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Czechoslovak Mathematical Journal, 24 (99) 1974, Praha 

OSCILLATION OF SOLUTIONS 
OF DELAY DIFFERENTIAL EQUATIONS 

P A VOL MARuâiAK, Zilina 

(Received April 3, 1973) 

We consider the nonlinear delay differential equation 

(1)' /"\t) + F{t,y[h,{t)l—^ylhM,...,/'-'lhM) = 0 

where 

(2) h^t) e C[R+ = [0, oo), R] , h^t) St for teR^, 

lim hi{t) = 00 , (ï = 1, ..., m) , 
f->00 

(3) F{t,y,„...,y„„...,y„^„_,)eCiD^R^ XR'"XR"-\R}, 

УюУю > Ö , Ï = 2, ..., m , implies 

У10 F{^^ У10^ • •., Уто. • • •» Ут,п-2) > О ^ г all sufficiently large t. 

We shall assume that under the initial conditions y^^'*{l^ = Ф^̂ (̂г), ^ ̂  ô (^ = 
= 0, 1, ..., л ~ 2), /"~^X^o) = Jo"~^\ the equation (1) has a solution which exists 
for all t ^ ^0^^+-

A solution y{t) of the equation (1) is called oscillatory if the set of zeros of y{t) is 
not bounded from the right. A solution y{t) of the equation (l) is called nonoscillatory 
if it is eventually of constant sign. A nonoscillatory solution is said to be strongly 
monotone if it tends monotonically to zero as t -^ сю together with its first n — \ 
derivatives. We consider only such solutions that are not trivial for all sufficiently 
large t. 

The purpose of this paper is to give, under appropriate restriction on F, a necessary 
and sufficient condition for all solutions of the equation (l) to be oscillatory in the 
case n is even and to be either oscillatory or strongly monotone when n is odd. Our 
results are generalisations of those due to KUSANO and ONOSE [2, 3], SEVELO and 
VARECH [6]. 
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Theorem 1. Let the functions in (1) satisfy (2), (3) and, in addition, suppose that 

m n 
(4 ) \F{t, y,„..., y^o. . . . Ут,п-2)\ a l l PiM) \yi,n-j\^'' 

i = i j = 2 

for {t, у 10, • . ., УтО, • • .. Ут,п-2) ^ ^ ; 0 ^ a,-̂ - ^ 1 , 

. Pij{t)eC[R^,R+], (г = 1, ..., m, 7 = 2, ..., n) 

and such that 
m /*oo 

(5) i j [hm'-'''''Puit)àt < 00 , j = 2, ...,n ~ 1 , 

Then a necessary condition for all solutions of (1) to be oscillatory if n is even 
and to be either oscillatory or strongly monotone when n is odd is that 

00 . 

m Лоо 

(6) E J ih,{t)r-'^^'"p,„{t)dt = 

The following lemma [1, Lemma 1] will be needed. 

Lemma 1. Let a^ ^ 0, b̂  ^ 0, r̂  > 0 and r = max {r,} (i = 1, ..., m). If b^ > 1 
for some i, then ^ 

m m m 

i=l i=l i = l 

Proo f of T h e o r e m L Our proof is an adaptation of the arguments developed 
by HALLAM [1] and it is similar to that used in [3], [4]. 

We assume that (6) does not hold and 

m /»00 

(6) д 1 [hit)r-'>^<-'P,„{t)dt < 00 . 

Then we demonstrate that the equation (l) has a nonoscillatory solution y(t) 
which is asymptotic to a f "^ (a ф 0) as Г -^ oo. Choose Го so large that hi{t) > 1 for 
all t "^ tQ > 1, (i = 1, ..., m) and integrate (l) /c-times (k is a fixed number from 
{ 1 , . . . , n}) on [̂ o> t]l we obtain 

k-l (n~k + v)(f \ 

v = 0 Vl 

" ^l^^ F{s, y[K{s)l..., y\hj,s)l..., / " - > W s ) ] ) es . 
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From this and in view of (4) we get 

[ m n fit -1 

Л + Д .Z J Plj{s) \y'•^-'\his)J^' ds\, t^to, 
where 

fc-l in-k + v)(f \ 

17 = 0 VI 

Define the function 
m n ft 

(9) F,{t) = Л, + I I P,,(s) |/'-^>[/.,(5)]|«-ds . 

Then 

(10) |/-'^)(OUr^-^n(0, f^^o. 

Choose 1̂ à Го so large that hi{t) > to for t ^ r̂ , f = 1, ..., m. Then (10) and the 
monotone character of F^ (F^ > 0) imply 

(11) ly-'WOJI^WOP-^nW. t^h, « = l,...,m. 

