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0. INTRODUCTION.

In [13], one of the authors has derived a necessary and sufficient condition for the
existence of a 2n-periodic or 2np/q-periodic solution to the system

(0.1) Ou = u,, — u,, = g(t,x), teR, xe[0,x],
(0.2) u(t,0) = u(t,n) =0, teR,
provided g is sufficiently smooth and, respectively, 2n-périodic or 2np/g-periodic

in ¢, as well as necessary or sufficient conditions for the corresponding weakly non-
linear problem given by (0.2) and

(0.3) Uy — Uy, = ef (1, X, u, up uy).

(The analogous problem for some other boundary conditions was dealt with in [14].)
Here we want to study the existence of w-periodic solutions to the corresponding
autonomous problem (/) given by

(0.4) Uy — Uy = &f (X, u,u,u,,€), teR, xe[0,n],
(0.5) u(t,0) = u(t,n) =0, teR,
(0.6) u(t + o,x) = u(t,x), teR, xe[0,x].

Let us recall two characteristic properties of this problem:
Firstly, the period w of the sought solution is here an unknown which in general

depends on ¢ and will be looked for in the neighbourhood of the periods w, = 2rn~!,
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n =1,2,...of the free oscillations. This fact is revealed even by the linear problem (df;,)
given by (0.4)—(0.6) with f(x, u, u,, u,, &) = u which has the sequence of solutions

u,(t, x) = a,cos (\/(n* — &)t — &) sin nx

with periods o, = 2n/,/(n* — ¢).

Secondly, if u is a solution of (0.4)—(0.6) then u(t,x) = u(t + h,x) (heR,
fixed) is a solution of (0.4)—(0.6) as well.

The existence of w-periodic solutions to the equation

(0.7) Ou = f(x, Du, &), xeQ,

is dealt with in several papers. V. A. VITT [15] investigates the existence of an w-
periodic solution to (0.7) with Q = (0, 1) and with some nonlinear boundary con-
ditions. The procedure of his is formal. The same procedure is used by M. E. ZaBo-
TINSKD [16] (again in a purely formal way) to investigate an w-periodic solution of
more general problem described by the equations (@ = R?)

o(x)u, — Lu = ¢f(x,u,¢), teR, xeQ,
U, — Au = ¢F(x,u,g), teR, xedQ,

3
where Lis an operator of the form Lu = —q(x) u + ) (pu,)., 0. ¢, pareanalytic
i=1

functions of x and A is a linear operator. J. P. FINk, W. S. HALL and S. KHALILI
[5] look for 2m/w-periodic solutions of (0.7) with f(x, Du, €) = u?, f(x, Du, &) =
= o(u + pu), f(x, Du, &) = —M?sin u and with boundary conditions (0.2). They
obtain a periodic solution (as well as its period) as a formal power series in a small
parameter. J. B. KELLER and L. TING [7] look for 27/w-periodic solutions to u,, —
— u,, = f(u), xe[0, n] with (0.2). Here even the formal procedure is not quite
correct since the authors do not take into account that the right hand side of (3.12)
has to be orthogonal to each 2n-periodic function which satisfies the homogeneous
equation. (Similarly in [10].) S. I. PocHoZAsEv [12] investigates the existence of
a periodic solution under general assumptions. His theory includes the equation
(0.7) with 2 = (0, n) only in the case f(x, Du, &) = g,(x) u + g,(x) u,. G. PETIAU
[11] and B. A. FLEIsHMAN [6] find periodic solutions to (0.7) with f(x, Du, &) =
= au + Pu®and x € R, x € R>. The periodic solution is of the form y(kx — c(t — 1)),
where ¥ is expressed by Jacobi elliptic functions. In the work [1] M. S. BERGER
investigates the existence of infinite countable number of distinct periodic solutions
to p(x) u, — Au + f(x,u) = 0 in R x G, ul, = 0,(G is a bounded domain in R")
under certain assumptions on f. However, some crucial points in his proof are obscure.
J. KurzwelL [8] (§5) proves the existence of w(e)-periodic solution to the equation

Uy — Uy = —[(h(27(u, + u,)) — h(27(u, — u,))) cos 2x + u,]

and (0.2) with the aid of the averaging principle assuming that & positive is suf-
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ficiently small and h fulfils some assumptions. Thus his paper represents the only
strictly proved result on the existence of a solution to a nonlinear problem of the type
(##%))- The following papers are closely related to the preceding ones. M. H.
MILMAN and J. B. KELLER [10] study 27/w-periodic solutions to the equation u,, —
— u,, + u = &f(u,), x €[0, ] with boundary conditions (0.2) using the expansion
with respect to the small parameter. M. S. Berger [2], [3] looks for a periodic solution
to u, = Au — m?u + k([xD |u|" u, (t,x)eR x R>, m > 0, in the form u(t, x) =
= ¢ v(x) (0 % v(x) > O exponentially as |x| - c0) provided 0 < k; < k(|x|) <
<k,< +0and 0 <o < 4.

Short before completing this paper we received a preprint of a paper by J. P. FINK,
W. S. HALL and A. R. HAUSRATH: “Discontinuous periodic solutions for an auto-
nomous wave equation” in which the authors investigate the existence of 2n-periodic
solutions to the system y;, = y,, + &(y; — y?), Y2: = V1. We had been informed
about its preparation and results sooner from the correspondence with W. S. Hall
which encouraged our investigation whose results are found in §2.

