
Czechoslovak Mathematical Journal

Oldřich Kopeček
Homomorphisms of partial unary algebras

Czechoslovak Mathematical Journal, Vol. 26 (1976), No. 1, 108–127

Persistent URL: http://dml.cz/dmlcz/101378

Terms of use:
© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/101378
http://dml.cz


Czechoslovak Mathematical Journal, 26 (101) 1976, Praha 

HOMOMORPHISMS OF PARTIAL UNARY ALGEBRAS 

OLDRICH KOPECEK, Brno 

(Received June 3, 1974) 

1. PROBLEM 

1.0. Notation. If Л is a set we denote by \A\ the cardinal number of A. We denote 
by Ord the class of all ordinals. If a G Ord then we put W^ = {ß e Ord; ß < a]. We 
denote by N the set of all finite ordinals. 

Let ^ be a partial map from the set A into the set B. We put dom (p = [x e A; 
there exists y e В such that (x, y)e cp}. If dom cp = A then we write cp : A -^ В and 
speak about a map cp. If С ^ A, D ^ В then we put (p(C) = {(p{x); x e C}; further, 
we define (p~^[D) = {x e A; (p[x)eD}; finally, we denote by cp | С the restriction 
cp n [C X B) of cp. 

l .L Definition. Let /I be a non empty set, / a partial map from the set A into A. 
Then the ordered pair (Л,/) is called a unary algebra. 

1.2. Definition. Let {A,f) be a unary algebra. Then we put D{A,f) = A — d o m / . 
If D{A,f) = 0 then {A,f) is called a complete unary algebra. 

1.3. Definition. Let {A,f), (B, g) be unary algebras and F : A -^ В г, map. Then F 
is called a homomorphism of {A,f) into (Б, ^) if x G d o m / implies F(^x) e dom g 
and F(/(x)) = g{F{x)) for each x e A. We write F : {A J) -> (Б, f̂). 

1.4. Problem. Let {A,f), {B, g) be unary algebras. Find all homomorphisms 
F:{AJ)-^{B,g). 

1.5. Definition. Let {A,f) be a unary algebra. We p u t / ^ = id^. Suppose that we 
have defined a partial map /"~^ from A into A for neN — {O}. We denote by / " 
the following partial map from A into A: if x G dom/""^ and / " " ^(x) G d o m / then 
w e p u t / " ( x ) = / ( / " - ^ ( x ) ) . 
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1.6. Lemma. Let {A,f) be a unary algebra. Then the following assertions hold: 

(a) {A,f) is complete iff domf" = A for all n eN. 

(b) If neN — {0}, x G d o m / " then xedomf"^ for each m e {0, 1, ..., n} and 
^"{х)е dorn f for each m e {0, 1, ..., n — 1}. 

{c) If neN - {0}, Xo, Xi, ..., х„бЛ, {XQ, x^, ..., x„_^} ^ dornf and f{x^) = 
= Xj+i for each i e {0, 1, ..., n — 1} then XQ e d o m / " and f"{xo) = x„. 

{d) Let neN, XGA be arbitrary. Then xedomf" iff fP{x)edomf'^~^ for 
each p, q E N, 0 S p ^ q :^ n. 

(e) / / m,neN, x e d o m / ^ / ' " (x )Gdom/" then x e d o m / ' " ' ' " and /"' ' '"(x) = 

(f) / / m.neN, x e d o m / ^ / ' " (x )Gdom/" then x e d o m / " , / " ( x ) e d o m / ' " 
and f-{f%x)) = f%f-{x)). 

Proo f of (a) is evident. 

P roof of (b). The assertion follows directly from 1.5. 

P r o o f of (c). Denoting by V(n) the assertion (c) ïov n e N — {0} we see that V(i) 

holds. 

Let neN — {0, 1} be arbitrary and let V(n — 1) hold. Further, let (XQ, Xi, ... 
..., x„_i} я do rn / for XQ, Xi, ..., x„ 6 Л and let f{xi) = x^+i for each / e {0, 1, ... 
..., w — 1}. Then the conditions of V{n — 1) are satisfied; thus, X o e d o m / " ~ S 
f"~\^o) = ^M-i- Further, /""^(xo) = x ^ . ^ e d o m / and we obtain, by L5, XQ e 
6 d o m / " and/"(xo) = / ( / " " ' Ы ) = / K - i ) = ^«- Thus, we have V{n). 

