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Czechoslovak Mathematical Journal, 25 (100) 1975, Praha 

TOLERANCE IN ALGEBRAIC STRUCTURES II 

BoHDAN ZELINKA, Libercc 

(Received October 23, 1972) 

In [1] the concept of tolerance relation was studied. Here we shall add some new 
results on this topic. 

A tolerance relation on a set is a binary relation which is reflexive and symmetric. 
Let an algebraic structure Su = {A, J^> be given, where A is the set of elements 

of this structure and #" is the set of operations. If a tolerance ^ on Л is given, we say 
that £, is compatible with ^I, if and only if for any n-ary (n positive integer) operation 
/ e J^ and any 2n elements x^,..., x„, j i , . . . , j„ of Л such that (x,-, yi) e ^ for i = 
= 1,..., n we have (/(xj, . . . , x„), / ( j i , . . . , y„)) e ^. 

We shall prove some theorems. 

Theorem 1. Let ЭД = {A, ^y be an algebraic structure and i a tolerance on A 
which is compatible with 5X. Then the transitive closure T£, of^ is a congruence 
on 5L 

Proof. L e t / e #" be an n-ary operation of ^l, where n is a positive integer. Let 
Xi,..., x„, у I,..., j„ be elements of A such that (x ,̂ yi) еТ{ for / = !, . . . , n. This 
means that for any i = 1,..., n there exists a finite sequence z^^\ .., z[[^ such that 
X. = z^^\ yi = ẑ f and (zy>, zyii) e ^ for j = l,...,ki- L Let к = max k,. If 

for some i the number /ĉ  < /c, we define z^'^+j,..., z[^^ so that all these elements 
are equal to j ^ . Therefore for any Ï = 1,..., n we have the sequence z^^\ ..., z[^^ 
so that z['^ = Xi, z[^^ = yi and (z^^ z^j i) e (̂  for j = 1,..., /c — 1. As ^ is compatible 
with 91, we have (f{zY\zf\...,zfl Щ'^„ zf^,,..., zfl,)) e i for j = 1,... 
..., к - 1 and therefore (/(x^,..., x„), f(y„ ..., л)) = {f(z['\ ..., zî >), / ( z f , . . . 
..., zH"^) e T^. This can be done for any n-ary operation / e #", where n is a positive 
integer, therefore T^ is a congruence on Ш. 

Theorem 2. Let ^ be a group, let ^ be a tolerance which is compatible with © 
as with a semigroup. Then ^ is a congruence on (5. 
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Remark. We say that ^ is compatible with Ш as with a semigroup, if (x^, y^) e ^, 
(^2, У2) e ^ imply (X1X2, JiJ^i) ^ <̂5 saying nothing about the inversion operation. 

Proof. In [1] it was proved that if ^ is compatible with © as with a group, i.e. 
if (^1. yù e ^^ fe. У2) e <̂  imply not only (x^X2, У1У2) e (̂ , but also (x^^ y^^) e ^, 
( x j ^ 3;̂ )̂ G (̂ , the tolerance (̂  is a congruence. Therefore it remains to prove that 
each tolerance ^ which is compatible with (5 as with a semigroup is compatible 
with © as with a group. Let a G ©, Ь e (ö, (a, b) e (̂ , Let a~^, b~^ be the inverse 
elements to a, Ь respectively. As ^ is reflexive ,we have (a~\ a~^) G (̂ , (b~^, b~^) G (̂ . 
The relations (a, fe) G (̂ , (ßf" ̂ , a~^) e ä, imply (e, a~^b)e ^, where e is the unit element 
of®. This relation together with (b~^, b"^)G(^ implies (b"^, a~^) E ̂  and the 
symmetry of ^ gives (a~^, b"^) G f, q.e.d. 

Theorem 3. Let ^ = <^Ä, J^) b^ an algebra, let f 1, «̂2 be two tolerances on A 
which are compatible with ^ . Then the relation Çi n ^2 is also a tolerance com
patible with ^(. 

Proof. The intersection of two reflexive and symmetric relations is evidently 
again reflexive and symmetric. Now let / G #" be an n-ary operation on ^ and let 
Xi,..., x„, y I,..., y„ be elements of A such that (x,-, j , ) G <̂i n 2̂ ^^^ i = 1,..., n. 
Then (Xi, yt) G ^1 and therefpre (/(x^,..., x„)J(y^. ..., л)) G Ĉ .̂ But also (x,-, j^) G 2̂ 
for г = 1, ..., и and thus (/(x^, ..., x„), / ( j i , . . . , j„)) G ^2- We have obtained that 
(/(xi,..., x„), / ( j i , . . . , Уп)) e <̂i n (̂ 2- As / was chosen arbitrarily, this holds for 
any/G #" and ^̂  n <̂2 is a compatible tolerance on 51. 