This paper consists of two paragraphs. In paragraph 1 we introduce Banach spaces
of piecewise regular functions and define the notion of a generalized solution of
a boundary value problem for the wave equation. This part further includes the as-
sertion that a generalized solution coincides with a solution of a certain integro-
differential equation. In Theorem 1.1 necessary and sufficient conditions are stated
for the existence of a solution to the problem (<7%) in the class of piecewise regular
functions. In Remark 1.5 we show the reasons why we consider this type of solutions.
(Regarding nonregular periodic solutions of the wave equations let us refer to
interesting examples due to J. Kurzweil [8], [9] who constructs regular solutions of
certain types of the wave equations that ““converge’ with increasing time to a piece-
wise regular 2z-periodic functions. In paragraph 2 we prove the existence of 27-
periodic piecewise continuous solutions to the problem (0.4), (0.5) with f = —au +
+ pu?, «/B > 0, f = (y + u®) u, and 2n-periodic continuous and piecewise regular
solutions to the problem (0.4), (0.5) with f = —ou, + Bu;, «/B > 0.

The solution u of the problem (0.4), (0.5) defined on (T}, T;) x [0, =] is extended
to the set (T, T) x R as a function fulfilling

u(t, x) = —u(t, —x) = u(t, x + 2n).

In the sequel we consider only ‘the functions u extended in the variable x to R in
this way.

1. GENERAL CONSIDERATIONS.

Let be given a set S with the following three properties:
1.1 i) S< R, xe S implies —x€ S,
p
(i) xe S implies x + 2n€ S, x — 2n €S,
(i) S n (0, 27) is a finite set.
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Given S with the property (1.1), we denote
S§={(t,x);teR, xeR, x + teS or x — teS}.

For such S, S and » = 0 we define the function spaces 2%,(S), 2% ,.(7; S) (where
T =(T}, Th), —0 = T, < T, £ +0) as follows:

Definition 1.1. A function is an element of 2%,(S) if it is defined on R\ S, 2z-
periodic and uniformly continuous together with its derivatives up to order k
on each open component of R\ S.

We denote

|s|o = sup {|s(x)|; xe R\ S},
[s]e = max {|s®|o; p=0,1,...,k}.
The space 2%,(S) equipped with the norm | [k is a Banach space.
Definition 1.2. A function u = u(t, x) is an element of 9§ ,,(7; S) if it is defined

on J x R\ S, 2n-periodic and odd in x and uniformly continuous together with
its derivatives up to order k on each open component of 7 x R\ S. We denote

lulo = sup {[u(t,x)]; (t,x)e T x R\S},

o; i, j nonnegative integars, i + j < k} .

max {||6"*7ufot’ ox’

”“”k

The space 9 ,,(7; S) equipped with the norm |- [ is a Banach space (for —oo <
<Ty <T, < +o)

Definition 1.3. Let @ > 0 be given. We denote by 2% ,.(R; S) the subspace of
D,2.(R; S) containing those functions that are c-periodic in ¢, i.e., u € g ,,(R; )
is an element of 2% ,.(R; S) if u(t + o, x) = u(t, x) is fulfilled for every (¢, x) e
€ R?\ S such that (f + w, x) e R2\ S. This space is equipped with the norm of the
space 2§ ,,((0, w); S).

Remark 1.1. For S = 0 the spaces 2%, ,,(7; 0), 2%,(0) are simply function spaces
of class ¢*. ‘

Further let be given a function f, which describes the nonlinearity in our equation,
fulfilling:

(1.2)  f =f(%, yos 1> ¥2, €) is continuous on R* x [—eo, &] ,

f has continuous first derivatives with respect to x, y,, y,, y, and f fulfils
on R* x [—gg, &]:
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f(x + 27, Yo, V15 V2s 3) = f(X, Yor V1» Yzﬂ'z),
J(% Yo» Y15 ¥2:8) = =f(—=%, =0, =V15 V2, 8) -

In the sequel we often use

Definition 1.4. Let S with the properties (1.1), a function f fulfilling (1.2) and
T, T,eRU{—00, +o0}, —0 < T; £0< T, £ + 00, be given.

A function u € 95 ,,((Ty, T»); S) is called a generalized solution to

(1.3.1) Ou = u, — uy, = &f(x, u, u, u, ),

(1.3.2) u(t,0) = u(t,m) = 0

if u fulfils ‘

(1.4) H {fum ¢ - ef (x, u, uy, u,, &) @} =0
(T1,T2) xR

for every ¢ € 65((Ty, T») x R).
Using this definition we can formulate

Lemma 1.1. The function u € 23 ,,((T,, T,); S) is a generalized solution to (1.3)
if and only if there exists a function s € @%n(S) such that the relation

(19)  ultx) = s(x+ ) = s(—x + 0+ 5 J J TFw) (6) (5, €) dé de

x—t+t

x+t

holds for all (t, x) € (Ty, T,) x R\ S where

(1.6) F(u) () (1, x) = f(x, u(?, x), uft, x), ult, x), €) .