P r o o f of (d). The condition is sufficient for p = 0, q = n. The condition is neces­
sary: By (b), x e d o m / " " for each m G {O, 1 , . . . , n} and f'"(x)edomf for each 
m G {0, 1, ..., n — 1}. Let p, qeN,0-^p-^q^nbe arbitrary. Clearly, for p = ^ 
the condition holds. Suppose that p < q. We put x̂  = /^"^'(x) for each i e {O, 1, . . . 
...,q-p}. Then (XQ, x^, ..., x^_p_i} Ç d o m / and, for each i e {0, 1,..., q -
- p - 1 } , / ( x , ) = / ( / ^ ^ ' ( x ) ) = / ^ ^ ^ - ^ 4 x ) = x ,^ , by L5. Thus, / ' '(x) = XoG 
Edomf^-P by (c). 

P r o o f of (e). We denote, for neN, the assertion (e) by V[n). Clearly, V(0) holds. 

Let neN - {0} be arbitrary and let V{n - l) hold; further, if XGdom/'" , 
f'"{x)edomf" then the conditions of V{n - 1) are satisfied which implies xe 
G d o m / — \ r — \x) = r - ^ r W ) . By ( d ) , r ( x ) e dorn/« i m p l i e s r ^""^x) = 
= f" ^(/'"(x)) G dorn/ ; by L5, we obtain x G d o m / ' ^ ^ " and {""^Hx) = 
= / ( r — Xx)) = / ( r - 4 r W ) ) = nn^))' Thus, F(n) holds. 

P r o o f of (f). By (e), we have X G d o m ^ ^ « and Г + ^ М = НМ^\\ Непсе 
X G d o m r , /"(x) G d o m r by (d) which implies fn^m^ ^ / V / ^ ^ ^ (e) 
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1.7. Definition. Let {A,f) be a unary algebra and let x e Л be arbitrary. Then we 
define [х](л,/) = {f"{x); X e dom/"}. 

1.8. Lemma. Let {A,f), (B, g) be unary algebras, F : {A,f) -^ [B, g) a homo-
morphism. Then, for each x e A, neN, xedomf" implies F(x) e dom ̂ f" and 
F(r{x)) = 0"(F(x)). 

Proof. Let xeA, neN be arbitrary. We denote by V{n) the assertion: if x e 
6 dom/" then F{x) e dom g" and F{f"{x)) = g''iF{x)). 

V{0) holds because F{x) e В = dom g° and F{f°{x)) = F{x) = g°{F(x)). 

Let neiV — {0} be arbitrary and let V(n - 1) hold. Further, let xedom/" ; 
then x6dom/"-^ by L6 (d) and, by V{n - 1), F{x)edom g"-\ F{f"-\x)) = 
= g"-\F{x)). Further, x e d o m / " implies / " - ' ( x ) e d o m / by L6 (d). Thus, 
F{r-'ix))e dom g and F(f{f"-\x))) = g{F{r-\x))). We obtain f(/"(x)) = 
= Fifir-^x))) = ö(F(/"-4-v))) = 3(éf"-4^'W)) = 3"№)) by 1.6 (e). Thus, V(n) 
holds. 

1.9. Definition. Let (A, f) be a unary algebra. For arbitrary x, y e A, we put 

{x, y) e Q{A,f) iff there exist m, n e N such that x e dom/"", 

J G dom/" and f-{x)=f"{y). 

If Q{A,f) = A X A then (-^,/) is called a connected unary algebra and we refer 
to it briefly as to a c-algebra. 

2. c-ALGEBRAS 

First, we shall solve Problem 1Л for c-algebras. 

