Czechoslovak Mathematical Journal

Alois Švec
Surfaces in hermitian 3-spaces

Czechoslovak Mathematical Journal, Vol. 23 (1973), No. 2, 339-344

Persistent URL: http://dml.cz/dmlcz/101170

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SURFACES IN HERMITIAN 3-SPACES

Alois Švec, Praha

(Received July 3, 1972)

The differential geometry of submanifolds in hermitian spaces is not yet well known, the only exception being the theory of the curves due to O . Borůvka. In what follows, I propose to study a surface in H^{3}. To each point of it, I associate a geometrically significant frame, this giving me two "principal curvatures" denoted by A and C. The theorems say that these curvatures should be "general" functions.

In the hermitian space H^{3} be given an analytic surface $M=M(u, v), u=u^{1}+i u^{2}$, $v=v^{1}+i v^{2}$ being local complex parameters. We have $\mathrm{d} M=\partial M / \partial u . \mathrm{d} u+$ $+\partial M / \partial v \cdot \mathrm{~d} v$, where $\partial / \partial u=\frac{1}{2}\left(\partial / \partial u^{1}-i \partial / \partial u^{2}\right), \mathrm{d} u=\mathrm{d} u^{1}+i \mathrm{~d} u^{2}$, etc. The tangent plane at each point of the surface M is spanned by the vectors $\partial M / \partial u, \partial M / \partial v$. At each point of M, let us choose an orthonormal frame v_{1}, v_{2}, v_{3} such that v_{1} and v_{2} are situated in the tangent plane. The field of these frames is supposed to be differentiable, but not generally holomorphic. Then we have

$$
\frac{\partial M}{\partial u}=\alpha_{1} v_{1}+\alpha_{2} v_{2}, \quad \frac{\partial M}{\partial v}=\beta_{1} v_{1}+\beta_{2} v_{2} ; \quad D \equiv \alpha_{1} \beta_{2}-\alpha_{2} \beta_{1} \neq 0
$$

and $\mathrm{d} M=\tau^{1} v_{1}+\tau^{2} v_{2}$, where $\tau^{1}=\alpha_{1} \mathrm{~d} u+\beta_{1} \mathrm{~d} v, \tau^{2}=\alpha_{2} \mathrm{~d} u+\beta_{2} \mathrm{~d} v$. Now,

$$
\begin{aligned}
\tau^{1} \wedge & \tau^{2} \wedge \bar{\tau}^{1} \wedge \bar{\tau}^{2}=D \bar{D} \mathrm{~d} u \wedge \mathrm{~d} v \wedge \mathrm{~d} \bar{u} \wedge \mathrm{~d} \bar{v}= \\
& =4 D \bar{D} \mathrm{~d} u^{1} \wedge \mathrm{~d} u^{2} \wedge \mathrm{~d} v^{1} \wedge \mathrm{~d} v^{2} \neq 0
\end{aligned}
$$

Let us write

$$
\begin{array}{ll}
\mathrm{d} M=\tau^{1} v_{1}+\tau^{2} v_{2}, & \mathrm{~d} v_{2}=\tau_{2}^{1} v_{1}+\tau_{2}^{2} v_{2}+\tau_{2}^{3} v_{3}, \tag{1}\\
\mathrm{~d} v_{1}=\tau_{1}^{1} v_{1}+\tau_{1}^{2} v_{2}+\tau_{1}^{3} v_{3}, & \mathrm{~d} v_{3}=\tau_{3}^{1} v_{1}+\tau_{3}^{2} v_{2}+\tau_{3}^{3} v_{3}
\end{array}
$$

