2.2) has a solution in A, if and only if g € C,.
The solution is unique if its component in B, , is zero. The unique solution is given
by u = Kg where K is defined by

(2.7) K g(t, x) 224 r g“kz et %) .

Finally,K : C, —» C,,, and
(23) [Kglnss < g -

Proof. For g € C, we have

N

(Kg, Lg), = lim < > [ g“kz 998 qu) = hm ( Z e P)n = (9 P)n
e\ - L h

and so Kg is a solution of (2.1). On the other hand, if u is a solution of (2.1), then

for e D n B, (g, ¢), = (u, L), = 0. This implies that ge C,. Let ue C,, ve C,

be two solutions of (2.1). Then u — ve C, and (u — v, Lo) = 0 for all ¢ € D. Hence

u —ve B, But C, n B, = (. Hence u = v. Further

k 2(n+1) + [4+1) kz + G
”Kg”n+1 = Z lgkllz ——‘t‘k‘i)T‘—" < max (_]Ty Z 'g“ll (an + 14,.) —
K+ ¢
= ma ( k2)2 ” ”
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Since |k| # I, we have (I* = k*)* = (I* — k)> (I + k)> = (I + |[k|)> = I* + k.
Hence (k* + 1*) (I* — k*)~% £ 1 and (2.8) holds.

We conclude this section with lemma which will be useful in the sequel.

" Lemma 2.3. Let @€ Aand [[;¢(t,x)dxdt = 0. Then for € A such that m <
< ¥ £ M the following estimate holds. i

(29) —y(M - m) J' L|<p(t, x)| dx dt < J (o0t 9 dxdt 5
<HM — m) HJq:(t, x)| dx dt.

Proof. Denote by I, = {(t, x) €1, ¢(t,x) = 0}, I, = I — I,. Then

HI(W) (t,x)dxdt = 'UI + J‘L < M.U\Ilq)(t, x)dx dt + mﬁbq,(,, x)dx dt =
=01 =[] o) axat [[ ot axat = 3001 = m) ([ ot 91 ax .
On the other hand

ﬂt("’*”) (6 x) dx de = ”‘I + HIZ; m f J‘hw(t, %) dx dt + M 'Uhco(t, %) dx d =

=m H:p(t, %) dx dt + (M — m) j f olt ) axat =
— (M = m) j th(t, X)| dx dt .

Remark 2.2. For u € B; we get that uu, = 3(/6) u® fulfils the assumptions of
Lemma 2.3. In this case we have the estimate

300 = m oo = [] ) . 3) 051 5 300~ )l
In the space B; we have [[u] < |u,| and |u,]| = 1]u],. Hence
(210) —HM — m) ||u]? = ZJ (Yuu,) (2, x)dx dt < 4(M — m) |u]?.

This estimate will be used in the next section.
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3. THE NONLINEAR EQUATION

Now we turn to the problem

(3.1) Lu = ¢f(-, -, u,u,)

with the boundary conditions (2.2).

Let P,, P, respectively denote the projectors of 4 onto B, C. Then the equation
(3.1) is equivalent to the system

(3-2) P,F(v +w) =0,
(3.3) Lw = ¢P,F(v + w)
where v = Pyu, w = P,u. Let us denote

Jul,

Cr = {u eC, “u][,,

(3.4) B ={ueB,

IIA

R}, R>0,

IIA

r}, r>0.

Theorem 3.1. Let the function f have continuous derivatives up to the order 2(n - 1),
n > 2, which are bounded when the argument is bounded. If the equation (3.2)
has a unique solution ve BY for each w e C}, such that v(w) is Lipschitz continuous
in w in the norm of the space A;, then the system (3.2), (3.3) has a unique solution
in B® x CI for ¢ + 0 and small.

Proof. By Lemma 2.2 we can write the equation (3.3) as
(3.5) w = eKP,F(uv(w) + w).
The operator Tw = KP,F(v(w) + w) is Lipschitz continuous and maps the set C,,
into C". If we choose ¢ #+ 0 small enough, we get that ¢T'is a contraction in the norm
of the space A, of C; into itself. Hence there is a fixed point of the operator ¢T

in C}, the closure of CJin the space 4;. But C} is a closed subset of A} and by Lemma
1.2 C, = C;. Thus there is w, € Cj, such that v(w,) + w, is a solution of the system

(32). (3.3).

By Theorem 1.2 and (3.5) we get for w,
(3.6) [woln < ecy .