2.1. Lemma. L^̂  (^^Z) ^^ ^ ^'^ 
/éfebra. T/zen | i)(^,/) | й L 

Proof. Suppose, on the contrary, x, у e D(A,f) and x Ф }\ Then there are 
m,neN such that x e dom/'", j G dom/" and /"'(x) = /"(y), We see that m = 0, 
n = 0 cannot occur because, in this case, x = /^(x) = f^{y) = y. Let, for example, 
m Ф 0. Then we obtain x G dom/ by L6 (d) which is a contradiction. Similarly, we 
obtain a contradiction for n ф 0. 

2.2. Definition. Let (^, /) be a c-algebra such that D{A,f) Ф 0. Then we put 
{d(A,f)} = D{A,f). ' 

2.3. Lemma. Let {A,f) be a c-algebra such that D(A,f) Ф 0. Then, for arbitrary 
xe A, there is m e N such that x G dom/"" and ̂ ^(x) = d{A,f). 
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Proof. For xe A, d{A, f) e A, there exist m,neN such that x e dom/"", d{A,f) e 
€ d o m / " and /"(x) =f"{d{A,f)). Hence n = 0 by 1.6 (d) and we have /""(x) = 
= f\d{A,f)) = d{A,f). 

2.4. Definition. Let {A, f) be a c-algebra and x e A arbitrary. Then we define 
Z{x) = (y e A; there exists an infinite set N{y) ^ N such that x e d o m / " and/"(x) = 
= y for each n G N(3;)}. 

2.5. Lemma. Let {A,f) be a c-algebra such that D[A,f) 4= 0, Then, for arbitrary 
XGA, Z(X) = 0. 

Proof. Suppose, on the contrary, Z(x) Ф 0 and y e Z(x). Then there is an infinite 
set N{y) Ç N such that, for each neN{y), x e dom/" , /"(x) = y. Further, by 2.3, 
there is HOGN such that x e d o m / " ° and f"\x) = d{A,f). Since N{y) h infinite, 
there is n^ eiV(j^) such that n^ > UQ. Thus, by 1.6 (d), the conditions of 1.6 (e) are 
fulfilled and by 1.6 (e), y = Г\х) = Г'-"\Г\х)) = r'-''\d{AJ)). In virtue of 
n^ — По > 0, we obtain, by 1.6 (d), d(A,f) e d o m / which is a contradiction. 

2.6. Lemma. Let {A,f) be a c-algebra. Then Z(x) = Z{y) for any x, у e A. 

Proof. For D[A,f) = 0, {A,f) is a complete c-algebra and the assertion follows 
from [2], 1.2. 

Let D{AJ) Ф 0. Then Z(x) = 0 = Z{y) by 2.5. 

2.7. Definition. Let (A, f) be a c-algebra. Then we put Z[A, f) = Z(x) where 
Х Е Л is an arbitrary element, R{AJ) = \Z(A,f)\. Z(A,f) is called the cycle and 
R{AJ)thQ range of (A J). 

2.8. Lemma. Let (A,f) be a c-algebra, xeA arbitrary. Then 

(a) X e Z(A,f) iff there is neN - {0} such that x e d o m / " and f\x) = x; 

(b) i, j GN,i < j , X e domf\ f{x) = /^'(x) imply / ' (x ) G Z{A, / ) . 

P r o o f of (a). If D{A,f) = 0 then the assertion follows from [2], 1.5 (b). If 
D{A,f) Ф 0 then Z{A,f) = 0 by 2.5 and 2.7 and the assertion holds trivially. 

P r o o f of (b). By 1.6 (d), we have x G d o m / \ f{x) e dom/-'*"^ and / ' " ' ( / ' ( x ) ) = 
= r'{x) = f{x) which implies/'(x) G Z{A,f) by (a). 

2.9. Lemma. Let {A,f) be a c-algebra. Then the following assertions hold: 

(a) D{A,f) Ф 0 iff R[A,f) = 0 and f/zere fs XQE A such that |[XO](A,/)| ^ ^o-

(b) |[x]f^j-)| < Ko or |[x](^j.)| ^ Ko /o r all xeA iff there is XQEA such that 
|[^o](^,/)| < ^0 or \[xo](A,f) è Ko, respectively. 
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(с) (А, / ) /5 complete iff either R{A, / ) Ф 0 or there is XQ e A such that 
|[xo](^,/)| ^ Ко-