From the relations $\left(v_{i}, v_{j}\right)=\delta_{i j}\left(\delta_{i j}=1\right.$ for $i=j$ and $\delta_{i j}=0$ for $\left.i \neq j\right)$, we get

$$
\begin{equation*}
\tau_{i}^{j}+\bar{\tau}_{j}^{i}=0 ; \quad i, j=1,2,3 \tag{2}
\end{equation*}
$$

the exterior differentiation of (1) yields

$$
\begin{gather*}
\mathrm{d} \tau^{1}=\tau^{1} \wedge \tau_{1}^{1}+\tau^{2} \wedge \tau_{2}^{1}, \quad \mathrm{~d} \tau^{2}=\tau^{1} \wedge \tau_{1}^{2}+\tau^{2} \wedge \tau_{2}^{2} \tag{3}\\
0=\tau^{1} \wedge \tau_{1}^{3}+\tau^{2} \wedge \tau_{2}^{3} ; \mathrm{d} \tau_{i}^{j}=\tau_{i}^{k} \wedge \tau_{k}^{j} ; \quad i, j, k=1,2,3 .
\end{gather*}
$$

From $\left(3_{3}\right)$, we have the existence of complex-valued functions A, B, C on M such that

$$
\begin{equation*}
\tau_{1}^{3}=A \tau^{1}+B \tau^{2}, \quad \tau_{2}^{3}=B \tau^{1}+C \tau^{2} \tag{4}
\end{equation*}
$$

At each point of M, let us choose another frame w_{1}, w_{2}, w_{3} with the above described properties. Then

$$
\begin{array}{ll}
\mathrm{d} M=\omega^{1} w_{1}+\omega^{2} w_{2}, & \mathrm{~d} w_{2}=\omega_{2}^{1} w_{1}+\omega_{2}^{2} w_{2}+\omega_{2}^{3} w_{3}, \tag{5}\\
\mathrm{~d} w_{1}=\omega_{1}^{1} w_{1}+\omega_{1}^{2} w_{2}+\omega_{1}^{3} w_{3}, & \mathrm{~d} w_{3}=\omega_{3}^{1} w_{1}+\omega_{3}^{2} w_{2}+\omega_{3}^{3} w_{3},
\end{array}
$$

$$
\begin{equation*}
\omega_{1}^{3}=A^{*} \omega^{1}+B^{*} \omega^{2}, \quad \omega_{2}^{3}=B^{*} \omega^{1}+C^{*} \omega^{2} \tag{6}
\end{equation*}
$$

we are interested in the relation between $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{A}^{*}, \mathrm{~B}^{*}, \mathrm{C}^{*}$. Let

$$
\begin{align*}
v_{1}=a_{1} w_{1}+a_{2} w_{2}, \quad v_{2} & =b_{1} w_{1}+b_{2} w_{2}, \quad v_{3}=c w_{3} \tag{7}\\
a_{1} \bar{a}_{1}+a_{2} \bar{a}_{2}=1, \quad b_{1} \bar{b}_{1}+b_{2} \bar{b}_{2} & =1, \quad a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}=0, \quad c \bar{c}=1
\end{align*}
$$

Then $\omega^{1}=a_{1} \tau^{1}+b_{1} \tau^{2}, \quad \omega^{2}=a_{2} \tau^{1}+b_{2} \tau^{2}, \quad \tau^{1}=\bar{a}_{1} \omega^{1}+\bar{a}_{2} \omega^{2}, \quad \tau^{2}=\bar{b}_{1} \omega^{1}+$ $+b_{2} \omega^{2}$. From $\left(1_{2,3}\right)$, we get

$$
\begin{aligned}
& a_{1} \mathrm{~d} w_{1}+a_{2} \mathrm{~d} w_{2}=(\cdot) w_{1}+(\cdot) w_{2}+\left(A \tau^{1}+B \tau^{2}\right) c w_{3}, \\
& b_{1} \mathrm{~d} w_{1}+b_{2} \mathrm{~d} w_{2}=(\cdot) w_{1}+(\cdot) w_{2}+\left(B \tau^{1}+C \tau^{2}\right) c w_{3},
\end{aligned}
$$

