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1. PROBLEM

1.0. Notation. If A4 is a set we denote by |A| the cardinal number of A. We denote
by Ord the class of all ordinals. If « € Ord then we put W, = {f€Ord; p < a«}. We
denote by N the set of all finite ordinals.

Let ¢ be a partial map from the set A into the set B. We put dom ¢ = {x€ 4;
there exists y € B such that (x, y) € ¢}. If dom ¢ = A then we write ¢ : 4 > B and
speak about a map ¢. If C < 4, D < B then we put ¢(C) = {¢(x); x € C}; further,
we define ¢~ (D) = {x € A4; ¢(x) e D}; finally, we denote by ¢ | C the restriction
¢ N (C x B)of .

1.1. Definition. Let A4 be a non empty set, f a partial map from the set 4 into A.
Then the ordered pair (A,f) is called a unary algebra.

1.2. Definition. Let (4, f) be a unary algebra. Then we put D(4, f) = A — dom f.
If D(A,f) = ( then (4, f) is called a complete unary algebra.

1.3. Definition. Let (4, f), (B, g) be unary algebras and F : 4 - B a map. Then F
is called a homomorphism of (A, f) into (B, g) if x € dom f implies F(x)e dom g
and F(f(x)) = g(F(x)) for each x € A. We write F : (4, f) - (B, g).

1.4. Problem. Let (A, f), (B, g) be unary algebras. Find all homomorphisms
F:(A,f)—»(B,g).

1.5. Definition. Let (A4, f) be a unary algebra. We put f© = id,. Suppose that we
have defined a partial map /"~ ! from A into A for ne N — {0}. We denote by f"
the following partial map from 4 into A: if x e dom /"~ ! and /"~ '(x) € dom f then

we put f(x) = f(f"!(x)).
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1.6. Lemma. Let (A, f) be a unary algebra. Then the following assertions hold:

(a) (A4, f) is complete iff dom f* = A for all neN.

(b) If neN — {0}, xedom f" then x edom f™ for each me{0,1,...,n} and
f™(x) e dom f for each me{0,1,...,n — 1}.

() If neN — {0}, xo,X,..., X, €A, {xo,Xy,...,X,—y} S domf and f(x;) =
= X;4, for each i€{0,1,...,n — 1} then xo € dom f" and f"(x,) = X,

(d) Let neN, xe A be arbitrary. Then x edomf* iff f?(x)edomf*"? for
each p,geN,0=<p=<gq =< n.

(e) If m,neN, xedomf™, f"(x)edomf" then xedomf™*" and f™*"(x) =
= /"(f"(x)). ,

(f) If m,neN, xedomf™, f"(x)edomf" then xedomf", f"(x)edom f™"
and f7(f"(x)) = f"(f"(x)).

Proof of (a) is evident.

Proof of (b). The assertion follows directly from 1.5.

Proof of (c). Denoting by ¥(n) the assertion (c) for n € N — {0} we see that V(1)
holds.

Let ne N — {0, 1} be arbitrary and let V(n — 1) hold. Further, let {xo, x,, ...

X1} € dom f for xg, Xy, ..., x,€ A and let f(x;) = x;4, for each i€ {0, 1, ...
....n — 1}. Then the conditions of V(n — 1) are satisfied; thus, Xo € dom f"7 1
" (xo) = x,_,. Further, f"""(x) = x,_, edomf and we obtain, by 1.5, xo€
e dom /" and f"(xo) = (/" "(xo)) = f(Xs—1) = x,. Thus, we have V(n).

Proof of (d). The condition is sufficient for p = 0, ¢ = n. The condition is neces-
sary: By (b), xedom f™ for each me{0,1,...,n} and f™(x)edomf for each
me{0,1,...,n — 1}. Let p, €N, 0 < p < q < n be arbitrary. Clearly, for p = q
the condition holds. Suppose that p < ¢. We put x; = f?*(x) for each i € {0, 1, ...
.nq — p}. Then {xo, Xy, ..., X, ,—1} S domf and, for each ie{0,1,...,q —
—p =1}, f(x)=f(f""(x) =/ (x) = x;py by 15, Thus, f7(x) = xe€
e dom f?77 by (c).

Proof of (¢). We denote, for n € N, the assertion (e) by V(n). Clearly, ¥(0) holds.

Let neN — {0} be arbitrary and let V(n — 1) hold; further, if x e dom f™,
f™(x) e dom f" then the conditions of V(n — 1) are satisfied which implies x €
e dom 71, 1#11(x) = 11=3(77(2). By (@) 17(x) < dom f» mplie fmn- () =
= f""1(f"(x))edomf; by 1.5, we obtain xeg dom fm+n 5.4 Fmn(x) =
= ("7 x) = (M) = (%)) Thus, V(n) holds,

Proof of (f). By (e), we have x edom f™*" ang fm+nc N 00w
x € dom /", f*(x) e dom f™ by (d) which implies f"+?n(x{= f(:()f&x];)(ﬁy(zce))) Hence
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1.7. Definition. Let (4, f ) be a unary algebra and let x € A be arbitrary. Then we
define [x]4.5) = {f"(x); x € dom f"}.

1.8. Lemma. Let (A, f), (B, g) be unary algebras, F : (A, f)— (B, g) a homo-
morphism. Then, for each x€ A, neN, xedomf" implies F(x)edomg" and

F(f"(x)) = g"(F(x))-

Proof. Let xe€ A, n€N be arbitrary. We denote by V(n) the assertion: if x e
€ dom f" then F(x) e dom g" and F(f"(x)) = g"(F(x)).

7(0) holds because F(x)e B = dom g° and F(f°(x)) = F(x) = g°(F(x)).

Let neN — {0} be arbitrary and let ¥(n — 1) hold. Further, let x € dom f™;
then x edom f*~* by 1.6 (d) and, by V(n — 1), F(x)edom g"~*, F(f""!(x)) =
= ¢""'(F(x)). Further, x € dom /" implies f""!(x)edomf by 1.6 (d). Thus,
F(f" '(x))edomg and F(f(f""'(x))) = g(F(f""*(x))). We obtain F(f"(x)) =

h=llg(f (r=1C) = 9(F(/"~'(x)) = 9(¢"(F(x))) = ¢"(F(x)) by 1.6 (e). Thus, ¥(n)

1.9. Definition. Let (A, f) be a unary algebra. For arbitrary x, y € A4, we put
(x, y)eo(4, f) iff there exist m,neN suchthat xedomf™,
yedomf™ and fm(x)=/"(y).

If o(4,f) = A x A then (A, f) is called a connected unary algebra and we refer

to it briefly as to a c-algebra.

2. c-:ALGEBRAS

First, we shall solve Problem 1.4 for c-algebras.