Remark 1.2. The function u in Lemma 1.1 determines s uniquely if we impose
on s an additional condition

(1.7) rfk@&:o.

o

Proof of Lemma 1.1. Let two functions u € 23 ,,(Ty, T»); S), s € 23,(S) fulfil-
ling (1.5) for every (t,x)e(Ty, T,) x R\ S and a function ¢ € ¢3((T}, T,) x R)
be given. We prove in several steps that (1.4) holds.

A 1) For oft, x) = s(x + 1) — s(—x + t) we have

e
(Ty,T2)XR
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as a consequence of the following argument: Denoting (t, x) = s(x + ), Y(t, x) =
= ¢(t, x) + ¢J(t, x), we obtain

J.j 0D<p=” s(x+t)<:i——(3—>¢(x,t)=0
(T1,T2) xR (T1,T2) xR ot 0x

because s(x + f) is a constant on every straight line parallel to the direction (—1, 1)
(as far as it is defined). Similarly for s(—x + f).
A 2) Having in mind (1.6) we denote further g(z, x) = & F(u) (¢) (#, x) and

(1.8) i(t, x) = % J 0 rﬂg(r, &) de de .

x—t+zt

Now we must show that # fulfils

(1.9) ﬂ (a0 ¢ —gp} =0
(Ty,T2) xR

to prove the first part of our Lemma.

A 3) A straightforward computation shows that g € 94 ,,((Ty, T»); S) and that 4
given by (1.8) is a continuous function on (T, T,) x R fulfilling #(t, x) =
= —i(t, —x) = (t, x + 2n) for every (t,x)e(T,, Ty) x R. Further, one can
immediately verify that for (¢, x)e(T,, T,) x R\ S the following formulae hold:

t
ﬁ,(t,x)=2“J[g(r,x+t—1)+g(r,x——t+1)]dr,
0

t
it x) = 2_1J‘ [9(t,x + t — 1) — g(r, x — t + )] dz.
0

We describe the second derivative of #, too. For every (t, x) € R*\ § we denote
by M(t, x) the intersection of S and the two segments that join the point (t, x) with
the axis t = 0 and have the directions (1, —1) and (1, 1). To every point P &€ M(, x)
there exist just two components of R?\ § such that P is an element of their closures.
We denote these components by Qp, Qp in sucha way that there exists (17, x7) e
€ Q7 fulfilling t~ < ¢* for every (t*, x*) e Qp. Further we denote by g*(P) or
g~ (P) the limit of the function g € D§ (T}, Ty; S) at the point P with respect
to Qp or Qy, respectively. Then we have ((, x) € R\ S)

d(t, x) = g(t, x) = d(t, x) =

t
=2‘1j(gx(r,x+t—r)—gx(r,x——t+'c))d1+
]

+ 271 (sign t)Pe%t,x)(g'(P) - g*(P).
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These formulae show that #,, d,, 4, 4, (and similarly #,,) are uniformly con-
tinuous functions on each open component of (T, T,) x R\S. Thus i€
€2} ,.((Ty, T,), S) and 0@ = g holds on each component of (Ty, T,) x R\ S.

A 4) Let us denote by Q the interior of the set supp ¢ and by @, the open com-
ponents of the set 2\ S. Then (1.9) may be written in the form

(1.10) gﬂm{ﬁ O¢ — g0} = ; [ {a Op — Oa o} =

o 2
=Zf 12((,0,,—(px)enkds—‘[ ¢ (i, —il,) o m ds
k Joo 9

where 0Q, denotes the boundary of Q,, n, is the vector of the outer normal to
and “o” denotes the scalar product in R?. The expression ¢(#,, —i,) o n, may have
non zero values only on such parts of 99, that are subsets of S. Let d be a segment
with the endpoints P, Q, d = S such that d = 02, N 0Q,. Then

(1.11) n,=—n, on d

and
J‘(p(ﬁ,, —d)on,ds = — J‘dﬁ((p,, —¢,) o n.ds + (@(P) . p(P) — 4(Q) . ¢(Q)) .

J o(h — i) o mds = — J ion —¢s) > i ds F (a(P). o(P) — #(Q) . 9(Q)) .
4 a4
Hence we see that (1.10) equals
2 Zj W, —¢y)onds.
k J oo

This expression is equal to zero as a consequence of (1.11) and of the continuity
of 7. Thus we have proved that (1.4) is fulfilled.

Now we are going to prove the converse part of Lemma 1.1. Let u € 93 ,,(Ty, T»);
S) be a generalized solution to (1.3). We prove that there exists a function s € 23 ,(S)
such that (1.5) holds, again in several steps. ,

B 1) To the given function u we define a function @ by ((t, x) € (T, T,) x R\ S)

(1.12) a(t, x) = u(t, x) — (t, x),

where 4 is defined by (1.8) with g(t, x) = & F(u) (¢) (¢, x). As the function 4 fulfils
(1.9) we deduce immediately

(1.13) fj e =0
(T1,T2)XR
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for every ¢ € 63((T,, T,) x R)- To complete the proof we must find a function
s € D2,(S) such that ii(t, x) = s(x + £) — s(—=x + #), (t, x) e (T}, T,) x R\ S.