i.e.,
$a_{1}\left(A^{*} \omega^{1}+B^{*} \omega^{2}\right)+a_{2}\left(B^{*} \omega^{1}+C^{*} \omega^{2}\right)=A\left(\bar{a}_{1} \omega^{1}+\bar{a}_{2} \omega^{2}\right) c+B\left(\bar{b}_{1} \omega^{1}+\bar{b}_{2} \omega^{2}\right) c$,
$b_{1}\left(A^{*} \omega^{1}+B^{*} \omega^{2}\right)+b_{2}\left(B^{*} \omega^{1}+C^{*} \omega^{2}\right)=B\left(\bar{a}_{1} \omega^{1}+\bar{a}_{2} \omega^{2}\right) c+C\left(\bar{b}_{1} \omega^{1}+\bar{b}_{2} \omega^{2}\right) c$
and

$$
\begin{array}{ll}
a_{1} A^{*}+a_{2} B^{*}=c \bar{a}_{1} A+c \bar{b}_{1} B, & a_{1} B^{*}+a_{2} C^{*}=c \bar{a}_{2} A+c \bar{b}_{2} B, \\
b_{1} A^{*}+b_{2} B^{*}=c \bar{a}_{1} B+c \bar{b}_{1} C, & b_{1} B^{*}+b_{2} C^{*}=c \bar{a}_{2} B+c \bar{b}_{2} C .
\end{array}
$$

Finally,

$$
\begin{align*}
& A^{*}=c\left(a_{1} b_{2}-a_{2} b_{1}\right)^{-1} \cdot\left(\bar{a}_{1} b_{2} A+\bar{b}_{1} b_{2} B-\bar{a}_{1} a_{2} B-a_{2} \bar{b}_{1} C\right), \tag{8}\\
& B^{*}=c\left(a_{1} b_{2}-a_{2} b_{1}\right)^{-1} \cdot\left(\bar{a}_{2} b_{2} A-a_{2} \bar{a}_{2} B+b_{2} \bar{b}_{2} B-a_{2} \bar{b}_{2} C\right), \\
& C^{*}=c\left(a_{1} b_{2}-a_{2} b_{1}\right)^{-1} \cdot\left(-\bar{a}_{2} b_{1} A+a_{1} \bar{a}_{2} B-b_{1} \bar{b}_{2} B+a_{1} \bar{b}_{2} C\right) .
\end{align*}
$$

Let $B \neq 0$. Consider the equation (for $\varrho \in \boldsymbol{C}$)

$$
\begin{equation*}
\varrho \bar{\varrho}+\alpha \varrho-\beta \bar{\varrho}-1=0, \quad \text { where } \quad \alpha=A B^{-1}, \quad \beta=-C B^{-1} . \tag{9}
\end{equation*}
$$

Then $\varrho \bar{\varrho}-\bar{\beta} \varrho+\bar{\alpha} \varrho-1=0$; from these equations we get an equivalent system

$$
\begin{equation*}
(\alpha+\bar{\beta}) \varrho=(\bar{\alpha}+\beta) \varrho, \quad \varrho \bar{\varrho}+\frac{1}{2}(\alpha-\bar{\beta}) \varrho+\frac{1}{2}(\bar{\alpha}-\beta) \varrho-1=0 . \tag{10}
\end{equation*}
$$