Putting (U) in (9) and then summing up from /c = 1 to /c = n, we get 
n n n fit m n 

If^CO^SA + Z Z Z^X^)[M#^-^'^'^W5)rd5. 
fc=l fc=l Л = 1 J , j ^ 1 = 1 j = 2 

If we choose /""^^(^o) such that Д > 1 for some A: e {1, ..., n} and use Lemma 1, 
then we have from the last inequality 

n n m fit n n (12) z n(o ̂  z ̂ ^ + « z ( z Pijis) [hm'"'"') ( z [рш) ds, 
k=l Л = 1 i=l Jti j = 2 j = l 

where r = max {а̂ }̂ й Ь i e {1, . . . , m}, j e {2,..., n}. 

Then from (12), with regard to [F/r)] ' ^ Fj{t), t ^ fo» Gronwall's inequality and 
(5M5), 

и n m n fico 

Z n ( 0 g ( I Л) exp n E Z [й,(5)]<-^>-^P,X5) ds ^ iC < 00-

follows. 
The inequality (u ) now becomes 

(13) \/'-\h{t)-\\uK\h,{t)f-'^ t ^ h , (' = l , . . . ,m,fc = ! , . . . , „ ) . 
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Integrating the equation (l) from t^ to /o> ^^ ê^^ 

from which, in view of (4), (6), (13) we conclude that a finite Hmit l im/"- i>( t ) 
exists as ^ -^ 00. 

If we choose t^ so large that 

1 > 
m n /«00 

and consider a solution such that / ""^^^O ^ ^' ^^^^ ^̂ ^̂  solution has the desired 
asymptotic property. 

We shall show that a sufficient condition for the oscillation of the equation (l) cai^ 
be established by means of the differential inequalities 

(A) }̂ nO + p(0/№(0])^o, t ^ o 

(B) У"Х0 + К0/(у[Ч0])еО' t^o. 

With regard to the inequalities assume that the following conditions are satisfied: 

(a) peClR^,R^l 
(b) / 6 C[R, R], zf{z) > 0 for z Ф 0, / (z) is nondecreasing on R, 

(c) there exists a: 0 < a < 1 such that 

l iminf l^T^ > 0 -

Theorem 2. Let the inequality (A) [(B)] satisfy (a) —(c) and (2), and, in addition, 

(14) r[/z(r)]("-i>«p(r)dr = 00. 

Then for n even the inequality (A) [(B)] has no positive [negativel solution on 
[̂ o> oo), to E R+, while for n odd all positive [negative^ solutions of (A) [(B)] are 
strongly monotone. 

For convenience of the reader, before proving Theorem 2, a modification of 
Kiguradze lemma [5] will be introduced. 
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Lemma 2. If y(t), y'(t), ..., y^"''^\t) are absolutely continuous and of constant 
sign in the interval (to, сю) and y{t) y'-"\t) ^ 0, then there exists an integer к with 
0^k<n, n + k being odd and such that 

(15) у{1)уЩ^0, {i = 0,l,...,k), 
( _ l ) ' . + - i j ; ( , ) / 0 ( , ) ^ 0 , {i = k+l,...,n), t^to, 

(16) l/̂ XOI ^ t"''-'\y^"-'\2''-''-4)\, t^to, 
(17) \/'~%t)\^B,f-'^^^-'\/"-^\, {i=\,...,k), t^T-%, 

2~(,n-k + i)^ 
where Bi = . 

{n -- k) ...{n - к + i - 1) 
Proof of Theorem 2. Suppose y{t) > 0 for Г ̂  Го e jR̂ . [the case y[i) < 0 is 

treated similarly]. Since hm h{t) = oo as ^ -> oo, there exists a f̂  ^ ?o such that 
j[/i(r)] > 0 for r ^ ^1. In view of (a), (b) we get from (A) 

/ ">(0g -p{t)f{y\_h{tj\)^Q, t ^ n . 

Therefore >'̂ "~̂ (̂̂ ) is decreasing and the derivatives of y{t) of orders up to n -• 1 are 
eventually of constant sign for large t, say f ^ 2̂ ^ ^i- Then by Lemma 2 for y(t) 
and its derivatives (15) —(17) hold, where /c e (1, 3, ..., n — 1} if « is even and 
/c 6 {0, 2,.. . , n — 1} if n is odd. 

I. Let n be either even or odd and ^е{1,2, ..., и — 1}. Since y'(t) > 0 for 
t > t2, lim y{t) exists either as a finite or infinite limit. In either case, in view of (b), (c) 

t-*oo 

there exists t^ ^ Г2 such that 

(18) № 0 ) l ) > , > o , t>H. 

Therefore, using (18) we obtain from (A) 

(19) /"\t) + dp{t)[y(h{t))f^O, t ^ t , . 

If k€ {1,2, ..., n ~ 1}, then by (17) and the monotonicity of / ""^^0 ^^ ^^^^ 

y(t)^B,f/^-'\t), t^2"-% = f, 
and 

y[h{t)-]^Blh{t)-]-'/"-^, t^t'.^t',. 