Let us denote by I, = (a, B (k =0, +1, +2, ...) the open components of R\ S
and let us suppose that 8, = o,+1. Further we use the notation

P(I) = {(t. x)eR* x —teL}, Q) ={(t,x)eR? x +tel},
R(I,I)) = Rei = (Ty; T,) x R)n P(I,) n Q(I) -

B 2) The function # defined in B 1) is of class %% on each R, + 0. This implies
that there exist two functions py , i, defined on some intervals I = I, I} = I;
respectively (and with their second derivatives uniformly continuous) such that

(1.14) (1, x) = pex — 1) + g (x + 1)

holds for every (¢, x) € R ;. The following two notations are useful in the sequel.
Being d a segment we denote by d° the same segment without its endpoints. For
a set M = R?* we denote by cl M its closure. Now we formulate an assertion which
will be used later.

Assertion. For every couple (k, 1) such that cl (R, ;) n cl (Ry,1+1) *+ O there exists
Ye.1 € R fulfilling

(1-15) Pk,l(é) = Pk,z+1(f) + Vi1

Jor & from {&; & = x — t,(t,x) e dy, = ((c1 R,;) (el Re141))°}-

We sketch the proof of this assertion. We choose ¢ € €5 ((Ty» T>) x R) such that
supp ¢ is in a sufficiently small neighbourhood of d,, and di; = d;; N supp ¢
fulfils ¢l (d; ;) < d, ;. Then, using (1.13), (1.14), we obtain after the same arrangments
as in A 4)

(1.16)

0= [Pk,z(x - t) + qk,l(x + l) - pk,l+1(x — 1) — Qi1+ 1(x + t)] (d(p/ds) ds

d'k,1
where do/ds is the derivative in the direction d, ;. As x + ¢ is a constant for (¢, x) €
€ d, 1, (1.15) follows directly from (1.16).

B 3) Now we may easily define a 2n-periodic function j € 23,(S) such that for every
(k, 1) (Ry,; + 0) there exists ¥, € R for which (&) = f, (&) + 7,1 holds for every &
from the set {«f, E=x—1(t x)e R }. To this functlon P we define a new
function @ € 23 ,.((T;, T,); S) by
(1.17) i(t, x) = i(t, x) = (f(x — 1) = f(—x — 1)), (t,x)e(T, T,) x R\S.

The function # fulfils

(1.18) H a0 =0
(Ty,T2) xR
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for every ¢ € 62((T;, Tz) x R). Moreover, by (1.14) there exists a function q; such
that ii(t, x) = q,(x + 1)» (t x) € Ry,;» and a function g, such that a(t, x) = g.(x + 1),
(t, x) € R(—I,, —I,) (where we put —I = {x € R; —x €I}). These functions ¢, 4,, #
fulfil g,(x + 1) = a(t, x) = —#(t, —x) = —g,(—x + #). But this can hold only
if 7, is a constant. So # is equal to a constant on every R, ; & 0.

B 4) We denote il|g,,, = @, Taking a function ¢ e %5 ((Ty, T,) x R) with its
support in a neighbourhood of the point which is in the intersection of the closures
of the nonvoid sets Ry 1> Ri,1+1> R+ 1,55 Rix 1,141 we deduce from (1.18)

(1.19) g + Werq,001 — Urr1,g — g = 0.

B 5) Now we introduce two functions p, § on R — S. The function p is equal to
a constant on each I, and we put

B(IL) = i — oy

for any I such that both Ry ;, Ry_ 1‘,.are nonvoid. (1.19) shows that this definition does
not depend on [. Similarly, the function 4 is equal to a constant on each I, and we put

@(11) = ﬁk,z - ﬁk,z—l

for any k. Both functions p, § are 2rn-periodic. The oddness of the function # implies
(we put —I = {xeR; —x€l})

(1'20) ﬁ(lk) = ‘—‘k,l — g1, = ﬁ,R("Il,"’k—l) - alR(—!,,—Ik) = 4("Ik—1) .

Let an integer n be such that for certain y € R, Uy_,I,, = (y, 7 + 2n)\ S holds. Then
(1.20) yields

(1'21) xgn:lﬁ(lk+x) =u§:1@(11+n) B

for every couple (k, I) of integers.
Having in mind the definitions of p, § we write

ﬁk+n,k+n = El,k + Zl(ﬁ(lk+x) + ‘?(Il+x)) .
x=
Utilizing (1.21) and the 2z-periodicity in x of & we deduce that
(1.22) Zlﬁ(lk-*'*) = Zl‘?(lux) =0
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holds for every couple (k, I) of integers. Further we choose the couple (k,, /,) such
that R, ;, 0 {(t,x); t = 0} & 0 and we define functions p and g respectively on

0 0 m m
U11k|+x and U1 I BY Py sm) = 3 BTk 14)s (11 4m) = 214(11,+x)~ According
x= %= %=1 x=

to (1.22) both functions p, g may be extended onto R\ S as 2n-periodic functions.
The definitions of p, g easily imply @, = p(I,) + q(I,), i..

(1.23) i(t,x) = p(x — 1) + q(x + 1), (t,x)e(T,, T,) x R\S.

The oddness in x of the function # yields g(¢) = — p(—¢&). So (1.23) may be rewritten
in the form u(t, x) = g(x + t) — q(—x + ¢). This last relation, (1.12) and (1.17)
complete the proof of our Lemma.

Proof of Remark 1.2. The assertion contained in this remark is equivalent to
the following one:

If for some se23,(S) the equation s(x + t) — s(—x + ) = 0 holds for all
(t, x) e (T}, T,) x R\ S, then there exists B € R such that s(x) = B is fulfilled for all
x € R\ S. But this assertion is obvious.