This theorem enables us to formulate the following definition. 
Let (Jo be a tolerance on the set of elements of an algebra ЭД. Then the tolerance 

generated by 0̂ ^^ ^l is the intersection of all tolerances which are compatible with *й 
and contain ^o-

In the case when ^ is a semigroup, it is easy to prove that such a tolerance consists 
of all pairs (X1X2 ... x„, у^^у2 ... y„), where n is a positive integer and (x ,̂ ŷ ) G ^Q 
for i = 1, ..., n. 

Theorem 4. Let ^ be a semigroup with at least there elements. If ^ contains 
a proper two-side ideal 3, then there exists a tolerance compatible with S which is 
is not a congruence on S, 

Remark. We must suppose that 6 has at least three elements, because each toler
ance on a set with less than three elements is either the equality, or the universal 
relation, which both are equivalences. 

Proof. At first assume that 6 — 3 contains at least two elements. Choose two 
distinct elements a, с of S — 3 and one element b e'^. Let 0̂ consist of the pairs 
(a, b), (b, c) and of all pairs of equal elements; this is a tolerance on 8. Let ^ be the 
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tolerance on 6 generated by ^Q. This tolerance ^ contains obviously (a, b) and (b, c); 
we shall prove that it does not contain (a, c). Assume that (a, c) e ^. Then a = 
= X1X2 .., x„, с = УУУ2 . . . л , where (x̂ -, y )̂ e ^0 for i = 1, . . . , n and л is a positive 
integer. This means that either Xi = yi, or one of these two elements is equal to b. 
But if Xj = b, then a e 3 , because Ь e 3 and 3 is an ideal of 6 . As we have supposed 
that a G 6 — 3 , we obtain a contradiction. Similarly yi = b implies с еЗ. Thus 
Xi = j i must hold for all i = 1, ..., n, which implies a = c, which is also a contradic
tion. Therefore (̂  is not transitive and it is not a congruence. 

Now assume that S — 3 consists only of one element a. If a is not idempotent, 
a^ G3 and a cannot be expressed as a product of two elements of S. We choose two 
elements b and с of 3 . Let ^Q consist of (a, b), {b, c) and all pairs of equal elements 
of 6 , let ^ be the tolerance on ® generated by ^Q. Then (̂  cannot contain (a, c), 
because a cannot be expressed as X1X2 ... x^. 

Now suppose that a is idempotent and a^a is a proper subset of 3 . Choose b e аЗа, 
с G 3 — аЗа and let again ^Q consist of (a, b), (b, c) and all pairs of equal elements. 
If (a, c) G ^, this means again a = x^ .. . x„, с = y^ ... };„ and (x,-, yi) e ^0 for i = 
= 1, . . . , n. As a is the unique element of S not belonging to the ideal 3 , we must 
have Xi — a for i = 1 , . . . , n and therefore for each i either ŷ  = a, or j , - = b. 
As b e a^a and a is idempotent, we have ab — ba ~ b and therefore y^ . . . J„ is 
equal to a pr to a power of b. But as ab = ba = b, we have b^ = ab^a for any posi
tive integer к and thus all powers of b are in аЗа. None of them can be equal to c, 
because с G 3 -̂  аЗа; we have a contradiction. 

Finally suppose that a is idempotent and a^a = 3 . Then a is a unit element for 
all elements of 3 . We choose two elements b, с of 3 so that с is no power of b. This 
can be always done. If 3 contains idempotents, then we choose b idempotent and с 
will be an arbitrary element of 3 different from b. If 3 does not contain idempotents, 
it is torsion-free and it suffices to choose с and put b = c^. Now let again ^Q consist 
of (a, b), (b, c) and all pairs of equal elements and let ^ be the tolerance on 6 
generated by ^o- If iß^ с) ^ ?̂ this means again a = x^ .. . x„, с — y^ ... y^ and 
(Xf, j j) G (̂ 0 foi* i = 1, ..., п. As in the preceding case we must have Xi = a for 
i = 1 , . . . , w and therefore either ŷ  = a, or yi = b. As a is the unit element for 3 , 
j i . . . j;„ is a or a power of b. Therefore it cannot be equal to c. Thus we have 
exhausted all cases and the proof is complete. 

Theorem 5. For each positive integer n there exists a semigroup with n elements 
such that each tolerance on its element set is compatible with it. 

Proof. We take an arbitrary set S with n elements and for any x G S, j ; G S we 
put xj; = y. It is easy to prove that the semigroup thus defined is the required 
semigroup. 

This theorem shows that on a semigroup compatible tolerances which are not 
congruences can exist even if this semigroup has no proper two-side ideal. 
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Problem 1. Does there exist a semigroup with more than two elements which is 
not a group and on which each compatible tolerance is a congruence?*) 

Problem 2. Does there exist a commutative semigroup such that each tolerance 
on its element set is compatible with it? 
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Author's address: 461 17 Libérée, Komenského 2, CSSR (Vysokâ skola strojni a textilnî). 

*) Added in proof : In the author's paper ,,Tolerance on periodic commutative semigroups'* 
(to appear in this Journal) this question is answered negatively for periodic commutative semi
groups and affirmatively for periodic non-commutative ones. 
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