For we C;, we prove the existence of the solution of the equation (3.2) in BR,
This will be done following Hall [2]. Let B(j), j = 1, 2, ... be the spaces

(3.7 B(j) = {ueB, u(t,x) = iéuiiz,ieiiz,i(t, x)}
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equipped with the norm |- |,. Let P be the projector from A on B(j) and J be the
operator on B defined by

L]

1
(3.8) Ju ='Zl‘il—2uilz_le:tlzl,.

For w € C;, we define the operators

(3.9) Siv = JPIF(v + w),
S, = JP,F(v + w)

and we shall prove that there is such v/ € B(j) that

(3.10) . Sip = 0.

Then also P{F(v + w) = 0.

Lemma 3.1. Let f be as in Theorem 3.1 and moreover let the following assumptions
be fulfilled:

(i) faoZ7>0 on Gy =G x {—co(R +71), co(R + 1))?,
(ii) y — Y(sup f,(t, x, uy, uy) — inf f(t, x, uy, uy)) = >0,
: ! Gy G
(iif) sup |f(t, x, uy, u)| < aR,
Gy

then the equations (3.10) have unique solutions in BX(j) = B(j) n BS.

Proof. For ve dB®(j) = {ueB(j), |u|, = R} we have (as |»] £ R and by

(2.10))
(S, v), =2 (—g; F(v + w), v,,) =
= 2[(fts vtt) + (fu(vt + wt)> Utr) + (fu,(vn + Wrt)s Utt)] =
= R*x — R[sup |ft, x, uy, u,)| +

+ r(sgp | £t %, uy, us)| + sgp [fudts x, uy, uz))] 2 O

if we choose r small enough. Hence, by the known theorem (see e.g. [11]) there is
such o/ € BX(j), that (3.10) is fulfilled. As for the uniqueness, if v, v, € B*(J) are
two solutions of (3.10), then by the mean value theorem

0 = (Siv, — Siv,, vy, — 0y,) =
= —(F(o; + w) — F(v + w), v, = 0y)) £ — g oy — 22 -

Hence vy, = v,.
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Lemma 3.2. Let f and v’ be as in Lemma 3.1. Then ||v’|, is bounded independently
of j.

Proof. Lemma is proved for n = 2. For n = 3 we have
L. 66 62 63
0=(Siv), —v/)= - (= F' +w), =)=
( v ot8 ) (aﬁ ( ) o
= (ftr + 2fmu{ + 2ftugu{t + zfuu,u{u{t + fuuu{Z + fugugu{tz + fuu{t + fu‘u{m vtj!t)

where u/ = v/ + w. Since we assume the continuity of the second derivatives of f
and by Lemma 3.1 and Theorem 1.1 |ju,/ < R and |u,|, < coR, we have for
we Cy

(3.11) Poad = const (1 + o7 ]) -

Rabinowitz has shown that if ¢ € D, then

(3.12) ”4’3” = a51/4“(p”1,2 “(Pn" + b(é)

provided 6'/2|p|;,, < 75. Here a is a constant and b depends on §, which itself can
be chosen as small as needed. By Lemma 2.1 |[v]]|;,, < ¢|vi]; = ¢|¢’|,. Thus if 6
is sufficiently small, (3.11), (3.12) combine to prove that |[v/|; < const. Estimates
of ||v||, for n > 3 are now quite evident.

Lemma 3.3. Let f be as in Lemma 3.1. Then there is a unique element vy e BX
such that S, vy = 0 forn =2,3,...

Proof. By Lemma 3.1 and 3.2 there is a unique v’ € B(j) for each j = 1, 2, ... such
that SJv/ = 0. Further {¢/} is bounded in B, for n > 2. By Lemma 2.1 and Theorem
1.1 the assumptions of Arzela’s theorem for v/ are fulfilled. Hence there is a sub-
sequence, also denoted by {v’}, and v, € 4, such that

(3.13) v = vofleo = 0.
In the same way as in Lemma 1.2, with help of Banach-Saks theorem one proves
that v, € BX.

SwWo = S, — Sivg + Siv, — Sip/ -0

for j — oo, because F(v/ + w) —» F(v, + w) when (3.13) holds.