Remark 1.3. If S = 0, then the function s mentioned in Lemma 1.1 and fulfilling
(1.7) may be uniquely determined by the functions u(0, x), u,(0, x). However, this
assertion does not hold in the case S + @ as the following consideration shows.
Letse 93,,(8), even and constant on each component be given. Then the function u
defined by u(t, x) = s(x + t) — s(—=x + ), (t, x) e R*\ S is a generalized solution
to (u = 0 and u fulfils u(0, x) = u,(0, x) = 0 for all xe R\ S.

Definition 1.5. A function u, € 22 ,.(R; S) which is a generalized solution to (1.3)
is called a solution to the problem (/).

According to Lemma 1.1, a function u, € @g,Zn(R; §) is an w-periodic generalized
solution to (1.3) if and only if for the corresponding s, € 23,(S) and for every (¢, x) &
€ R? such that (1, x) ¢S, (t + w, x) ¢ S,

s(x +t+ o) —s(x +1) —s(—x + 1+ o) +s(—x + 1)+

. 2_18 (J‘t+wJ~x l+a)-t_ Jr J‘x+t—r> F(ua) (8) (T’ é) dé dr _ 0
0 x—t—wo+t 0Jx—t+z

is fulfilled.

Utilizing the fact that the first integral after the transformation has the form
Lo [XXITE F(u,) (¢) (v, €) d¢ dr and that (according to the oddness in x of F(u,) (g))

j T PO 8 de = 0

—-x+t—t
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we can rewrite the above equation in the form

0

s{x +t+ o) —s(x+1)+27 ﬁ Jx“F(ue) (&) (r, ¢ —1)dédr =

=s{—x+t+w)—s(—x+1)+27" J‘i J-x+‘F(ue) (&) (r, & — r)deédr.

An easy consequence of this formula is

Lemma 1.2. A generalized solution u,e 2} ,,(R; S) to (1.3) is a solution to the
problem (£;) if and only if there exists a constant ¢ € R such that for the cor-
responding s, and for every x € R fulfilling x¢ S, x + w ¢ S,

0 x .
(1.24) s(x + @) — s,(x) + Z—IGJ' J F(u,) (e) (1, & — t)dédr = ¢
JmeJO
holds.
Remark 1.4. For S = 0, (1.24) is equivalent to

six + @) — si(x) + 2"8J0 F(u)(e)(r,x —1)dr =0, xeR.

-

The following lemma characterizes the dependence of the period w(e) on & for
some solutions to the problem (7).

Lemma 1.3. Let &, > 0, o' < —2n and a function u,: [ —go, &5] = P4 2. (R; 0)
be given. Suppose that u, maps [ —&, €] into 25 ,, (', 0); 9) continuously and
that u, is a solution to the problem (sf%,,) where w(g) = 2n(1 + v(g)) with
lim v(e) = 0. According to Remark 1.2 let us choose to u, a function s, such that

=0

(1.7) is fulfilled. Further let us suppose that sq is not zero identically on R.
Then s, : [ —¢o, 8] = D3,(S) is continuous and v(e) = & u(e) where the function
p(e) is such that lim p(g) exists.
&0

Proof. The continuity of sa'is deduced from (1.5) by putting —x + ¢ = ¢ and
integrating with respect to ¢ over [0, 2z]. The functions s,, u, fulfil (1.24) so that we
can write '

2n ™ "v(e) j:s;'(x + 2nav(e)) do + 271 r F(u)(e)(t,x —t)dt =0

—2n—2nv(e)

for & with sufficiently small |¢| > Oand x & R such that s(x) # 0. Both the integral
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expressions in this equation have limits for ¢ — 0, the former being different from
zero. This proves the Lemma.
We summarize the results described above into

Theorem 1.1. Let &, > 0, S = R with the property (1.1) be given.

There exist functions u,:[—éo, &o] = D 1.(R; S), w(e) : [—&o, €0] = R such
that u, is a solution to the problem (&%, +uy(sy) for every &€ [ —go, &) if and
only if there exist u,:[—go, &0] = D2 2.(R; S), 5, [0, 80] = D5.(S) nle) :
:[—e0s 8] = R and ¢ : [ —&o, €] = R such that the equations

Gi(u,s)(e) (t: x) = —u(t, x) + s(x + 1) — s(—x + 1) +

+ 271 J‘t 'rHﬂF(u) (e)(r, &) dedr =0 for (t,x)e RZN S,

0 —t+t

Gy(u, s, 1) (e) (x) = s(x + 2mep) — s(x) +
+ 271 j‘_z,,(lﬂ,‘) J‘OF(u) (&) (r, & — 1) dédt = c(e)

for every x € R fulfilling x¢ S, x + 2neu ¢ S hold with u = u,, s =s,, pp = u(s)
and ee[—¢g, &].

Remark 1.5. If S = 0, then the latter equation in Theorem 1.1 is equivalent to
0
s'(x + 2mep) — s'(x) + 2"1£f F(u)(e) (t,x — 1)dr = 0.
—2n(1+ep)

Now for ¢ & 0 we define a new relation by

Gi(u, s, 1) () (x) = e7X(s'(x + 2mep) — s'(x)) +

+ 27 J’_Z”(]W)F(u) (e)(t;x —7)dr =0
while G,(u, s, 1) (0) (x) is defined by
G,(u, s, 1) (0) (x) = 2nps"(x) + 271 {iz F(u)(0)(r,x — 7)dr = 0.