2.1. Lemma. Let (A, f) be a c-algebra. Then |D(A,f)] <1.

Proof. Suppose, on the contrary, x, ye€ D(A4,f) and x % y. Then there are
m, n €N such that x e dom f™, y e dom f" and f™(x) = f"(y). We see that m = 0,
n = 0 cannot occur because, in this case, x = f°(x) = f°(y) = y. Let, for example,
m = 0. Then we obtain x € dom f by 1.6 (d) which is a contradiction. Similarly, we
obtain a contradiction for n + 0.

2.2. Definition. Let (4, f) be a c-algebra such that D(A, f) # 0. Then we put
{d(4,1)} = D(4, ).

2.3. Lemma. Let (A4, f) be a c-algebra such that D(A, f) # 0. Then, for arbitrary
x € A, there is m € N such that x e dom f™ and f™(x) = d(A, f).
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Proof. For x € A, d(A, f) € A, there exist m, n € N such that x e dom f™, d(4, f) €
e dom f* and f™(x) = f"(d(A, f)). Hence n = 0 by 1.6 (d) and we have f™(x) =
_ 1A, ) = d(A, ).

2.4. Definition. Let (4, f) be a c-algebra and x e A arbitrary. Then we define

Z(x) = {y € A; there exists an infinite set N(y) = N such that x € dom f" and f"(x) =
=y for each n e N(y)}.

2.5. Lemma. Let (4, f) be a c-algebra such that D(A, f) = 0. Then, for arbitrary
xe A, Z(x) = 0.

Proof. Suppose, on the contrary, Z(x) # @ and y € Z(x). Then there is an infinite
set N(y) < N such that, for each n e N(y), x edom f”, f"(x) = y. Further, by 2.3,
there is no € N such that x e dom f* and f™(x) = d(A, f). Since N(y) is infinite,
there is n, € N(y) such that n; > no. Thus, by 1.6 (d), the conditions of 1.6 (e) are
fulfilled and by 1.6 (e), y = f™(x) = f™~"(f™(x)) = f™~"(d(A4, f)). In virtue of
ny — ny > 0, we obtain, by 1.6 (d), d(4, f) € dom f which is a contradiction.

2.6. Lemma. Let (A, f) be a c-algebra. Then Z(x) = Z(y) for any x, y € A.

Proof. For D(4,f) = 0, (4, f) is a complete c-algebra and the assertion follows
from [2], 1.2.

Let D(4,f) + 0. Then Z(x) = 0 = Z(y) by 2.5.

2.7. Definition. Let (4,f) be a c-algebra. Then we put Z(4, f) = Z(x) where
x €A is an arbitrary element, R(4,f) = |Z(A, f)|. Z(4, f) is called the cycle and
R(A, f) the range of (4, f).

2.8. Lemma. Let (A,f) be a c-algebra, x € A arbitrary. Then
(a) xeZ(A, f) iff there is ne N — {0} such that x € dom f™ and f"(x) = x;
() i,jeN, i <j, xedomfI, fi(x) = fi(x) imply fi(x) € Z(4, f).

Proof of (a). If D(4,f) = 0 then the assertion follows from [2], 1.5 (b). If
D(A, f) #+ 0 then Z(A, f) = 0 by 2.5 and 2.7 and the assertion holds trivially.

Proof of (b). By 1.6 (d), we have x € dom f', f(x) € dom f/~" and f/~(f(x)) =
= fI(x) = f(x) which implies f(x) € Z(4, f) by (a).

2.9. Lemma. Let (A,f) be a c-algebra. Then the following assertions hold:

(a) D(A,f) + 0 iff R(4,f) = 0 and there is xo € A such that |[Xo]cs,p| < No-

(b) I[x]u,,)l < Ny or [[x](A_f)| 2 N, for all x € A iff there is xo € A such that

l[xo](,,‘f)| <N, or |[xo](,4,f) = N, respectively.
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(¢) (A, f) is complete iff either R(A,f) + O or there is xo€ A such that
|[x0](A,f)| Z No.

Proof of (a). Let D(4, f) # 0; then Z(4, f) = 0 by 2.5 and 2.7 which implies
R(A, f) = 0. Further, |[d(4, [)]1.5)] = 1 < Xo.

On the other hand, suppose R(A,f) = 0 and the existence of x, € A such that
|[xoJiany| < No-

(1) Then, for all i, j € N such that i = j, then conditions x, € dom f, xo € dom f7
imply fi(xo) # f(xo). Indeed, if we had fi(x,) = f(x,) and, for example, i < j
then we should have, by 2.8 (b), f(xo) € Z(4, f) which is a contradiction to
R(4,f) = 0.

(2) Further, we put m = |[xo]4,p|- Then, by 1.7 and 1.6 (d), xo € dom f7 for
j=0,1,...,m — 1. Further, x, ¢ dom f™, because if we had x, € dom f™ then we
should have ie{0,1,...,m — 1} such that f™(xo) = fi(xo) (because |{f°(xo),
S(x0)s --» S™ *(x0)}| = m by (1)) which is a contradiction to (1). Hence /™~ *(x,) ¢
¢ dom f by 1.6 (d) because x, € dom f™~'. Thus D(4, f) * 0.

Proof of (b). Clearly, the condition is necessary.

Let, on the other hand, |[xo]c,5| < No for x, € 4. Let x € 4 be arbitrary; then
there exist m, n € N such that x e dom f™, x, € dom f" and f™(x) = f"(x,). Hence
L") ]eary = [f"(x0)]ary S [¥o)ia.sy Which implies |[f™(x)]c,,| < No. Further,
(xJasy = {f ), F2(x), oo fP7Hx)} O [f™(x)]ay by 1.7 and 1.6 (d) and we
obtain |[x]es, | < No-

The second assertion is a consequence of the first one.

Proof of (c). The assertion follows from (a) and (b).

2.10. Lemma. Let (A, f) be a c-algebra. Then (Z(A, f), f| Z(A, f)) is a-subalgebra
of (A, f).

Proof. If Z(A,f) = 0 then the assertion holds trivially. If Z(4,f) + 0 then
R(A,f) # 0 and (4, f) is complete by 2.9 (c). The assertion follows from [2], 1.4.

2.11. Lemma. Let (A,f) be a c-algebra. Then the following assertions hold:

(a) If xe Z(A, f) is arbitrary then R(A, f) = min {ne N — {0}; f"(x) = x};

(b) R(4, ) < N,.

Proof of (a). Since R(4,f) = 0 the c-algebra is complete by 2.9 (c) and the
assertion follows from [2], 1.6 (a).

Proof of (b). If D(4, f) = 0 then (4, f) is complete and the assertion follows
from [2], 1.6 (b). If D(4, f) + 0 then R(4, f) = 0 by 2.9 (a).
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2.12. Lemma. Let (A, f) be a c-algebra, x € Z(A, f) arbitrary. Then (4,f) is
complete and the following assertions hold:

(a) f7R4(x) = x for each peN;

(b) f"(x) = x iff R(4,f)[ m*).