Lemma 3.4. Let f be as in Lemma 3.1. Then v(w) is Lipschitz continuous in w in
the norm of the space B,.
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. Proof. Let'wy, w, € C and v, v, € BR be the corresponding solutions of the
equation S, v; = 0. Then

0 = (8,01 — Sy,02, 03 — v3); = 2(F(v; + wy) — F(v, + w,), vy, — 05,) =
=2[(f(v, =, vy + wy, vg, + wy) = S5, 502 + Wy, Oy, + Wyy), vy, — D) +
+ (f(5s > va + Wi, 04, + wig) = f(5, 55 02 + Wa, Oy, F Wyy), U1, — D2g) +
+ (f(es =502 + wa, v + wi)) — f(5, 5502 + Wy, vy, + Wyy), vy, — D) +
+ (f(;, Uy 4 Wa, Uy 4+ Wip) = f(5, 00 + Way 0y F Wyy), vy — 02)] =
= 2[(f(int. pt.) (v; — v,), vy, — 02,) + (fi(int. pt.) (wy — w,), vy, — vy) +
+ (fu(int. pt.) (v, — v3,), v4, — v3,) + (fu(int. pt.) (wy, — wy,), v5, — v20)] -

By Lemma 2.3
2(f,(int. pt.) (v; — v3), vy, = 03) =

_%(Supfu(ts X, Uy uZ) - lélffu(t: X, Uy, ul)) ”UI — Uz ”f .
Gy 1

Thus

. affoy — vaff < Slcllp |7t %, g, us)| wy — wo| flor = vafs +
+ Sg? fults x, g w)] [wie = wa| o = vay -
Hence
oy = vas = i(sglp £t x, uy, us)| + Sglp Sty x, g, w)]) Wy — wa s .
We summarize our results in the next theorem.

Theorem 3.2. Let the function f fulfil thefollowmg assumptions. There are R > 0,
r > 0 such that .

(i) fhas continuous derivatives up to the order 2(n — 1) on G, = G x {—co(R + r),
co(R + 1)D%, co is given by (1.6);

(ii) a"’ F(u) (1, 0) = F(u)(tn)—O k=01,...n—1, ued,;

(i) fuZy>0 on Gy
(iv) v — Hsup f(t, x, uy, uy) — inf f(t, x, uy, u)) = o« > 0;
Gy Gy .

v) S:.;lp [fdt, x, uy, uz)| < aR.

Then if ¢ is sufficiently small, (3.1) has a unique 2n-periodic solution in BY x cr
satisfying the conditions (2.2).
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Remark 3.1. If f fulfils the assumptions of Theorem 3.2 for n = 3, then by
Theorem 1.1 we get a classical solution of the problem.

Remark 3.2. Let fdepend on ¢, x, u, u,, u,, u,,. Then if we substitute the condition
(iv) in Theorem 3.2 by the condition

Y - %(Supfu - lnffu) — sup lfu,,l — sup If"xxl =0>0
G2 G2 G2 G2

where G, = G x {—co(R + r), co(R + 1))*, we can prove in the same way the
existence of a 2n-periodic solution of the equation

Lu = &f(+, *, u, uy, Uy, tyy
in the space A4,.

4. THE EQUATION Lu = e[au:, + f(., ., W]

This problem will be solved in a slightly different way. No assumptions on the
behavior of f, will be needed. We shall prove the following lemma first.

Lemma 4.1. Let f be continuously differentiable up to the order 2(n — 1), n = 2.
Then the equation

(4.1) w = eKP,F(v + w) (F(u) = au, + f(+, *, u))

has a unique solution w € C% for each ve BX such that

42) [w]ls < ecy s
(43) [w(es) = w(@2)]s < eKiflor — sy,
@) ol E el e ) S <l

Proof. The existence of the solution of (4.1) and the relation (4.2) is proved in the
same way as in Theorem 3.1.(4.3) is established by means of the method of successive
approximations and Theorem 1.2. Let v, v, € BY, uy = w(v,), #,4, = eKP3F(vy +
+ u,). Then if K, < 1 is the Lipschitz constant of the operator T, Tu = KP,F(v; + u)

[w(vr) = w(v2)]|1 = }’_{1;”“1 — Uy £ 1 luy = wos =

._Kz
1
I-Kz

leKPo(F(vy + w(v2)) = F(vz + w(va)))]: <

&

<
1-K,

[F(vy + w(vs)) = F(oy + w(0))]| < 6K, [Joy — 024
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[wll = el KPF(o + W], < e[ F(o + w)]a-s <
= w(IIWII + [oll) + 8Ilf s o+ w)HH

— [ol

0+ Waey -

Iwl. =

This proves (4.4).