Proof of (a). Let D{AJ) Ф 0; then Z{AJ) = 0 by 2.5 and 2.7 which implies 
R{A^f) = 0. Further, |К^ , / ) ] (л ,л | = 1 < ̂ o-

On the other hand, suppose R(A,f) = 0 and the existence of XQG A such that 
|Ы(л , / ) | < K'o-

(1) Then, for all /, j E N such that / Ф j , then conditions XQ E domf\ XQ E domf^ 
imply /'(xo) Ф /\хо). Indeed, if we had / '(XQ) = /•'(xo) and, for example, i < j 
then we should have, by 2.8 (b), /'(xo) e Z(A,/) which is a contradiction to 
R{AJ) = 0. 

(2) Further, we put m = |[^о](>4,/)|- Then, by 1.7 and 1.6 (d), XQEdomf^ for 
/ = 0, 1, ..., m — 1. Further, XQ ф domf"", because if we had XQ E domf"" then we 
should have i G {0, 1, ..., m — 1} such that /""(XQ) = / ' (XQ) (because |{/^(xo), 
f\xo), ...,/'"~Xxo)}| = m by (1)) which is a contradiction to (l). Hence/"""^(xo) ф 
Ф dorn f by 1.6(d) because Xo G dom/'"~\ Thus D{AJ) Ф 0. 

Proof of (b). Clearly, the condition is necessary. 

Let, on the other hand, |[xo](^,/)| < ^o for XQE A. Let x G Л be arbitrary; then 
there exist m, n E N such that x G dom/'", Xo G dorn/'' and /""(x) = /"(xo). Hence 
[.rW](^,/) = [/"(^о)](л,/) ^ [^о](л,/) which implies l[r(x)](^,^| < Ко- Further, 
И(^,/) = { / ( 4 Л 4 - - - ' Г ' Ч ^ ) } ^ [ Л ^ ) ] м , л by 1.7 and 1.6 (d) and we 
obtain |[х](л,у)| < KQ. 

The second assertion is a consequence of the first one. 

Proof of (c). The assertion follows from (a) and (b). 

2.10. Lemma. Let {A,f) be a c-algebra. Then (2(Л, / ) , / | Z(A,f)) is a sub algebra 
of {A J). 

Proof. If Z{AJ) = 0 then the assertion holds trivially. If Z{AJ) Ф 0 then 
R{A,f) Ф 0 and (Л, / ) is complete by 2.9 (c). The assertion follows from [2], 1.4. 

2.П. Lemma. Let {A,f) be a c-algebra. Then the following assertions hold: 

(a) If X E Z(A,f) is arbitrary then R{A,f) = min {n E N — {0}; /"(x) = x}; 
(b) R{A,f) < Ко. 

Proof of (a). Since R(A,f) ф 0 the c-algebra is complete by 2.9 (c) and the 
assertion follows from [2], 1.6 (a). 

Proof of (b). If D(A,f) = 0 then {A,f) is complete and the assertion follows 
from [2], 1.6 (b). If D{AJ) Ф 0 then R{AJ) = 0 by 2.9 (a). 
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2.12. Lemma. Let (Л,/) be а c-algebra, xeZ(A,f) arbitrary. Then (A,/) is 
complete and the following assertions hold: 

(a) p-^^^^^\x) = X for each peN; 

(b)f-(x) = x iffR{Aj)\m^). 

Proof. {Ä,f) is complete by 2.9 (c). 

P r o o f of (a). The assertion follows from [2], 1.5 (a). 

P r o o f of (b). Let R{A,f) | m; then there is p E N such that m = R{A,f) . p 
which implies/"(x) = /^•^^^'^>(x) = x by (a). 

Let, on the other hand, /'"(x) = x hold. Then R(AJ) ^ m by 2.11 (a) and there 
are p,qeN such that m = p . R(A,f) + q and 0 ^ q < R{AJ), By 1.6 (e), 2.10 
and (a) we have x = f%x) - /^•^(^'^>^^(jc) = /^•^(^•^^(Дх)) = Д х ) . lïqeN - [О] 
then R{^A,f) ^ ^ by 2.11 (a) which is a contradiction to the definition of q. Hence 
q = 0 and we obtain m = p . R{A,f). Thus, R{A,f) | m. 