Proof. (4, f) is complete by 2.9 (c).

Proof of (a). The assertion follows from [2], 1.5 (a).

Proof of (b). Let R(A.f)|m; then there is pe N such that m = R(4,f).p
which implies f"(x) = f7*“-1(x) = x by (a). :

Let, on the other hand, f™(x) = x hold. Then R(4, f) < m by 2.11 (a) and there
are p,q € N such that m = p. R(4,f) + q and 0 < g < R(4, f). By 1.6 (e), 2.10
and (a) we have x = f"(x) = fP-RAN*(x) = fr-RAD(f(x)) = f9(x).If geN — {0}
then R(4, f) < g by 2.11 (a) which is a contradiction to the definition of q. Hence
g = 0 and we obtain m = p. R(4, f). Thus, R(4, f) I m.

2.13. Notation. Let oo, 00y, 00, ¢ Ord.

If M is an arbitrary set of ordinals then we denote by < the order relation on
M L {00y, ©0,} such that its restriction £ n M? to M is the natural order relation
of ordinals and that &« < 00y < o0, for each « € M.

2.14. Definition. Let (4, f) be a c-algebra. We put A® = {x € 4; there is a sequence
(x:)icy such that x; e dom f for each i e N — {0}, x, = x and f(x;+,) = x; for each
ieN}, A% = {xeA; f~'(x) = 0}.

Let « € Ord, « > 0 and suppose that the sets 4* have been defined for all ¥ € W,.
Then we put A* = {xe 4 — U 4% f7!(x) = U 47}.

xeWq xeW o

2.15. Lemma. Let (A4, f) be a c-algebra. Then the following assertions hold:

(a) (A°°,f| A®) is a subalgebra of the c-algebra (A, f);

(b) Z(4,f) = 4™

Proof of (a). Let x € A® be such that x € dom f. Then there is a sequence (X;);cy
such that x; e dom f for each ie N — {0}, x, = x and f(x;;,) = x; for each i e N.
We put f(x) = y, and y;4; = x; for all ieN. Then y, = x, = x edom f and,
for each ie N — {0}, y;+; = x;edom f. Thus y;edom f for each ie N — {0}.
Further, y, = f(x), f(y1) = f(xo) = yo and, for each ieN — {0,1}, we have
J(is1) = f(x:) = x;—; = y;. Hence f(x) e A® by 2.14.

*) p| g for p, g € N means that p is a divisor of gq.
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Proof of (b). If Z(A,f) = 0 then the assertion holds trivially. If Z(4, f) + 0
then R(A,f) # 0 and (4, f) is complete by 2.9 (c). The assertion follows from [2],
1.15.

2.16. Definition. Let (A4, f) be a c-algebra. Then we put A*' = 4° — Z(4, f),
A®* = Z(4A, f).

2.17. Lemma. Let (4, /) be a c-algebra. Then

(a) if xe A then f~}(x) N A™ + 0;

(b) if x € A®* then f~(x) N A®* * 0.

Proof of (a). If x € A”* then x € A® and there is a sequence (X;);cy such that x; e

e dom f for each ie N — {0}, x, = x and f(x;+;) = x; for each ieN. Clearly,
x; € A”. Further, x, ¢ Z(A4, f) by 2.10 and we have x, € f7!(x) n A™".

Proof of (b). If x € A2 then x € Z(4, f) and f*“/)(x) = x by 2.12 (a). Thus,
fRAD(x) e f~1(x) and fRAN"1(x) e Z(A, f) = A™* by 2.10.

2.18. Lemma. Let (A, f) be a c-algebra, a, € Ord, o + . Then A* n 4% = 0.

Proof. If, for example, « < 8, then A% N A* = A% 1 U A% = 0 because A* <
cA- U4 e

xeWpg
2.19. Lemma. Let (A4, f) be a c-algebra. Then:
(a) There is 3 € Ord such that A* = 0.
(b) If $€0Ord, 4*> = 0 then A* = 0 for each A€ Ord with the property 2 > 9.

Proof of (a). Let veOrd be an ordinal number such that |4 < N,. Suppose
A* #0foreach e W, ,. Then ¥,,; £ Y |4} =] U 4% =4 =N by

AW,

v+1®
Ov+1 Wwy+1

2.18 which is a contradiction.
Thus, there is 9 € W,,,, such that A* = 0.

Proof of (b). We denote by V(1) the following assertion: 4* = §. Then ¥(9) holds.

Let BeOrd, 3 < B, suppose that V(1) holds for each A € Ord with the property
9 <A< pB. Then U A* = U A* which implies A’ = {xed — U 4% f7!(x) =

AeWg AeWg ieWpg
cUAt={xed-UdLf'(x) s U4} =4"=0.
AeWg AeWs AeWg
The assertion follows by transfinite induction.

2.20. Definition. Let (4, f) be a c-algebra. Then we put 9(4, f) = min {9 € Ord;
A% = 0}.
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2.21. Lemma. Let (4, f) be a c-algebra. Then A” = A — U A~

xeWga(a,r)

Proof. If xe A — U A then there is an element x’ € f ~(x) such that x" €
xeWg(a,1)

€eA— U A Indeed, if we had f7'(x) = U A" then we should put 9 =

xeWg(a.p) xeWg(a,1)
= min {1€0rd; f'(x) € U 4*}. Then 9 < %(4, f) and x € A* by 2.14 which is

xeW 5

a contradiction either to A*“") = ¢ (inthecase § = 9(4,f))ortoxed — U A*

*eW3a(a,5)

(in the case 9 < (4, f)). Clearly, x" € dom f.
We put x, = x and X,,,; = x, for ne N. Then x, e dom f for each ne N — {0}

and f(x,.;) = x, for each neN. Thus, xe A and 4 — U A" < 4~

xeWg(asf)

Let us have, on the other hand, xe A n (U  A4*). Then there exists a sequence
xeWg(asf)

(%:)ieny such that x; e dom f for each ie N — {0}, xo = x and f(x;4+) = x; for each
i e N. By 2.18, there is precisely one x, € W4, ) such that xo € 4™.

Suppose that we have constructed ordinals %, > %, > ... > x, with the property
x;€ A% fori=0,1,...,n where ne N. Then x,, ;€ f *(x,) € U A* which implies

XEWX"

the existence of ,, ; < %, such that x, , , € A**'. Thus, (%;);.y is an infinite decreasing

sequence of ordinals which is a contradiction.

Consequently, A < 4 - U A%

*eWg(a,r)

2.22. Theorem. Let (A, f) be a c-algebra and put W* = Wy, ;) U {00}, 00,}.
Then A = \J A* with disjoint terms.

xeW*

Proof. The assertion is a consequence of 2.18, 2.21, 2.15 (6) and 2.16.