Now, it suffices to prove the existence of a solution to the equation P,F(v + w(v)) =
= F(v + w(v)), or, which is the same, P;F(v + w(v)) = 0. We shall investigate this
problem again in the spaces B(j) defined by (3.7), equipped in this case with the norm
||l As in Section 3, we define the operators S’ on B(j) by

S’y = JP{F(v + w(v)), Sv = JPF(v + w(v)).
Then for v € BX(j)
(870, v); = (v, + wv)) + f(*, -, v + w(v)), v,) =
2 aoflf — Jol(oees + sup |[£(t, x, u)))
where G; = G X {—co(R + 1), co(R + 1)), ¢, given by (1.6). If we suppose
sup {|f(t, x, u)|, (t, x, u) € G5} < aR and choose ¢ small enough, we get (S'p, v) = 0
on 0B®(j). Hence there is such v/ € BX(j) that S/’ = 0.We proceed as in Section 3

and we show that ||v/||, < const independently of j. We have proved that ||/, < R.
If |/] -y < const, then

0—<F(v’+w) " )—( 1)"1( _ (%:uf>=

0 5" ot . ;.
— ( l)n 1 (a_ét_ U" + at" at"—lf(.’ v+ W) , _vJ>

[Pl bl + 215 o s = (1= ) 0 5

1
< ¢ f(v, -, o) + w)|n-q < const
by Theorem 1.2. Hence [[v/|, < const, if & is small enough. In the same way as in

section 3, with help of (4.3) one proves that for n > 2 there is a unique v, € By such
that Sy, = 0.

Theorem 4.1. Let us suppose that there are R > 0, r > 0 such that f is continuously
differentiable up to the order 2(n — 1) on G,

a—z—kF(U)(tO)—————F(u)—(tn)_O k=0,1,...., n—1, ued,

and is 2n-periodic in t. Further let sup {|f(t, x, u)|, (1, x, u) € G3} < aR. Then
there is a unique solution of the problem Lu = e[au, + f(*, -, u)] with the bound-
ary conditions (2.2) in B} x CI, provided that ¢ is small enough.
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5. THE MORE DIMENSIONAL CASE

We shall treat the equation

(5.1) L = u, + A%u = ¢f(+, +, u)

for the k-dimensional Laplace operator, k = 1, 2, 3, on the domain
(5.2) 0. =R x Q, Q =<0,n

with the boundary conditions

5.3 —o, M o i1k
() ulagk— s a'—x'::zg-— , 1=1,..,K.

Let A, denote the completion of the set D, of infinitely differentiable 2z-periodic
functions on Q,, such that

2m,
? 2:,‘.=o =0, m=01,2,...
ox;"|3izn
in the normes
n 2 k 2n 2
"u(t, x) + |0*"u(t, x) )dx dt, 0 =<0,27)> x &,

(5:4) [l = fgk(

A, ; are Hilbert spaces with the inner products

(55) (s vy = J' <B"u(t, x) 0"(t, x) N z":az"u(t, x). (s, x)) d dt.

o o T ox* ax2"

1 l ox:"

X = (Xg, .00 Xp) -

or"

In the same way as in Section 1 one proves that the functions
7Tk+1

2k—1

k Y
(" + Zs?")] e sins;x, ...sin s.x, , rintegers,
1

(56) ehtx) = [
s=(sy...,8), s >0 integers,

form a complete orthonormal systems in A4, ;.

We say that ueAd,; is a solution to the problem Lu = g,(5.3), g€ 4,,, if
(4, Lo), x = (9, @)n s for all ¢ € D,.

As in Section 3 we shall write 4, = B, + C,x Where B,; is the null space of
the operator L, and C, ; is the orthogonal complement.of B, ; in A, . Clearly,
(5.7) By ={ued,,,u= Y ugel},

Iri=Esi2

(5:8) ueCpp, = uei=>u,=0 for |r|=Ys7.
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The equation L,u = g has a unique solution u = Kg € C, for each ge C,, g =
= Zgrsefs and for Kg we have

(5.9 Kg=Y I &,
rt — (;S?)2
(5.10) 1Kg]ns < 9]l -

k
Indeed, |g, (> — (Xs1)?) 7| £ |9, for g€ C,
1

Lemma 5.1. ue 4, = ue C° and

(s.11) Jul < blule for nz2.

Proof. Let ue A, u = Y u,e,. Then
k . k
il = D07 + S50 ful (2 + St 5
1 1
k
< [l 02" + le?")“‘)"z < biflulla

k k k
because 2" 4+ Ys#" > r" [[s7"* and the series Y (r" [[s7"*)* converges for n = 2,
k=1,2,3. t L 1

Lemma 5.2. ue B, , = ue C° and
(5.12) el = diu] -

k
Proof. For functions from By , only the coefficients u,;, where |r| = Y's; are dif-
rent from zero. Hence 1

el 5505 filiae Tro= 3 e

where Dy(r) = Y 1, s; integers. By RANDOL [13] the following estimate holds:

k
Isi2=N
1
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Ay(x) = Cx*? + O(x**~ D2+ D) for k > 2, where 4,(x) = Y. 1, s; integers. Then
x

Tsi2<
(5.13) Dr) = A(r) — A(r — 1) = 0(*>71) + O(rk(k—l)/Z(k+1))
Dy(r) = O(r'?), D4(r) = O(*%).