In the plane of complex numbers, $\left(10_{1}\right)$ is the equation of a line through origin. $\left(10_{2}\right)$ may be written as

$$
\left[\varrho+\frac{1}{2}(\bar{\alpha}-\beta)\right] \cdot\left[\bar{\varrho}+\frac{1}{2}(\alpha-\bar{\beta})\right]=1+\frac{1}{4}(\bar{\alpha}-\beta)(\alpha-\bar{\beta}),
$$

and it is the equation of a circle. The origin being its inner point, there exist solutions of (9). Let ϱ_{0} be a solution of the equation (9). Further, choose β in such a way that $\beta \bar{\beta}\left(1+\varrho_{0} \bar{\varrho}_{0}\right)=1$. Let the transformation (7) of the frames be given by

$$
\begin{equation*}
v_{1}=-\varrho_{0} \beta w_{1}-\beta w_{2}, \quad v_{2}=\beta w_{1}-\varrho_{0} \beta w_{2}, \quad v_{3}=c w_{3} ; \tag{11}
\end{equation*}
$$

we see easily that the relations $\left(7_{4,5,6}\right)$ are satisfied. We get

$$
B^{*}=\frac{c B}{\beta^{2}\left(1+\varrho_{0} \bar{\varrho}_{0}\right)^{2}}\left(\varrho_{0} \bar{\varrho}_{0}+\frac{A}{B} \varrho_{0}+\frac{C}{B} \bar{\varrho}_{0}-1\right)=0,
$$

and we have proved the existence of fields of frames w_{1}, w_{2}, w_{3} such that $B^{*}=0$. From now on, consider only the fields with this property. Thus $B=0, B^{*}=0$, and the equations (8) reduce to

$$
\begin{gather*}
A^{*}=c\left(a_{1} b_{2}-a_{2} b_{1}\right)^{-1}\left(\bar{a}_{1} b_{2} A-a_{2} \bar{b}_{1} C\right), \tag{12}\\
C^{*}=c\left(a_{1} b_{2}-a_{2} b_{1}\right)^{-1}\left(-\bar{a}_{2} b_{1} A+a_{1} \bar{b}_{2} C\right), \\
0=\bar{a}_{2} b_{2} A-a_{2} \bar{b}_{2} C . \tag{13}
\end{gather*}
$$

From (13) we get $a_{2} \bar{b}_{2} \bar{A}=\bar{a}_{2} b_{2} \bar{C}$, i.e., $a_{2} \bar{a}_{2} b_{2} \bar{b}_{2}(A \bar{A}-C \bar{C})=0$.
Suppose $A \bar{A} \neq C \bar{C}$. Then either $a_{2}=0$ or $b_{2}=0$. The admissible changes of the frames are

$$
\begin{array}{llll}
v_{1}=a_{1} w_{1}, & v_{2}=b_{2} w_{2}, & v_{3}=c w_{3} ; & a_{1} \bar{a}_{1}=b_{2} b_{2}=c \bar{c}=1 ; \tag{14}\\
v_{1}=a_{2} w_{2}, & v_{2}=b_{1} w_{1}, & v_{3}=c w_{3} ; & a_{2} \bar{a}_{2}=b_{1} \bar{b}_{1}=c \bar{c}=1,
\end{array}
$$

and we have

$$
\begin{equation*}
A^{*}=c \frac{\bar{a}_{1}}{a_{1}} A, \quad C^{*}=c \frac{\bar{b}_{2}}{b_{2}} C \quad \text { or } \quad A^{*}=c \frac{\bar{b}_{1}}{b_{1}} C, \quad C^{*}=c \frac{\bar{a}_{2}}{a_{2}} A \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{*} \bar{A}^{*}=A \bar{A}, \quad C^{*} \bar{C}^{*}=C \bar{C} \quad \text { or } \quad A^{*} \bar{A}^{*}=C \bar{C}, \quad C^{*} \bar{C}^{*}=A \bar{A} . \tag{16}
\end{equation*}
$$

The restriction to non-developpable surfaces leads to $A C \neq 0$, the asymptotic curves being given by the equation $\tau^{1} \tau_{1}^{3}+\tau^{2} \tau_{2}^{3}=A\left(\tau^{1}\right)^{2}+C\left(\tau^{2}\right)^{2}=0$. We get-from (15)-the possibility to choose such fields of frames v_{1}, v_{2}, v_{3} that $A>0, C>0$; let us call such fields canonical.