Evidently, if u,(z, x) is a solution to (&£5,), then u,(t + h, x), h arbitrary, is a solution .
of it as well. To remove this ambiguity in the determination of u, we may require

(1.25) Gy(u)(¢) = u,,(0,0) = 0.

In order to apply the implicit function theorem in its well known reading we had
to find a B-space 4, of triples (u. s, 1) and a B-space %, containing G(e) (#,), G(¢) =
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= (G (&), Ga(c), G1(e)), so that the operator G with its G-derivative G, ,(¢) would
be continuous in u, s, 4, € there would exist a solution uy, sg, fo of the limit equation
G(u, s, p) (0) = 0 and at that point there would exist the inverse continuous operator
[Glus.(ti0s 05 10)]~ !. Unfortunately we have not succeeded in finding such a couple
of spaces %, #,, above all because of the presence of the first term in G, whose
crucial role (in other context), was already pointed out by J. P. Fink and W. S.
Hall [4]. Indeed, if s € 23,(0) it may be shown that the expression &~ *(s'(x + 27en) —
— s'(x)) — 2nu s"(x) in the sense of 23,(0) is not continuous in s, p, ¢ while on the
other hand, if s belongs to a class of still smoother functions there arise insurmount-
able difficulties concerning the existence of the inverse operator as the theory of
ordinary differential equations indicates. At the same time it seems that if we pass
in e7!(s'(x + 2mepn) — s'(x)) to a limit for ¢ » 0 at all then 27nu s”(x) is the only
possible. J. P. Fink and W. S. Hall in the paper mentioned above evade this obstacle
by not passing to the limit. Here we avoid it putting w = 27 so that the term in
question disappears.

Corollary 1.1. Let ¢, > 0,0’ < —2m, the function p(e) : [—&o, €] — R, continuous
at ¢ = 0, and the function u, : [—&o, €0] = D2 2a(R; 0) (w(e) = 2n(1 + & p(e)))
mapping continuously into 2} ,,/(w’,0); 0) ate = 0 be given. Then the function
u, forms a solution to the problem (o) for € € [—&, €] only if the function
so € D3,(0) determined by u(t, x) = so(x + 1) — so(—x + t), (t, x) € R\ S, fulfils

(1.26) 27 p(0) sp(x) + 271 -rnF(uo) 0)(r,x —7)dr =0

0
for xeR.

Definition 1.6. We denote by .# the set of all functions f fulfilling (1.2) such that
every solution s, € 23,(0) to (1.26) with p(0) = 0 is a constant function.

Corollary 1.2. Let the assumptions of Corollary 1.1 be fulfilled. Further, suppose
that f € M, p(0) + 0 and u, is a solution to (£5,,) for every e € [ —&o, ]

Then the function u, fulfils uy = 0. (Consequently, if the other assumptions of
Corollary 1.2 are preserved a solution u,to (<£%,) not tending to 0 for ¢ - 0 may
exist only if p(0) = 0.)

In the sequel, retaining the notation introduced in (1.6), we describe some functions
which are elements of /.

Lemma 1.4. Let f = f(yy, y,) fulfil (1.2). Then fe 4.

Proof. We denote s'(x) = o(x). Then the equation (1.26) assumes the form

21 u(0) o/(x) + 2 f " (o(x) = o(—x + 2) o(x) + o—x + 26) de = 0.
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Writing &(() = 27" [3* f({ — o(—x + 21), { + o(—x + 27)) dr we can reduce the
above relation to 27 (0) o’(x) + @(o(x)) = 0. However, every function o € 2;,(0)
fulfilling this equation is constant.

Lemma 1.5. Let F and G be functions defined on R with continuous second deriva-
tives such that F is odd and G is even. Then the function

J3, ¥ 92) = F(») yi + G'(y) y,
is an element of M.

Proof. The integral in (1.26) has this form:

21 J " F(s(x) — s(—x + 20) (5(x) — s'(—x + 20)) de +

0

27
+ 2_1f G'(s(x) = s(=x + 20)) (s'(x) + 5'(—x + 27))d7 .
[
We define two functions @, ¥ on R by

wi(E) =27t j TEE - s dn, @) =271 j " 6(e - s(m) dn

W] o

Now we can write the relation (1.26) as [2n p(0) s'(x) + ¥(s(x)) + &(s(x))]’ = 0.
Again only a constant function s € 23,(0) can fulfil this relation.

Example 1.1. Lemma 1.5 implies that Cdrollary 1.2 may be applied to the equation .

Uy — Uy, = e(1 — u?)u,.

2. EXAMPLES.

&

If a periodic solution to the problem (s7Z,) keeps the period @ = 2nn (n positive
integer), the system in Theorem 1.1 reduces to

(2.1) Gy(u, s) (&) (t, x) = —u(t, x) + s(x + 1) — s(—x + 1) +

+ 271 J.' r“_’F(u) () (r,&)deédr =0 for (t,x)eR*\S,

0o -ttt

G,(u) (e) (x) = J:n J:F(u) (e)(r, & —1)dédr =0 for xeR\S,
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where F(u) (&) is defined by (‘1.6). Let us note that if S % 0, the normalization given
by (1.25) is not appropriate and in the sequel will be replaced by keeping S fixed
during the whole resolution. It is clear that for a function u fulfilling the equation

0

(2.2) Galu) (x) = r"p(u) (&) (t,x — )dr =0, xeR~S,

also G,(u) (¢) = 0 holds. So in the sequel we look for functions u, s which fulfil

Gy(u,5)(e) (t, x) =0, (t,x)e(0,2nn) x R\ S,
Gy(u)(e)(x) =0, xeR\S.