2.23. Definition. Let (4, f) be a c-algebra. We define a map S(4, f) : 4 - Ord U
U {00,, 00,} by the condition S(4,f)(x) = x for each xe A*, x€ Wy v
U {004, ©0,}. S(4, f) (x) is called the degree of x.

2.24. Notation. Let @ + M < Ord, o € Ord. Then we put M < o if f < a for each
BeM.

2.25. Lemma. Let (A4, f) be a c-algebra, « e Ord, x € A — A®. Then the following
assertions hold:

(@) S(4, f) (x) = a iff « < S(4, f) (x) and S(A, ) (f *(x)) < .

(b) If S(4, f) (x) = « then W, is cofinal with S(4, f) (f ~*(x))-

(©) 1F S(4,1) (™) < & then S(4,7) () % a.
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Proof of (a). The assertion follows directly from 2.14 and 2.23 because
S(A.f)(x) = «is equivalent to xe 4 — U A% f~!(x) € U A* which is equivalent

xeWy xeWy
to a = S(4. /) (x), S(4,1) (f~'(x)) < «.
Proof of (b). Suppose S(4, f) (x) = « and, on the contrary, the existence of ff € W,
such that {y; 8 <y < a} 0 S(4,f)(f~"(x)) = 0. Then S(4, f) (f~*(x)) < B and,
since S(4, f) (x) = « > f3, we obtain by (a) S(4, f) (x) = B which is a contradiction.

Proof of (c). Suppose S(4, f) (f!(x)) < « and, on the contrary, & < S(4, f) (x).
Then, by (b), there is y € f ~'(x) such that S(4, f) (¥) = « which is a contradiction
to S(4, /) (f " '(x)) < a

2.26. Lemma. Let (A, f) be a c-algebra. Then the following assertions hold:

(@) If xe A — A® and neN are such that x e dom f" then S(4,f)(f"(x)) =
> S(4,f) (x) + n.

(b) If x € A is such that x € dom f then S(4, f) (f(x)) = S(4, f) (x).

(c) If D(A,f) +0, A =0 then ¥(A,f) is isolated and S(A,f)(d(4,f)) =
=9(4,f) - 1.

(d) If D(A,f) £ 0, A” + 0 then S(A, f) (d(A, f)) = ;.

Proof of (a). For an arbitrary n € N, we denote by V(n) the following assertion:
if x e dom f” then S(4, f) (f"(x)) = S(4, f) (x) + n.

Clearly, V(0) holds.

Let ne N — {0} and let V(n — 1) hold. Further, suppose xedom f". If
S(4, ) (f"(x)) e {0y, o0,} then ¥(n) holds because {0, 00,} > S(4, f)(x) + n.

Suppose that S(4, f) (f"(x)) e Ord. Since x € dom /" we have x e dom "~ ' by
1.6 (d). Hence S(4,f)(f" '(x)) = S(4,f)(x) + n — 1 by V(n —1). Further,
7 N(x) efTH(f"(x)); if we put S(4, f) (f"(x)) = « then f""(x)e U A* and there

is %o € W, such that f"!(x) e A*. Thus, S(4,f) (/" '(x)) = %:ev;;d we obtain
SAN("x) =a=x + 1 =SA ) '(x)+12SA4,f)(x)+n—-1+
+ 1= S(4,f)(x) + n.

¥(n) holds.

Proof of (b). Let x € 4 be such that x € dom f.

If S(4,f)(x)eOrd then xe A — A® which implies S(4, f) (f(x)) > S(4,f) (x)
by (a).

If S(A, f) (x) = oo, then S(4, f) (f(x)) € {0y, o0,} and, finally, if S(4,f)(x) =
= o0, then S(4, f) (f(x)) = o0, by 2.15 (a) and 2.10.

Proof of (c). Let D(A4,f) + 0, A” = 0. Then S(4,f) (d(4,f)) = 5 eOrd and
3 < %A, f). Let there be 8 < ¢ < 9(4, f) and x € A with the property S(4, f) (x) =

116



= ¢. Then, by 2.3, there is n € N such that x e dom /" and f"(x) = d(4, f). Thus
we obtain by (a) 6 = S(4, 1) (d(4,f)) = S(4,1) (f"(x)) = S(4, /) (x) + n = ¢ +
+ n 2 & which is a contradiction to § < &. Thus, 9(4, f) is isolated.

Further, § + 1 = 9(A, f) which implies S(4, f) (d(4, f)) = & = %(4, ) — 1.

Proof of (d). Let D(4, f) + 0, A” + @ and let x € A® be arbitrary. Then, by 2.3,
there is n € N such that x € dom f”, f"(x) = d(4, f). Thus, by 2.15 (a), d(4, ) € A~.
Further, A” = A because D(4, f) + 0 and so A** = Z(4, f) = @ by 2.5 and 2.7.
Consequently, S(4, f) (d(4,f)) = ;.

3. HOMOMORPHISMS OF c-ALGEBRAS

3.1. Lemma. Let (4,f), (B, g) be c-algebras and F :(A,f)— (B,g) a homo-
morphism. Then the following assertions hold:

(a) If f"(x) = x for x € Z(A, f) and n € N, then F(x) € dom g" and g"(F(x)) = F(x).
(b) F(2(4.1)) € Z(B, ).

(c) If R(B, g) = 0 then R(A,f) = 0.

(d) If R(B, g) # 0 then R(B, g) | R(A, f).

Proof of (a) follows immediately from 1.8.

Proof of (b). Let y € F(Z(4, f)) be arbitrary. Then there is x € Z(A4, f) such that
F(x) = y. Thus, (4, f) is complete and there is ne N — {0} such that f"(x) = x
by 2.8. Hence y € dom g", ¢"(y) = y by (a). We have, by 2.8, y € Z(B, g).

Proof of (c). If R(B, g) = 0 then Z(B, g) = 0. If we had R(A4, f) # 0 then we
should have Z(4, f) + 0 and, by (b), 0 + F(Z(A, f)) = Z(B, g) = 0 which is a con-
tradiction.

Proof of (d). Clearly, the assertion holds for R(4, f) = 0. Further, let R(4, f) + 0
and x € Z(4, f). Then, by 2.12 (a), f8“/)(x) = x and, by (a), F(x) € dom gR“4:"),
gRAI(F(x)) = F(x). By 2.12 (b) we obtain R(B, g) | R(4, f).