Now, suppose $A \bar{A}=C \bar{C}$. From (12), we get $A^{*} \bar{A}^{*}=A \bar{A}$, and we are able to choose a field of frames in such a way that $A=C>0$.

Thus we are able - in any case - to choose the frames in such a way that

$$
\begin{equation*}
\tau_{1}^{3}=A \tau^{1}, \quad \tau_{2}^{3}=C \tau^{2} ; \quad A>0, \quad C>0 \tag{17}
\end{equation*}
$$

The exterior differentation yields

$$
\begin{align*}
& \tau^{1} \wedge\left\{\mathrm{~d} A+A\left(\tau_{3}^{3}-2 \tau_{1}^{1}\right)\right\}+\tau^{2} \wedge\left(A \bar{\tau}_{1}^{2}-C \tau_{1}^{2}\right)=0 \tag{18}\\
& \tau^{1} \wedge\left(A \bar{\tau}_{1}^{2}-C \tau_{1}^{2}\right)+\tau^{2} \wedge\left\{\mathrm{~d} C+C\left(\tau_{3}^{3}-2 \tau_{2}^{2}\right)\right\}=0
\end{align*}
$$

and there exist complex-valued functions K, L, M, N such that

$$
\begin{align*}
\mathrm{d} A+A\left(\tau_{3}^{3}-2 \tau_{1}^{1}\right) & =K \tau^{1}+L \tau^{2} \tag{19}\\
A \bar{\tau}_{1}^{2}-C \tau_{1}^{2} & =L \tau^{1}+M \tau^{2} \\
\mathrm{~d} C+C\left(\tau_{3}^{3}-2 \tau_{2}^{2}\right) & =M \tau^{1}+N \tau^{2}
\end{align*}
$$

From this, we get

$$
\begin{align*}
\mathrm{d} A+A\left(2 \tau_{1}^{1}-\tau_{3}^{3}\right) & =\bar{K} \bar{\tau}^{1}+\bar{L} \bar{\tau}^{2} \tag{20}\\
A \tau_{1}^{2}-C \bar{\tau}_{1}^{2} & =\bar{L} \bar{\tau}^{1}+\bar{M} \bar{\tau}^{2} \\
\mathrm{~d} C+C\left(2 \tau_{2}^{2}-\tau_{3}^{3}\right) & =\bar{M} \bar{\tau}^{1}+\bar{N} \bar{\tau}^{2}
\end{align*}
$$

Thus
(21) $2 \mathrm{~d} A=K \tau^{1}+L \tau^{2}+\bar{K} \bar{\tau}^{1}+\bar{L} \bar{\tau}^{2}, \quad 2 \mathrm{~d} C=M \tau^{1}+N \tau^{2}+\bar{M} \bar{\tau}^{1}+\bar{N} \bar{\tau}^{2}$.

Suppose $A=C \neq 0$. From (21), we get $K=M, L=N$, and (19 1,3) yields $\tau_{2}^{2}-$ $-\tau_{1}^{1}=0$. From (192) and (202), we have $L=K=0$ and $\bar{\tau}_{1}^{2}=\tau_{1}^{2}$. From $\tau_{2}^{2}-\tau_{1}^{1}=$ $=0$, we have $A^{2}\left(\tau^{1} \wedge \bar{\tau}^{1}-\tau^{2} \wedge \bar{\tau}^{2}\right)=0$, which is in contradiction to $\tau^{1} \wedge \tau^{2} \wedge$ $\wedge \bar{\tau}^{1} \wedge \bar{\tau}^{2} \neq 0$. This proves

Theorem 1. In H^{3} there are no surfaces with $A=C$.
Now, suppose $A \neq C, A=$ const., $C=$ const. From $\left(19_{1,3}\right)$ and $\left(20_{1,3}\right), K=$ $=L=0, M=N=0$; from $\left(19_{2}\right)$ and $\left(20_{2}\right), \tau_{1}^{2}=0$. The exterior differentation of this equation yields $A C \tau^{1} \wedge \bar{\tau}^{2}=0$, and we have