Thus the series Y * 1/r? converge for k = 1,2, 3.

We solve the nonlinear equation under the assumptions
(5.14) fuZy>0 on Gup= 0 x {—(dR + byr), diR + byr>
forsome R, r>0

(5.15) sup |f{t, x, u)| < yR
G4,k

in' the same way as in Section 3. We prove that there is a unique v(w)e B, , to
each we C, 4, n = 2 such that P{F(v + w) = 0 and this v is Lipschitz continuous in w
in this case in the norm of the space 4, 4, because f does not depend on the derivatives
of u. We work again in the spaces of finite dimension B,(j)

rl=j

(5.16) By(j) = {ueBoy u = ”Z Upgeys}

equipped with the norm ||, We define the operators Si* = P{*F(v + w),
where P{* is the projector of A4, , on B,(j) and under the assumptions (5.14), (5.15)
and & > 0 small enough we get (S5*v, v); , = 0 on 8B(j) = {u € B, (j), |ullsx =R}
With help of the following two lemmas we prove in the same way as in Section 3
the existence of such v, € BY, that

(5.17) Skvo = 0.
Lemma 5.3. If we define w(8) by

(5.18) w(8) = sup sup |u(t + h, x) — u(t, x)|

veBiR(j) (1,%)eQik
|h| <o

we get () — 0 for § - 0.

Proof.
lu(t + R, x) = u(t, x)| = |Y*u, et + h,x) — efi(t, x))| £

i < D i o D ir
< 3 i et 1] 5 2], 5, 2 fot ) 2R 5 2D pon ).

The series converges uniformly and its value for h = 0 is zero.
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Lemma 5.4. Let u have two continuous derivatives. Then
(5.19) J v(t, x) dx dt (1 — 6w(5)) < 3co(5)j v (t, x) dx dt + C(5)

where () is given by (5,18) and 6 > 0 can be chosen as small as needed.

Remark. Integrating (5.19) over @, we get an estimate which we use instead of
(3.12).

Proof is due to Rabinowitz [7]. Let {7} be a finite partition of the unity of
0, 2n) by 2n-periodic differentiable functions. Let the norm of the partition be < 6.
Integrating by parts and using the periodicity of #; and v,, we have

2n
j nvidt = =3 j nilo(x, 1) = v(x, 7,)] v}v, dt —

0
2n
- 2I nimao(x, t) — v(x, ;)] v} dt
0
where 7; € supp 17. Thus

2n 2zn
j n;vt dt = 3“’(5) S (\"?vatrl + ‘ni"itvfl) dt £
0

0

< 3co(6)J~

[

2n

(s -+ o+ 1T 4 o

3

Here we used the Holder inequality and a« > 0 can be chosen arbitrarily. We sum
over i. We can assume y 1 < 2/. Taking « = (§/2)*/* we find

2n 2n 2n 2n
j vfdt§3w(6)j (U¢+uf,)dt+3co(a)[za-3z j (nane)® dt +J v;*dt].
0 0 iJo 0

Hence

j ot di(1 — 60(3)) < 3w(5)r"of, at + (o)
where

C(3) = 6w(5) 5~ Zj (nin)* dt.

Now we prove that |[o(w,) — v(w2)]| £ K|w, — w,| where v(w;) are solutions of
the equations (5.17) in BY, corresponding to w; e C7,. .
0= (Swlvl — SWzUz, vy — Uz) =
= (F(vy + wy) — F(vy + w2) + F(o1 + w,) = F(v, + w,), v, — v,) =
= (fuint. pt) (w, —'w), vy — v2) + (f(int. pt) (vy = v3), v, — vy),
v; = o(w).
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e los = val? < sup £t 5 o = val s = wa]

Jox = va] < & sup |1t )] o = wa]
Y Gak
Thus the following theorem holds.

Theorem 5.1. Let n = 2 and assume that there are R > 0, r > 0 such that

(i) f is continuously differentiable up to the order 2n on Gy

0*"F(u .
Eg(T)foo, m=0l.., n—1, i=1,.., k ucd,,
i Xi=m
(il) fu _\ﬁ_ b > 0 on G4,k N
(i) - sup {|/{(t, x, u)|, (1, x,u) € G4} < yR.

Then there is a unique solution to the problem (5.1), (5.3) in By, x Cj, provided
that ¢ > 0 is sufficiently small, k = 1,2, 3.
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