2.13. Notation. Let oo, co^, 0O2 ^ Ord. 

If M is an arbitrary set of ordinals then we denote by ^ the order relation on 
M и {001, 0O2} such that its restriction ^ n M^ to M is the natural order relation 
of ordinals and that a < 001 < cx)2 for each a e M. 

2.14. Definition. Let (Л , / ) be a c-algebra. We put A"^ = {x e A; there is a sequence 
(^i)ieN such that Xi e d o m / for each ieN — {O}, XQ = x a n d / ( x , + i) = Xi for each 
iEN},A^ = {xEA;f-'{x) = 0}. 

Let a e Ord, a > 0 and suppose that the sets A"^ have been defined for all x E W^. 
Then we put Л^ = {x E Л - U Л^; f~\x) ^ U A""}. 

2.15. Lemma. Let {A,f) be a c-algebra. Then the following assertions hold: 

(a) (л*",/I A"^) is a subalgebra of the c-algebra (Л , / ) ; 

(b) Z{A,f) Ç A-. 

P r o o f of (a). Let x E A"^ be such that x e dom/ . Then there is a sequence (х^);^^ 
such that x , e d o m / f o r each IEN — {O], XQ == x a n d / ( x , + i) = ^t for each IEN. 
We put / (x ) = Уо and yi+i = x,- for all IEN. Then y^ = XQ = x e d o m / and, 
for each IEN — {O}, j^^+j = x^Gdom/. Thus j ^ e d o m / for each IEN - {O}. 
Further, Jo = / W ' /(j^i) = / ( ^ 0 ) = Уо ^^^^ ^^^ each IEN — (O, 1}, we have 
/(.Fi+i) = / ( ^ / ) = ^.-1 = Уг H e n c e / ( х ) е Л - by 2.14. 

*) p \ q for p, q e N means that p is a divisor of q. 
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P r o o f of (b). If Z{AJ) == 0 then the assertion holds trivially. If Z{ÄJ) Ф 0 
then R{A,f) Ф 0 and {A,f) is complete by 2.9 (c). The assertion follows from [2], 
1.15. 

2.16. Definition. Let {A, f) be a c-algebra. Then we put A"^' = Л* - Z{AJ), 
A'^' = Z{A,fy 

2.17. Lemma. Let {A,f) be a c-algebra. Then 

(a) ifxeA"^' thenf'\x)nA'^' Ф 0; 

(b) ifxE A"^' then f'\x) n Л°°^ Ф 0. 

P r o o f of (a). If л; e Л°°' then x e A"^ and there is a sequence (xji^^v such that X; G 
e d o m / for each ieN - {O}, XQ = x and /(x^+i) = x^ for each ieN. Clearly, 
Xi G Л°". Further, x,iZ{AJ) by 2.10 and we have x^ ef'^x) n A""', 

P r o o f of (b). If X G Л°°^ then x e Z(AJ) and /^(^'•^>(x) = x by 2.12 (a). Thus, 
/ ^ ( ^ ' / ) - I ( X ) G / - ^ ( X ) and/^(^ '^>- i (x)GZ(^ , / ) = A"^' by 2.10. 

2.18. Lemma. Let {A J) be a c-algebra, a, i^GOrd, a Ф ß. Then A^ n A^ = 0. 

Proof. If, for example, oc < ß, then A^ n A'' ^ A^ n [J A"" = 0 because Л'̂  Ç 

e Л - и ^^ 

2.19. Lemma. Let {A,f) be a c-algebra. Then: 

(a) There is 3 G Ord swc/i r/zar Л^ = 0. 

(b) / / 5 G Ord, yl̂  = 0 then A^^ = 0 / o r each X e Ord WÏ7/I the property À ^ B. 

P r o o f of (a). Let vGOrd be an ordinal number such that \A\ ^ K .̂ Suppose 
A' Ф 0for eachAG Pf,^,,. Then K^, й Z \A'\ = \ (J A'\ ^ \A\ g К,by 

2.18 which is a contradiction. 
Thus, there is ^ G Ж^^^, such that A^ = 0. 