Theorem 2. In H^{3} there are no surfaces with $A=$ const., $C=$ const.
We get from (14) that at each point of our surface we have two invariant tangent directions which are analoguous to the principal directions of a surface in the

Euclidean space. If v_{1}, v_{2} are tangent vectors of curves of the considered surface, these curves are called principal. Let us investigate the existence of the principal curves. If the principal curves do exist, the equations $\tau^{1}=0$ and $\tau^{2}=0$ are completely integrable, i.e., $\tau^{1} \wedge \mathrm{~d} \tau^{1}=0$ and $\tau^{2} \wedge \mathrm{~d} \tau^{2}=0$. We get

$$
\begin{aligned}
& \left(A^{2}-C^{2}\right) \tau_{1}^{2}=C L \tau^{1}+C M \tau^{2}+A \bar{L} \bar{\tau}^{1}+A \bar{M} \bar{\tau}^{2} \\
& \left(A^{2}-C^{2}\right) \bar{\tau}_{1}^{2}=A L \tau^{1}+A M \tau^{2}+C \bar{L} \bar{\tau}^{1}+C \bar{M} \bar{\tau}^{2}
\end{aligned}
$$

from $\left(19_{2}\right)$ and $\left(20_{2}\right)$, i.e.,

$$
\begin{aligned}
& \tau^{1} \wedge \mathrm{~d} \tau^{1}=-\tau^{1} \wedge \tau^{2} \wedge \bar{\tau}_{1}^{2}=C\left(C^{2}-A^{2}\right)^{-1} \cdot \tau^{1} \wedge \tau^{2} \wedge\left(\bar{L} \bar{\tau}^{1}+\bar{M} \bar{\tau}^{2}\right) \\
& \tau^{2} \wedge \mathrm{~d} \tau^{2}=\tau^{2} \wedge \tau^{1} \wedge \tau_{1}^{2}=A\left(A^{2}-C^{2}\right)^{-1} \cdot \tau^{2} \wedge \tau^{1} \wedge\left(\bar{L} \bar{\tau}^{1}+\bar{M} \bar{\tau}^{2}\right)
\end{aligned}
$$

From the existence of the principal curves it follows $L=M=0$ and $\tau_{1}^{2}=0$, this being a contradiction.

Theorem 3. A surface in H^{3} has no principal curves.
Finally, let us study the geometrical interpretation of the invariants A and C. Consider the real representation of the space H^{3}, i.e., the Euclidean space E^{6} with the complex structure $I: V^{6} \rightarrow V^{6}\left(V^{6}\right.$ being the underlying vector space of $\left.E^{6}\right)$ such that $\left(v_{1}, v_{2}\right)=\left(I v_{1}, I v_{2}\right)$ for each $v_{1} \cdot v_{2} \in V^{6}$. Write $\tau^{1}=\varphi^{1}+i \psi^{1}, \tau^{2}=\varphi^{2}+i \psi^{2}$. We have $i v=I v$ in the considered representation; therefore, we may write

$$
\begin{aligned}
& \mathrm{d} M=\varphi^{1} v_{1}+ \psi^{1} I v_{1}+\varphi^{2} v_{2}+\psi^{2} I v_{2} \\
& \mathrm{~d} v_{1} \equiv A \varphi^{1} v_{3}+A \psi^{1} I v_{3}, \quad \mathrm{~d} I v_{1} \equiv-A \psi^{1} v_{3}+A \varphi^{1} I v_{3} \\
& \mathrm{~d} v_{2} \equiv C \varphi^{2} v_{3}+C \psi^{2} I v_{3}, \quad \mathrm{~d} I v_{2} \equiv-C \psi^{2} v_{3}+C \varphi^{2} I v_{3} \\
&\left(\bmod v_{1}, v_{2}, I v_{1}, I v_{2}\right) .
\end{aligned}
$$