If we find such two functions u, s then by Theorem 1.1 the function u, extended
as 2zn-periodic function in ¢, represents a solution to the problem (2/5,,).

Further, we formulate an additional assumption on f. We say that a function f
fulfils the condition (#*) if f(x, Yo, ¥1, ¥, €) fufils (1.2) and the derivatives 9°f/ox’

o0l p=1i+jo+jy+jajot+is+i2= 1, p=1,2..,k are continuous

on the set
{(X, Yos V15 V25 8)’ X, Yo» Y1, V2 € R’ g€ [’—60’ 80]} .
Defining Z : D3 ,(S) = D3 2.(R; S) by (Zs) (t, x) = s(x + ) — s(—=x + 1), (t, x) e
€ R\ S we state
Theorem 2.1. Let the following assumptions be fulfilled:

(i) The positive integer p equals 1 or 2.
(i) The function f(x, Yo, ¥1» V2, €) fulfils (B*77).

(iii) The set S fulfils (1.1) and 25%(S), 25.8(S), 25%.((0, 2nn); S) are closed
subspaces of 23,(S), 23, (S), 25 2.((0, 2nn); S) respectively.

(iv) The equation

I(o) () = f

0

2nn
f(x = 1, 04(x) — oo(—x + 27),
ao(x) — ao(—x + 21), 04(x) + oo(—x + 27),0)dr = 0
(xeR\S) has a solution oo = dgeDin(S), I'(235(S)) = 23:7(S) and
Zoy € 257%.((0, 2mn); S).

GA(@312(0, 22); §), D32(5)) (6) < T30, 20n); ),
Gu(@35:((0, 2nm); §)) (2) = D3(S).
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(vi) There exists
[ (63)] 7 € L(2377(S), 235(S)) -

Then for sufficiently small ¢ the problem (s£5,,) has a unique solution u = u*(e)
€ D3 2x(R; S) such that u*(0) = Zoy and u*(e) is continuous in &.

We apply this Theorem to three examples.

Example 2.1. Consider the problem (s7%,) with f(u) = —au + pu®, B+ 0,
/3B =y > 0. We verify the assumptions of Theorem 2.1 wjth p = 1 for an ap-
propriate choice of functional spaces. The condition (ii) is evidently fulfilled. We
will suppose from the very beginning that ¢ fulfils o(x + n) = —o(x) a.e. in R.
_ Then the equation in (iv) assumes the form

(2.3) I(a0) (x) = 03(x) + 3(I — ) do(x) = 0
where
2.4) = r"ag(g) dé .

Hence o,(x) may be equal only to 0, +./(3(y — I)). Fix a positive integer m and put
S = {jm 'n; j integer}. We denote by 235(S) = 23.4(S) the closed subspace
of 92,(S) containing the functions ¢ which fulfil

(2.5) —o(x + 1) = o(x) for xeR\S.

Now for every fixed I < y/3 the equation (2.3) has solutions ¢o(x) € 23%(S) of the
following form: oo(x) equals 0, +./(3(y —I)) or \/(3(y —I)) on each interval
(jm™'n,(j + 1) m™'x), j integer, 0 < j < m — 1. Choose one of these solutions
and denote it by o,(x). We denote by r the number of integers j, 0 < j < m — 1
for which ¢4((2j + 1) (2m)~'n) = 0. This function o, satisfies (2.4) if

2l = rn"?(i) d¢ = 6rrm™}(y — I).

0

For I =I* = 3yrm™'(1 4+ 3rm~')~! the function o/(x) is a solution of (2.3)
and (2.4). Denoting this solution by o we find

(2.6) [63()]% = 3y(1 + 3rm™")"" for xeR\S. o§(x)+0.
Further we denote by 25%,((0, 2n); S) the subspace of 23 ,.((0,2n); S) con-
taining the functions u which fulfil u(t, x) = u(t, = — x) (£, x) € (0, 27) x R\ S.

The inclusions in (iv), (v) may be then readily verified.

551



Denote by & an arbitrary element of 23,(S). Then the equation
(I'(00) 8) (x) = 3([e6(x)]* + I* = 7) 6(x) +
2n
+ 65%(x) (2)"" j o3(&)a(&)dt = h(x), (xeR~S)
V]
has the solution

G(x) = 37Y((o5(x))* + I* — y)~* {h(x) — az(x)n"l(l + 3rm™1)71.

2z
SRGCLCIC O DR 0
0
because
[os()]? +I* —y = —y(1 + 3rm™*)™" for oh(x) =0,
[o5(x)]> +I* —y = 29(1 + 3rm™*)™! for of(x) +0.

Now we easily deduce that [I';(c§)] ™! € L(23,4(S), 23%(S)). In virtue of Theorem
2.1 we obtain

Theorem 2.2. Let f = —ou + pu’®, a« > 0, B > O in the problem (s£5,). Choose
a solution o = oy € D5%(S) to the equations (2.3), (2.4) of the type described above.