P roo f of (b). We denote by V(X) the following assertion: A^ = 0. Then V(9) holds. 

Let ß G Ord, 9 < ß, suppose that V(X) holds for each À e Ord with the property 

S й X < ß- Then [J A^ = \J A^ which implies A^ = {x e A - \J A^; / " 4 ^ ) ^ 

С и ^^} = { x G ^ - и A';f-\x) Ç и Л^} = Л^ = 0. 

The assertion follows by transfinite induction. 

2.20. Definition. Let {A, f) be a c-algebra. Then we put 9{A,f) = min {9 G Ord; 
A^ = 0}. 
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2.21. Lemma. Let {A,f) be a c-algebra. Then A"^ = A - \J A"". 

Proof. IÏ xe A — и A"" then there is an element x' б/~^(х) such that x' e 
yeWB(^A,f) 

e A - и A"". Indeed, if we had f~^{x) ^ U ^'^ then we should put В = 

= min {Я eOrd; f'\x) ç (J A""}. Then S й ^Af) and x e A^ by 2.14 which is 
хеЖя 

a contradiction either to Л^̂ '̂-̂ ^ = 0 (in the case 9 = 9{A, f))ortoxeA - \J A"" 
yeW»(A,f) 

(in the case S < S{A,f)). Clearly, x' e dom/ . 
We put XQ = X and x„+i = x'„ for n eiV. Then x„ e do rn / for each n G AT - (0} 

and /(x„+1) = x„ for each neN. Thus, x e Л^ and Л - U "̂̂  ^ ^ ' ° . 

Let us have, on the other hand, x e Л°° n ( U ^' ' )- Then there exists a sequence 

(xj)jĝ v such that x̂  e dorn / for each ieN - {O}, XQ = ^ and/(х^+1) = x,- for each 
ieN. By 2.18, there is precisely one XQ e FF^c ,̂/) such that XQ e A"""". 

Suppose that we have constructed ordinals XQ > x^ > ... > x^ with the property 
Xi e A""' for i = 0,l,...,n where neN. Then x„+1 e / " ^(xj ç U ^'^ which implies 

the existence ofx„+^ < x„ such that x„+^ e Л''"^ '. Thus, (х,),-^^ is an infinite decreasing 

sequence of ordinals which is a contradiction. 

Consequently, Л^ ç Л - (J A\ 

2.22. Theorem. Le^ {A,f) be a c-algebra and put W* = W^^^j) ^ {^u ^i}-
Then A = \J A^ with disjoint terms. 

xeW* 

Proof. The assertion is a consequence of 2.18, 2.21, 2.15 (6) and 2.16. 

2.23. Definition. Let {A,f) be a c-algebra. We define a map S(AJ) : A -^ Ord u 
u {ooi, 0O2} by the condition S{A,f){x) = x for each x e Л^ x e W^^^j^ KJ 
u {ooj, 002}. S{A,f) (x) is called the degree of x. 

2.24. Notation. Let 0 ф M ç Ord, a e Ord. Then we put M ^ a if i? ^ a for each 
ßeM. 

2.25. Lemma. Let {A,f) be a c-algebra, oc e Ord, xe A — A"^. Then the following 
assertions hold: 

(a) S(A,f){x) = a iff сей S{A,f)(x) and S{A,f)(r'{x)) < a. 

(b) IfS{A,f){x) = a then W, is cofinal with S(A,f)(f-4x)). 

(c) / / S{A,f){r\x)) < a then S{AJ){X) g a. 
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Proof of (a). The assertion follows directly from 2.14 and 2.23 because 
S{A,f) (x) = ОС is equivalent to x E A - U ^ ^ f~\^) ^ U '̂̂  which is equivalent 
to a ^ S(Aj){x), S(AJ)(f-\x)) < a. 

Proof of (b). Suppose S{A,f) (x) = oc and, on the contrary, the existence of ß e W^ 
such that {y;ß ^y < oc} n S(A,f)(f-^(x)) = 0. Then S{AJ){f-\x)) < ß and, 
since S(A,f) (x) = (X > ß, we obtain by (a) S(A,f) (x) = ß which is a contradiction. 