3.2. Lemma. Let (4, f), (B, g) be c-algebras, F : (4, f) - (B, g) a homomorphism.
Then F(A”) = B”.

Proof. Let xe A®. Then there exists a sequence (x,),y such that x;e dom f
for each ie N — {0}, x, = x and f(x;4+,) = x; for each i e N. For each ie N we
put y; = F(x;). Then y; € dom g for each i e N — {0} by 1.3. Further, y, = F(x,) =
= F(x); finally, if ieN then g(y;y;) = g(F(x;+1)) = F(f(x;4,)) = F(x)) = y..
Thus, F(x) e B*.
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3.3. Lemma. Let (A, f), (B, g) be c-algebras, F : (4, f) - (B, g) a homomorphism,
x € A arbitrary. Then the following assertions hold:

(2) S(4,1) (x) = S(B. 9) (F(x)).
(b) If ne N, x € dom f" then F(x) € dom g" and S(4, f) (f"(x)) < S(B, g) (¢9"(F(x)).
Proof of (a). (1) Clearly, if S(4, f) (x) = 0 then the assertion holds.

Let 0 < a < 9(A, f), S(A,f)(x) = « and suppose that the assertion holds for
each y € A with the property S(4, f) (y) < a.

Clearly, if S(B, g) (F(x)) € {0, 00,} then the assertion holds by 2.13.

Thus, suppose that S(B, g) (F(x)) € Ord. Let y e f~!(x) be arbitrary. Then y e
€ dom f and, by 1.3, F(y) € dom g. Further, g(F(y)) = F(f(y)) = F(x) which implies
S(B, 9) (9(F(y)) = S(B, 9) (F(x)) € Ord. We obtain S(B, g) (F(y)) < S(B, g) (¢(F(»)) €
e Ord by 2.26 (b) and hence F(y) e B — B®. We have, by 2.26 (a), S(B, g) (F(y)) <
< S(B.g)(g(F(y))- We obtain by the induction hypothesis S(4, ) (y) < S(B, g) (F(»)) <
< (B, g) (9(F(»)) = S(B. 9) (F(x).

Thus, S(4,f)(f'(x)) < S(B, g) (F(x)) because yef~'(x) was arbitrary. We
conclude S(4, f) (x) £ S(B, g) (F(x)) by 2.25 (c).

(2) Suppose that S(4, f)(x) = oo,; then xe A® and F(x)e B® by 3.2; thus,
S(B, g) (F(x)) € {o0,, ©0,} and the assertion holds.

(3) If S(4,f)(x) = o, then xeZ(4,f) and F(x)e Z(B, g) by 3.1 (b); thus,
S(B, 9) (F(x)) = oo, and the assertion holds.

Proof of (b). Let x € dom f". Then F(x)edom g" and F(f*(x)) = g"(F(x)) by
18. Thus, S(4,1) (7)) = S(B. 8) (F(7"(x) = S(B, 9) (0"(F() by (2).

3.4. Definition. Let (4, /), (B, g) be c-algebras. Then x € 4, x" € B are said to be
a pair of h-elements of (A,f) and (B, g) if, for each neN, x e dom f" implies
x" e dom g" and S(4, f) (f"(x)) < S(B, g) (¢"(x")).

3.5. Definition. Let (4, f), (B, g) be c-algebras. Then (B, g) is said to be admissible
for (4, f) if the following conditions hold:

(a) if R(B, g) + 0 then R(B, g)| R(4, f);
(b) if R(B,g) =0 then R(4,f) = 0 and there exists a pair of h-elements of
(4, 1) and (B, g).

3.6. Lemma. Let (4, f), (B, g) be c-algebras such that (B, g) is admissible for
(A,f). Then,

(a) if D(B,g) + 0 then D(A,f) * 0,

(b) if (4, f) is complete then (B, g) is complete.
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Proof of (a). Let D(B, g) + . Then, by 2.9 (a), (b), R(B, g) = 0 and, for each
y € B, |[¥]3.0| < No- Thus, by 3.5 (b), R(4, f) = 0 and there is a pair of h-elements
x € A, x' € B of (4, f) and (B, g). We obtain that, for each n € N, x € dom f” implies
x" e dom g". Since |[x']5,¢)| < No we have IIx]anr| < No.

Indeed, let, on the contrary, |[x]c,,| = ¥o; then x e dom f* for each neN.
Thus, x’ € dom g" for each n €N and there are i,jeN, i < j, such that g(x") =
= g/(x’) because |[x](s,5| < No. Hence Z(B, g) + 0 by 2.8 (b) which is a contra-
diction to R(B, g) = 0.

We see that R(4, f) = 0 and |[x]4 ;| < No which implies D(4, f) # by 2.9 (a).

Proof of (b). If (4, f) is complete then D(4, f) = @ which implies D(B, g) = 0
by (a). Thus, (B, g) is complete. '

3.7. Lemma. Let (A, f), (B, g) be c-algebras such that (B, g) is admissible for
(A.f). Then there is a pair of h-elements of (A, f) and (B, g).

Proof. Let R(B, g) + 0. We take x’ € Z(B, g) arbitrary. Since (B, g) is complete
by 2.9 (c), it is x" e dom g" for each ne N. Let x € A be arbitrary. Then for each
n € N such that x e dom f” we have S(B, g) (9"(x)) = o0, = S(4, f) (f"(x)) by 2.10.
Thus, x € 4, x" € B is a pair of h-elements of (4, f) and (B, g).

If R(B, g) = 0 then the assertion holds in virtue of 3.5 (b).

3.8. Definition. Let (4,f) be a c-algebra, x € 4 arbitrary. We put Py(x) =
= [x]ia.sy P1(x) = 1 (Po(x)) — Po(x). Let n e N — {0} and suppose that the sets
Py(x). Py(x), ..., P,(x) have been defined. Then we put P,.(x) = f7'(P,(x)).

3.9. Lemma. Let (A,f) be a c-algebra and x € A arbitrary. Then the following
assertions hold:

(@) Z(4,f) = Po(x);

(b) if D(4, 1) + O then d(4, f) € Po(x) and U P,(x) < dom f;

(c) 4= GoPk(x) with disjoint terms. o

Proof c:f (). Z(A4, f) = Z(x) = [x](a.5) = Polx) by 2.4.

Proof of (b). By 2.3, there is n € N such that x e dom f* and f"(x) = d(4, f).
Thus, d(4, f) € [x]4.;) = Po(x) andeIPk(x) < dom f.

Proof of (c). By 3.8 and (b) we have: if ke N, y € P,(x) and n € N are arbitrary
then n < k implies y € dom f" and f*(y) € P,_,(x) and n = k, y e dom f" implies
J'(5) € Polx).

Now, let k, e N, k # I; then P,(x) n P,(x) = 0. Indeed, if we had y € P(x) N
N P(x) and, for example, k > 1 then we should have f*~!(y)e P,(x) because
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yeP(x) and k — 1 < k and f*7'(y)e Py(x) because ye P(x) and k — 12 I;
thus, f*~1(y) e Pl(x) N Py(x) which is a contradiction to 3.8.

It holds 4 = U Py(x).