From (19) using the last inequality we have 

(20) /"'(0 + ^ B t K 0 W 0 T " ' " 4 / " " ^ W ^ o , t^u, 

where t^ = max {̂ 3, ^4}. 

288 



Further we shall use the method by Sevelo and Varech [6, for even order linear 
delay equations] which is used in the proof of Theorem 2 [3], too. 

Dividing (20) by [у^^'^ХО]"" ̂ ^^ integrating from t^, to t, we obtain 

[ 
J t. 

[/i(s)]^""^^" p{s) ds < 00 as r -> 00 , 

which contradicts (14). 

II. Let n be odd and /c = 0. If y{t) does not approach zero as f -> oo, then according 
to (16), we get 

y{2^-"t) ^ 2-<""^>V-^ /"-^>(r) , t ^ 2"-42 = ts . 

Then 

КО = W0M2'""0] K2'""0 ^ ^^""' /""'XO ' ^ ^ ^5, 
where Л = M\y{t)ly{2^-"t)\ 2-^"-i>' > 0. 

Now, if we proceed in the proof exactly as in the case I, we get a contradiction 
with the existence of a positive solution y{t) of (A), which does not approach zero 
as f -> 00. Hence it follows that a positive solution of (A) and its first n — 1 deri­
vatives must approach zero as Г -> oo. 

The proof of Theorem 2 is complete. 

Corollary. Let the equation (1) satisfy (2), (3) and 

(21) F{t, y,o, ..., y^o. • • •. Ут,п-2) ̂  Pi{t)fi{yio) if Ую > 0 , 

(i = 1, ..., m) and such that {t, j ^ , • • -, Уто^ • • -, Уш.п-г) e D , 

(22) F{t,y 

( j = l , . . . , m) and such that (t, y^, •••, Уто^ •••, Ут,п-2)^ I>, 

where 

(a) p , . eC[R+, i ?+] , 0 = 1 , 2 ) , 

(b) / i e C[(0, œ), (0, œ)] , Л e € [ ( - « , 0), ( - œ , 0)] 

are nondecreasing function^, 

(c) ^/lere exi5? a,. : 0 < â  < 1 (i = 1, 2) swc/i that 

lim i n f - ^ Ф 0 , lim in f -^^ Ф 0 . 
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In addition, suppose that 
/•OO /»00 

(23) J [h,{t)r"'''Piit)àt=\ lK{t)r"""P2{t)dt 00 

Then for n even all solutions o/(l) are oscillatory, while for n odd all solutions 
of (l) are either oscillatory or strongly monotone. 

Proof. Let us suppose that there exists a nonoscillatory solution y(t) of (I). Let 
y{t) > Oîor t '^ toE R+ and such that y{t) is not strongly monotone for n odd. The 
case y{t) < 0 is treated similarly. Since lim hi{t) = cx) as t -^ со, (i = 1,..., m), 
there exists t^ ^ ÎQ such that > [̂̂ »(0] > 0, (i = 1,..., m) for t ^ r̂ . Then from the 
equation (l), in view of (21), (a), (b) we have 

(24) /"'(0 + Pr{t)MylhM) SO, t^t, 

and y(t) satisfies (24), which by Theorem 2 yields a contradiction. The proof of 
Corollary is complete. 

Combining Theorem 1 and Corollary we obtain the following theorem, which is an 
extension of Theorem 3 [3]. 

Theorem 3. Let the equation (l) satisfy (2), (3) and, in addition, suppose that 
there exist functions Pk,fk {k = 1, 2), Pij{t) (/ = 1, ..., m, J = 2,. . . , n) and positive 
constants a^ < 1 [k = 1, 2), ocu ^ 1 (i = 1, ..., m, j = 2,. . . , n) such that 

(0 Pl(0/1(3^10) й F(t, у 10, . - . , УпгО. •••, Ут,п-2) S 
m n 

é E I PiÂt) \yi,n-j\^''. Ую > 0 , (f = 1, ..., m) , 

(^УЮ, .••, JmO. •••. J m , n - 2 ) e D , 

0 0 P2(0/2(3^10) ^ ^ ( ^ У10, •.. , JmO. ••-. Ут,«-2) è 
m n 

è - Z I ^u(0 k/,n-,i"^', Ую < 0 , (i = 1,..., m) , 
»=1 J = 2 

where Pk,fk {k = 1, 2) satisfy the assumptions (a)—(с) of Corollary and Р^ (i — 
= 1,..., m, jf = 2,.. . , n) satisfy (4) of Theorem 1. 

Then a necessary and sufficient condition for all solutions of the equation (l) 
to be oscillatory when n is even and to be either oscillatory or strongly monoto­
ne if n is odd is that (6) and (23) are valid. 

Acknowledgement. The author wishes to thank Professor JAROSLAV KURZWEIL for 
his helpful suggestions. 
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