Proof of (c). Suppose S{A,f) {f~\x)) < oc and, on the contrary, oc < S(A,f) (x). 
Then, by (b), there is у ef^x) such that S(A,f) (y) ^ a which is a contradiction 
to S{A,f)(r\x))<a. 

2.26. Lemma. Let {A,f) be a c-algebra. Then the following assertions hold: 
(a) If xeA - A"" and neN are such that xedomf" then S(A, f) {f"(x)) ^ 

^S(A,f)(x) + n. 
(b) If xeA is such that x e dom/ then S{A,f) (/(x)) ^ S(A,f) (x). 
(c) / / D{A,f) Ф 0, Л°° = 0 then 9{AJ) is isolated and S{A,f){d{A,f)) = 

= K^J) - 1-
(d) If D{A,f) Ф 0, /1=̂  + 0 then S{A,f){d{A,f)) = œ,. 

Proof of (a). For an arbitrary neN, we denote by V(n) the following assertion: 
if x e dom/" then S{A,f) (/"(x)) ^ S{A,f) (x) + n. 

Clearly, F(0) holds. 

Let neN - {0} and let V(n - i) hold. Further, suppose X e dom /". If 
S{A,f){f"{x))e [cCi, 0O2} then V{n) holds because {00,, cx)̂ } > 5(Л,/)(х) + п. 

Suppose that S(^,/) (/"(x)) eOrd. Since x e d o m / " we have x e d o m / " " ' by 
1.6 (d). Hence 5(Л,/) (/""X^)) ^ ^(Л,/) (x) + n - 1 by F(n - 1). Further, 
/ " - i (x)e / - ' ( /" (x)) ; if we put S{A, f) (f"{x)) = a then f"~\x)e \J A" and there 

is XoeW; such that/"-X^:)e^'"'- Thus, S(A,/)(/""'(x)) = XQ and we obtain 
S{A,f) (/«(x)) = a ^ xo + 1 = 5(Л,/) (/"-4^)) + 1 ^ ^ Й - Л (x) + " - 1 + 
+ 1 = S{A,f){x) + n. 

V{n) holds. 

Proof of (b). Let xe Abe such that x e dom/. 
If S(^, / ) (x)6 0rd then xeA- A"" which implies 5(Л,/)(/(х)) > S{A,f){x) 

by (a). 
If S{A,f) (x) = ooi then S(^, /) (/(x)) e {ooi, 002} and, finally, if S{A,f) (x) = 

= 0C2 then S{A,f) (/(x)) = 002 by 2.15 (a) and 2.10. 

Proof of (c). Let D(A,f) + 0, Л" = 0. Then S{A,f){d(A,f)) = ^eOrd and 
Ô < 9{A,f). Let there be ^ < e < 9{A,f) and xeA with the property S{A,f) (x) = 
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= е. Then, by 2.3, there is neN such that x e d o m / " and /"(x) = d{AJ). Thus 
we obtain by (a) Ô = S{AJ){d{AJ)) = S{Aj){r{x)) ^ S{AJ){X) + n = e + 

+ n ^ s which is a contradiction to ̂  < e. Thus, ^{A,f) is isolated. 
Further, ^ + 1 = ^{AJ) which implies S{Aj){d{AJ)) = Ô =^ 9{А,/) - 1. 

P r o o f of (d). Let D{AJ) Ф 0, Л°° Ф 0 and let x G Л'^ be arbitrary. Then, by 2.3, 
there is neN such that x e dom/" , /"(x) = d{AJ), Thus, by 2.15 (a), d{AJ) e A"^. 
Further, A"^ = A"^' because D{AJ) Ф 0 and so A"^^ = Z{AJ) = 0 by 2.5 and 2.7. 
Consequently, S{A,f)(d{A,f)) = оо^. 

3. HOMOMORPHISMS OF c-ALGEBRAS 

3.1. Lemma. Let (A,f),{B,g) be c-algebras and F : (A,f) -^ {B, g) a homo-
morphism. Then the following assertions hold: 

(a) Iff"{x) = xforxe Z{AJ) and neN, then F{x) e dom g" and g\F{x)) = F(x). 