Let, on the contrary, yed — U P,(x). Then y e dom f because d(4, f) € Po(x).
Hence f(y) EA - U Pk(x) by 3.8. VOVe obtain by induction that y e dom f" implies
f"(y)ea - U Pk(x) Further, there exist p, ¢ € N such that y e dom f?, x € dom f4
and f?(y) = f"(x) € Py(x) which is a contradiction.

3.10. Lemma. Let (A,f), (B, g) be c-algebras. Then the following assertions hold:

(@) Let ye A, y' e B be such that S(A,f)(y) £ S(B,g)(y'). Then for each
x €f7(y) there exists x" € g~*(y’) such that S(4, f) (x) £ S(B, g) (x').

(b) Let xoe A, neN be arbitrary. Let a map F : P,(x,) - B be defined such
that, for each y € P,(x,), S(4, f) (y) < S(B, g) (F(y)). Then, for each x € P, (x,),
there exists x' € g~ (F(f(x))) such that S(4,f)(x) £ S(B, g) (x').

Proof of (a). Suppose that S(4,f)(v) < S(B,g)(y') holds for ye A, y' €B.
Let x € f ~'(y) be arbitrary.

If S(B, g) (y') = o0, then, by 2.17 (b), there is x" € g~ (') such that S(B, g) (x') =
= 0,. Thus, S(4,f)(x) < S(4,f)(y) £ S(B,g) (y) = 0, which implies
S(4,1) (x) = S(B, g) (+').

Similarly, if S(B, g)(y') = oo, then, by 2.17 (a), there is x" € g~'()") such that
S(B, g) (x') = oo, and S(4, f) (x) < S(B, 9) (x').

Finally, let S(B, g) (') € Ord. Then S(4, f) () € Ord and S(4, f) (x) < S(4.f) (»)
by 2.26 (a). Therefore S(4, f) (x) < S(B, g) (¥') and, by 2.25 (b), there is x" € g ~'(»")
with the property S(4, f) (x) < S(B, ) (x') < S(B, g) (¥).

Proof of (b). Let xo, € A, ne N be arbitrary. Suppose that, for each y € P,(x,),
we have F(y) € B such that S(4, f) (y) < S(B, g) (F(»)). Let x € P, ,(x,) be arbitrary.
Then f(x) € P,(x,) by 3.8 and S(4, f) (f(x)) £ S(B, 9) (F(f(x))). Since x e f ~'(f(x)),
there is, by (a), x" € g~ '(F(f(x))) such that S(4, f) (x) £ S(B, g) (x').

3.11. Definition. Let (4, f), (B, g) be c-algebras such that (B, g) is admissible for
(A, f). We define a map F : A — B in the following way:

(i) We take a pair of h-elements x, € A, xo € B of (4, f) and (B, g) (see 3.7). Then
we put, for each f"(x,) € Po(xo), F(f"(xo)) = g"(xp)-

n—1
(i) Let ne N — {0}. Suppose that, for each x e U Py(x,), we have defined F(x)
k=0
in such a way that S(4, f) (x) £ S(B, g) (F(x)).
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Let x € P,(x,) be arbitrary. We take x’ € g~ (F(f(x))) such that S(4, f)(x) <
< S(B, g) (x') (see 3.10 (b)). Then we put F(x) = x".

Then we say that the map F : A — B has been defined by the construction ¢-K
(with respect to (4, f) and (B, g)).

3.12. Theorem. Let (4, f), (B, g) be c-algebras and F : (A, f) — (B, g) a homo-
morphism. Then the following assertions hold:

(a) (B, 9) is admissible for (A4, f).
(b) The map F : A — B is defined by the construction c-K.

Proof of (a). The property (a) in 3.5 follows from 3.1 (d). The property (b) in 3.5
follows from 3.1 (c) and 3.3 (b) where we take an arbitrary x € 4 and put x" = F(x).

Proof of (b). By (a), (B, g) is admissible for (4, f). Let x, € A be arbitrary. We
put x; = F(x,). Then, by 3.3 (b), xo € 4, x; € B is a pair of h-elements of (4, f)
and (B, g).

Thus, for f"(x,) € Po(x) we have F(f"(x,)) = g"(F(xo)) = g"(xo)-

Further, let neN — {0}, x € P,(x,). Putting x’ = F(x) we have S(4, f) (x) <
< S(B, g) (x'). Since, by 3.9 (b), xedomf we have x’edomg and F(f(x)) =
= g(F(x)) = g(x’). Thus, x" € g~ (F(f(x))).

3.13. Theorem. Let (4, f), (B, g) be c-algebras and F : A— B a map defined
by the construction c-K. Then F : (A, f) > (B, g) is a homorphism.

Proof. Let a map F : A — B be defined by the construction ¢-K as in 3.11. Then
xo € A, X( € B is a pair of h-elements of (4, /) and (B, g).

Let x € Po(xo) be an arbitrary element and let x = f"(x,). Then F(x)e dom g"
and F(x) = g"(xp). If x = d(4, f) then in virtue of 1.3 we have nothing to prove.
Thus, let x # d(4, f). Then F(x) # d(B, g) because, for n + 0, we have F(x)e
edom g" = dom g by 1.6 (b) and, for n = 0, we obtain x = x, and xo = x *
+ d(A, f) implies F(x) = F(x,) € dom g by 3.4.

We see that x e dom f implies F(x)e dom g; further, we conclude F(f(x)) =
= F(f"*(xo)) = ¢"*(x0) = 9(F(x)).

Suppose x € |J Py(xo). Then x € dom f by 3.9 (b). Since F is defined by the con-

k=1

struction ¢-K we have F(x)e g~ '(F(f(x))) by 3.11 (ii). Thus, F(x) + d(B, g) and
F(x) e dom g. Finally, g(F(x)) = F(f(x)).
The map F : A —» B is a homomorphism F : (4, f) > (B, g).

3.14. Theorem. Let (4, f), (B, g) be c-algebras, F:A — B a map. Then F:(4, f) -
—>(B, g) is a homomorphism if and only if F is defined by the construction c¢-K
with respect to (A, f) and (B, g).

Proof is a consequence of 3.12 and 3.13.
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4. (PARTIAL) UNARY ALGEBRAS

4.1. Lemma, Let (4, f) be a unary algebra and let o(A, f) be defined by 1.9.
Then Q(A,f) is an equivalence on A.

Proof. o(4, f) is reflexive because, for each x € 4, x edom f° and x = f(x).
Clearly, o(4, f ) is symmetric. Further, let x, y,z€ 4 and (x, y)e o4, 1), (b, z)€
€ Q(A,f)- Then there are m,n,n’,pe N such that xedomf™, yedomf" ye
e dom f", z e dom f? and we have f™(x) = f"(y), f*'(y) = f(z). We suppose that,
for example, n < n’. Then f"(y)edom f*~" by 1.6 (d) and this implies f™(x)€
€ dom /" ™" Thus, by 1.6 (e), we obtain /™" ~"(x) = f*~"(f"(x)) = f~"(f"(y)) =
= f"(y) = f?(z). Hence (x, z) € o(4, f) and o(4, f) is transitive.