In a fixed point $M_{0} \in M$, let us choose a unit tangent vector v and a curve $\gamma=\gamma(s)$ on M such that s is its arc, $\gamma\left(s_{0}\right)=M_{0}$ and $\mathrm{d} \gamma\left(s_{0}\right) / \mathrm{d} s=v$. Denote by \tilde{v} the orthogonal projection of the vector $\mathrm{d}^{2} \gamma\left(s_{0}\right) / \mathrm{ds}^{2}$ into the normal plane (spanned by the vectors $v_{3}, I v_{3}$) of the manifold M at M_{0}. If

$$
v=\sin \gamma \sin \alpha \cdot v_{1}+\sin \gamma \cos \alpha . I v_{1}+\cos \gamma \sin \beta \cdot v_{2}+\cos \gamma \cos \beta . I v_{2},
$$

we get

$$
\begin{aligned}
\tilde{v}= & -\left(A \sin ^{2} \gamma \cos 2 \alpha+C \cos ^{2} \gamma \cos 2 \beta\right) v_{3}+ \\
& +\left(A \sin ^{2} \gamma \sin 2 \alpha+C \cos ^{2} \gamma \sin 2 \beta\right) I v_{3},
\end{aligned}
$$

and the vector \hat{v} depends on v only. $|\tilde{v}|$ being the length of the vector \tilde{v} and $\varrho=|\tilde{v}|^{2}$, we have

$$
\varrho=A^{2} \sin ^{4} \gamma+C^{2} \cos ^{4} \gamma+2 A C \sin ^{2} \gamma \cos ^{2} \gamma \cos 2(\alpha-\beta) .
$$

Let us look for a vector v for which $|\tilde{v}|$ has an extremal value. We have

$$
\begin{aligned}
\frac{\partial \varrho}{\partial \alpha}= & -A C \sin ^{2} 2 \gamma \cdot \sin 2(\alpha-\beta), \frac{\partial \varrho}{\partial \beta}=A C \sin ^{2} \gamma \cdot \sin 2(\alpha-\beta), \\
\frac{\partial \varrho}{\partial \gamma}= & 2 \sin 2 \gamma \cdot\left(A^{2} \sin ^{2} \gamma-C^{2} \cos ^{2} \gamma+A C \cos ^{2} \gamma \cdot \cos 2(\alpha-\beta)-\right. \\
& \left.-A C \sin ^{2} \gamma \cdot \cos 2(\alpha-\beta)\right) .
\end{aligned}
$$

Thus we have $\sin 2 \gamma=0$ or $\sin 2(\alpha-\beta)=0$. Suppose $\sin 2(\alpha-\beta)=0$. Then

$$
\frac{\partial \varrho}{\partial \gamma}=2(A-C) \sin 2 \gamma \cdot\left(A \sin ^{2} \gamma+C \cos ^{2} \gamma\right)
$$

and because of $A>0, C>0$, we have $A \sin ^{2} \gamma+C \cos ^{2} \gamma>0$ and $\sin 2 \gamma=0$. Thus, we have always $\sin 2 \gamma=0$. For $\sin \gamma=0$, we get

$$
v=\sin \beta \cdot v_{2}+\cos \beta \cdot I v_{2}=(\sin \beta+i \cos \beta) v_{2}, \quad \varrho=C^{2}
$$

for $\cos \gamma=0$, we have

$$
v=\sin \alpha \cdot v_{1}+\cos \alpha \cdot I v_{1}=(\sin \alpha+i \cos \alpha) v_{1}, \quad \varrho=A^{2}
$$

The geometrical interpretation of the invariants is thus sufficiently described.

Author's address: 11800 Praha 1, Malostranské nám. 25, ČSSR (Matematicko-fyzikální fa-
kulta UK).