Then for sufficiently small ¢ the problem (o/5,) has a unique solution u =
= u*(e) € 257 ,(R; S) continuous in & and such that u*(0) = Zasg.

Remark 2.1. Let us note that if the number r occurring in (2.6) is equal to m
then the function Zoy is a solution to (=5, as is elementarily verified. And because
of the local uniqueness guaranteed by Theorem 2.2 applied in the proof it must
coincide with u*(¢) from this theorem.

Example 2.2. Consider the problem (s#5%,) with f(u, u,) = (—y + u?)u,. We
verify the assumptions of Theorem 2.1 with p = 2. Let S = R, 23%(S), 25%.((0, 2);
S) be the same sets as in Example 2.1. We denote by @;,,*(S) the set of all functions
from 92},(S) which fulfil (2.5). For o, € 25%(S) the equation in (iv) of Theorem 2.1
has the form

[(00) (x) = (=7 + 05(x) + I) o5(x) +
+ 2 0o(x) (20)7 J :nao(é) oy(&) dE = 0

where 21l = (3" o5(£) d¢. We choose a function oj € 255(S) constant on each

component of R\ S and such that

2(x) = =y + [o§(x)]* + (2n)™ j :n"’«';’(C) & >6>0

It
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for all x € R\ S. This function o§ fulfils I'(¢y) = 0. The assumptions (ii), (iv) and (v)
may be easily verified. The equation I',(63) ¢ = h € 2}5(S) assumes the form

I')(o3) 6(x) = E(x) o’(x) + =~ ! 05(x) J:naz(f) ¢'(¢) d& = h(x).

If we denote by G the operator which maps every g € 9;,4(S) into 251(S) according
to the formula

(Gg) (x) = '[ :g(c) dE — 271 f :g(é) a

and

2n —1p2n
= {zn w2 a1 = df} j He) o3(6) 27(0) k.
.0 0
then ¢ = G(E7!(x) (h(x) — 2J* og(x)) is an element of 237 (S) fulfilling I')(c3) & =
= h. We denote this element by Hh. Then for every h e@;,,*(S),

(2.7) T'os)Hh = h
is fulfilled.

The operator H is a linear bounded operator from 2}.4(S) into @3%(S). The
equation (2.7) substitutes the existence of the inverse operator to I'y(a%) required in
Theorem 2.1. However, with (2.7) the theorem remains valid if we do not require
the uniqueness. So we can formulate

Theorem 2.3. Let f = (—y + u®) u, in the problem (o/5,). Choose a4 € D52(S)
as is described above. Then for sufficiently small ¢ the problem (£5,) has a solution
u = u*(e) € D3, 2.(R; S) continuous in & and such that u*(0) = Zoy.

Example 2.3. Consider the problem (2£5,) with f(u,) = —ou, + Bu;, y =
= /38> 0. Let S={xeR; x =jam™! for an integer j}, m = 2 integer. We
denote by 25%(S) the functions from 23,(S) which are continuous and fulfil (2.5).
The space 2},4(S) is the same as in Example 2.2.

Further we denote by 2¢%,((0, 27); S) the functions from 2 ,,((0, 2x); S) which
are continuous and fulfil u(t, x) = u(t, = — x). Then the equation in (iv), Theorem
2.1 has the form

I(a0) (x) = oo(x) ((eo(x))* + 3(1 = 7)) = 0

where 2nl = (5" [06(¢)]* d¢. For fixed I <y we choose a function o, € 23%(S)
such that its derivative on each component of R\ S is equal to 0 or +./(3(y — I)).
We denote by, r the number of integers j, 0 < j < m — 1 for which ¢y((2j + 1).
.(2m)™' n) & 0. Then 2nI = 2rrm~* 3(y — I) and for

(2.8) I=T1*%=3yrm™ (1 + 3rm™*)~!
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the function o; which we denote by ¢ fulfils I'(c3) = 0. Now we verify the as-
sumptions (vi) of Theorem 2.1. The operator equation I',(¢3) ¢ = h which reduces to

(Ie(00) 8) (x) = 3((05'(x))* + I* — ) &'(x) +
+ 603'(x) (2n)~* J‘:na:'(tf) ¢'(¢) dé = h(x),
has the solution ¢ which fulfils

#() = 3 + 1 — 1) (h(x) — a3 (x) n (1 + 3~
[ M@ (e + 1= agy xerss.

Denoting by g the right hand side of this equation, we have g € 2;,4(S), and 6(x) =
= [59(&)dé — 271 [ g(¢) d¢ € 23%(S). Now we easily deduce that [I',(c5)] '€
€ L(23.+(S); 25%(S)). In virtue of Theorem 2.1 we obtain

Theorem 2.4. Let f = —ou, + pu], o > 0, B > 0 in the problem (o/5,). Let us
choose oy € D3%(S) as described above.

Then for sufficiently small ¢ the problem (sf5,) has a unique solution u =
= u*(e) € D},.2.(R; S) continuous in & and such that u*(0) = Zos*.

Remark 2.2. If the number r in (2.8) is equal to m, then the function Zoy is a solu-
tion to (&£5,). (Cf. Remark 2.1.)
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