4.2. Definition. Let (4, f) be a unary algebra. Then we denote O(4, f) = Afo(4, f)-

4.3. Lemma. Let (A4, f) be a unary algebra and let Te O(A, f). Then

(a) (T.f | T) is a subalgebra of (4, f);
(b) (T,f] T) is a c-algebra.

Proof of (a). If xe T is such that x e domf then (x,f(x)) e o(A, f) because
x e dom f, f(x) e dom f® and f(x) = f%(f(x)). Thus, f(x) e T.

Proof of (b). The assertion follows from (a) and 4.2.

4.4. Lemma. Let (A, f), (B,f) be unary algebras, F : (A, f) - (B, g) a homo-
morphism. Then, for each Te O(4, f), there is T'€ O(B, g) such that F(T) <= T'.

Proof. Let x’, y" € F(T) be arbitrary. Then there are x, y € T such that F(x) = x/,
F(y) = y'. Thus, (x,y)€o(4,f) and there are m,neN such that x e dom f™,
yedom f* and f"(x) = f(y). It follows, by 1.3, x' e dom g™, y’ € dom g" and
g"(x') = g"(F(x)) = F(f"(x)) = F(f"(y)) = ¢"(F(y)) = ¢"(%"). Thus, x', y’ € o(B, 9)
and there is T’ € O(B, g) such that F(T) < T'.

4.5. Definition. Let (A,f), (B, g) be unary algebras. We define a map F: 4 > B
in this way:

(i) We take a map @ : O(4, f) > O(B, g) such that, for each Te (4, f),
(®(T), g I &(T)) is admissible for the c-algebra (T, f | T). For each Te O(4,f),
we define a map F; : T — @(T) by the construction c-K.

(i) Weput F= J Fp.

TeO(4,S)

Then we say that the map F : A —» B has been defined by the construction K

(with respect to (4, f) and (B, g)).
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4.6. Theorem. Let (4, f), (B, g) be unary algebras, F :(A,f) - (B, g) a homo-
morphism. Then the map F : A — B is defined by the construction K.

Proof. Let Te ©(4, f) be arbitrary. Then there is (precisely one) T’ € O(B, 9)
such that F(T) = T" by 44. We put &(T) = T’ and F; = F|T. Then (T.f | T),
(T’, 9| T") are c-algebras by 4.3 (b) and Fr:(T.f|T)~> (T g | T') is a homo-
morphism. Consequently, by 3.12 (a), (T", g [ T') is admissible for (T, f | T) and
Fr: A — Bis a map defined by the construction c-K by 3.12 (b).

Further, clearly F = U Fy.
TeO(A, 1)

4.7. Theorem. Let (A, f), (B, g) be unary algebras, F:A— B a map defined
by the construction K. Then F : (A,f) - (B, g) is a homomorphism.

Proof. Let F : A — B be defined by the construction K and let x € 4 be such that
x € dom f. Then there is T'e (4, f) such that xe T. By 4.3 (b), (T, f | T), (&(T)s
g | ®(T)) are c-algebras. Thus, f(x)e T and F(x) = Fy(x), F(f(x)) = F4(f(x))
where Fr : T — &(T) s a map defined by the construction c-K. Thus, Fr : (T, f | T) =
— (&(T), g | &(T)) is a homomorphism by 3.13. We obtain F(x) = Fy(x) e dom g

and g(F(x)) = g(Fx(x)) = F1(f(x)) = F(f(x))

4.8. Main Theorem. Let (4, f), (B, g) be unary algebras, F: A — B a map.
Then F : (A, f) - (B, g) is a homomorphism if and only if F is defined by the
construction K with respect to (A, f) and (B, g).

Proof is a consequence of 4.6 and 4.7.

5. COROLLARIES

Some corollaries for complete unary algebras can be found in [5].
Let A, Bbesets,x = A x Barbitrary. Then  is said to be a correspondence from 4
to B. If a is a correspondence from A to B then we put

dom & = {x € 4; there is y € B such that (x, y)€a},
Im o= {yeB; thereis x € 4 such that (x,y)€a}.

If « is a correspondence from A to B, A 2 C 2 domoa, B2 D 2 Ima then
a n(C x D) is a correspondence from C to D. Further, if «; is a correspondence
from A; to B; for i eI then {a; ()«; are correspondences from U 4; to U B;.

iel ie] iel iel

Finally, if « is a correspondence from A4 to B, B < « then f is a correspondence
from A to B. Clearly, the correspondence o from A to B is a partial map from A4
into B if (x, y,), (x, y,) € « implies y; = y,.

The partial map « from A into B is said to be injective if (x,, y), (x,, y) € o implies
X; = X,
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and surjective.
If ¢ : A > Bisamap,neN — {0} arbitrary then we put, for each (x;, X, ..., x,) €
e A", ¢"(xy, X5, ..y x,) = (p(xy), @(x2), ..., (x,)); it is a map ¢" : A" > B".

5.1. Definition. (a) Let (4, #) be a complete universal algebra, ne N — {0}
arbitrary. Then we put #(0) = F n A, F(n) = {fe F; f: A" > A}.

(b) Let (4, #), (B, %) be complete universal algebras. Then (4, #), (B, %) are
said to be similar if there is a bijection a: # — & such that, for each n € N, o( % (n)) =
= %(n) and o« | F(0) n A 0 B = idg(o)rs.p and, for each ne N — {0}, fe #(n),
fl]A" o B = off)]| 4" A B".

5.2. Problem. Let A, B be sets, ® a set of maps A — B. Construct a system F
of complete operations on A and a system % of complete operations on B in such
a way that (A, F), (B, %) are similar universal algebras and that each ¢ € & is
a homomorphism of (A, F) into (B, ).

5.3. Lemma. Let A, A,, B,, B, be sets, f a partial map from A, into A4,, g
a partial map form B, into B,. Let F;: A; - B, U B, (i = 1, 2) be maps such that
Fy|A; 04, =F,| A, 0 A,. Then F(A,) < B, (i = 1,2) and, for each x € dom f,
Fy(f(x)) = g(Fy(x)) iff F{(4;, — domf) < By, Fy(A, —Imf) < B, and F{ U F, :
: (A, U Ay, f) > (B, U By, g) is a homomorphism.

Proof. The condition is necessary: We have F(4, — dom f) < F(4,) < By,
F(A, —Imf) = F(A,) < B,. Further, let xe A4, U A, and let x e domf. Then
F,(f(x)) is defined and F,(f(x)) = g(F,(x)). Thus, F;(x) e dom g. Since x € dom f <
< A, weobtain (F, U F,) (x) = F,(x) and since f(x) € A, we have (F, U F,) (f(x)) =
= F,(f(x)). Thus, (F, U F,) (x)e dom g and (F, U F,) (f(x)) = F,(f(x)) = g(F,(x)) =
= g((F, v F;) (x)). F; U F, is a homomorphism.

The condition is sufficient: Let x edomf. Then (F, U F,)(x)edomg and
(Fy v F,) (f(x)) = g((F, v F,)(x)). Further, xe A; and f(x)eImf < A4, which
implies (F; U F,) (x) = F,(x) and (F; U F,) (f(x)) = F,(/(x)). Hence F,(f(x)) =
= (F1 U F5)(f(x) = g(F1 v F5) (x) = g(F,(x))-

Further, Fy(x) = (F,u F,)(x)edomg < B, and we have F,(domf) < B,.
Thus, F,(4,) = F,(domf) U F,(4; — dom f) < B,.

Finally, let y € Im f be arbitrary. Suppose, without loss of generality, thatf(x) = y.
Then F,(y) = F5(f(x)) = g(F,(x)) €eIm g < B,. Thus, F5(Im f) = B, which implies
Fy(A,) = Fy(Imf) U Fy)(4, — Im f) < B,.

5.4. Theorem. Let A, A,, B;, B, be sets, f a partial map from A; into A,, ¢
a partial map from B, into B,. Let F;:A; > B; (i = 1,2) be maps such that
Fy|A,n A, =F,|A, 0 A,. Then, for each xedomf, F,(f(x)) = g(F(x)) if
and only if F; U F,: (4, U A,,f) - (By U B,, g) is a homomorphism.

Proof. The theorem is a corollary of 5.3.
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5.5. Theorem. Let A,, A,, B;, B, be sets, f a partial map from A, into A,, g
a partial map from B, into B,. Let F;: A, - B; (i = 1,2) be maps such that
F, IA1 NnA,=F, | A, n A,. Then the following three conditions are equivalent:

(A) The diagram

FZ

A,——* B,

f g

/’11 Bl

Fy
is commutative.
(B) F, UF,:(A, U Ay, f) = (B, U By, g) is a homomorphism.

(C) The map F{ UF,:A; U A, > B, U B, is defined by the construction K
with respect to (A, U A,, f) and (B, U B,, g).

Proof. (A) and (B) are equivalent by 5.4, (B) and (C) are equivalent by 4.8.

5.6. Definition. Let A, B be sets, @ a set of maps A — B.

(i) We put g = {(x, ¢(x)); x € 4 such that x € A N B implies ¢(x) = x} for each
peP.

(i) If neN — {0}, ¢ €® are arbitrary then we put g7 = {(f,g);f: A" > 4,
g : B" > B, f U g is a map defined by the construction K with respect to (4" U B", o)
and (4 v B, ¢)}.

(i) We put B, = () B¢ for each n e N.

we(D

(iv) We take « < U B, such that a is an injective partial map (from dom U B,
=0

n=0

into Im U B.)- Then we put # = domoa, ¥ = Ima.

Then we say that (4, &), (B, %) is a pair of complete universal algebras defined
by the construction A—K with respect to @.

5.7. Theorem. Let A, B be sets, @ a set of maps A — B. Then (A, #), (B, %) are
similar complete universal algebras and (p:(A,ﬁ) - (B, %) a homomorphism
for each ¢ € ® if and only if (A, F), (B, 9) is a pair of complete universal algebras
defined by the construction A—K with respect to ®.

Proof. The condition is necessary:

Let (4, #), (B, %) be similar complete universal algebras and let o : # — ¥ be
a bijection such that a(#(n)) = %(n) for each neN and «| ”"(0) A A NB=
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= ids(0)n4p and, for each neN — {0}, fe F(n), g = o(f) implies f | A" N B" =
=g | A" n B".

We put o, = a | #(n) for each ne N.

Let ¢ € & be arbitrary. Let (f, g) €« Then fe #(0) < 4; further, we have
g = ¢(f) because ¢ is a homomorphism and fe #(0)n 4 N B implies g = f.
Thus, (f, g) € B§. Further, let (f, g) € , for an arbitrary n e N — {0}. Then, for each
(x1: X2 .s x,) € A% we have  o(f(xy, X3, ... X)) = 9(0(x1), @(x2), -y 9(x2)) =
= g(¢"(x1, X3, .- x,)) (because ¢ is a homomorphism). Thus, the diagram

% .

A

A"— A

f

is commutative. Further, f l A"NnB" =g ] A" n B" which implies that the
map f U g is defined by the construction K with respect to (A" U B", ¢") and
(A U B, 9) by 5.5. Thus, (f, g) € f2.

We obtain «, = B¢ for each ¢ € ® and each n e N. This implies o, = () Sy = B,

oed
for each n e N.

Finally, « = Ua, = U B, and doma = &F, Ima = 4.
n=0 n=0
The condition is sufficient:

Let (4, #), (B, %) be a pair of complete universal algebras defined by the con-

struction 4—K (with respect to @) where # = doma, 4 = Im« for an « = U B,
0 n=0

by 5.6. We put o, = a n B, for each neN. Then « = J«, with disjoint terms

n=0
because B, are mutually disjoint.

Further, domay = domandom By = F n A4, Ima, S ImanImpf, < ¥n B
and, for each neN — {0}, doma, = domandompB, S F n{f;f:4" > A4},
Ima, € ImanImpB, € 9n{g;g:B" - B}. Thus, dom «, = #(n), Ima, = %(n)
for each n e N. « is an injective partial map (from dom U B, into Im U B,) by 5.6.

n=0

n=0
Then «: F — % is a surjective (complete) map because doma = #, Ima= %.
Thus, o : & — ¥ is bijective.
Further, “(«7 (")) = o,(F (”)) = “n(dom Ot,,) =Ima, = g(n) for each neN.
Finally, o | F(0) " An B =idgynanp by 5.6 (i) and if fe #(n) for each ne
eN — {0} and g = «(f) then f| AN B" = g | A" n B" because f U g is a map
A" U B - AU B by 556 (ii).
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Thus, (4, #), (B, %) are similar complete universal algebras.

Further, let ¢ € @ be arbitrary. Let f€ #, g = off).

If fe#(0) then ge %(0) and (f,g)ea, = fo = B§ which implies ¢(f) =g
by 5.6 (i).

Suppose ne N — {0}. If fe #(n) then ge %(n) and (f,g)ea, = B, = B7. We
have, for each (x;, x,, ..., x,) € A" @(f(xy, Xz, ..., X,)) = g(@"(x1, X35 ..y X)) =
= g(o(x,), ¢(x2), ..., ¢(x,)) by 5.6 (ii).

Thus, ¢ is a homomorphism.
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