(b) F{Z{A,f))^Z{B,g). 

(c) / / R{B, g) = 0 then R{AJ) = 0. 

(d) / / R{B, ^) Ф 0 then R{B, g) \ R{AJ). 

P r o o f of (a) follows immediately from 1.8. 

P r o o f of (b). Let y e F{Z(A,f)) be arbitrary. Then there is x G Z{A,f) such that 
F(^x) = y. Thus, {A,f) is complete and there is n e N — {0} such that f"{x) = x 
by 2.8. Hence y e dom g", g"{y) = y by (a). We have, by 2.8, y e Z{B, g). 

P r o o f of (c). If R{B, g) = 0 then Z{B, g) = 0. If we had R{AJ) Ф 0 then we 
should have Z{AJ) Ф 0 and, by (b), 0 Ф F{Z{AJ)) Ç Z{B, g) = (D which is a con­
tradiction. 

P r o o f of (d). Clearly, the assertion holds for R(AJ) = 0. Further, let R{AJ) Ф 0 
and xeZ{AJ). Then, by 2.12 (a),/^(^'•^>(x) = x and, by (a), F{x) e dom g^^^^^\ 
д^(л,гщ^у^ = F(x). By 2.12 (b) we obtain R{B, g) \ R{AJ). 

3.2. Lemma. Let (>!,/), {B, g) be c-algebras, F : {A,f) -> [В, g) a homomorphism. 
Then F{A'^) Ç J5°°. 

Proof. Let xeA"^, Then there exists a sequence (х,),^;^ such that x ^ e d o m / 
for each i eN — {O}, XQ = x and /(xj+i) = x̂  for each i eN, For each leN we 
put у I = F(x,). Then yi e dom g for each ieN - {0} by 1.3. Further, jo = -f̂ (̂ o) = 
= F{x); finally, if ieN then g{y,^,) = g{F{x,^,)) = F{f{x,^,)) = р{х,) = y,. 
Thus, F ( X ) G 5 ^ . 
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3.3. Lemma. Let (Л , / ) , {В, g) be c-algebras, F : {A,f) -^ (В, g) a homomorphism, 
XEÄ arbitrary. Then the following assertions hold: 

{^)S{Äj){x)uS{B,g){F{x)). 

(b) IfneN.xe d o m / " then F{x) e dom g" and S{AJ) (/"(x)) й S{B, g) {g\F{x)\ 

P r o o f of (a). (1) Clearly, \ï S{AJ) (x) = 0 then the assertion holds. 

Let 0 < a < 9(Л, / ) , S{A,f){x) = a and suppose that the assertion holds for 
each ye A with the property S{AJ) {y) < a. 

Clearly, if S{B, g) {F{x)) e {оо^, co^} then the assertion holds by 2.13. 
Thus, suppose that S(B, g)[F(x))E Ord. Let yEf~^(x) be arbitrary. Then ye 

e d o m / a n d , by L3, F{y) e dom g. Further, g{F{y)) = F{f{y)) = F(x) which implies 
S{B, g) {g{F{y)) = S{B, g) (F(X)) G Ord. We obtain 5(Б, g) {F{y)) ^ S(B, g) {g{F{y)) e 
e Ord by 2.26 (b) and hence F{y) еВ - B"^. We have, by 2.26 (a), S{B, g) (F(J ; ) ) < 
< S(J5, g) {g{F{y)). We obtain by the induction hypothesis S{A, f) {y) ^ S{B, g) {F{y)) < 
<S{B,g){g{F(y)) = S(B,g){F{x)), 

Thus, S{AJ){f~\xy) < S{B,g){F{x)) because >^e/~^(x) was arbitrary. We 
conclude S{AJ) (x) ^ S{B, g) (F(X)) by 2.25 (c). 

(2) Suppose that S{A,f){x) = оо^; then x e A"^ and F{x) e B"^ by 3.2; thus, 
S{B, g) (F(X)) e{oo^, со2] and the assertion holds. 

(3) If S{AJ){x)== 002 then xeZ{Aj) and F{x)eZ{B,g) by 3.1 (b); thus, 
S{B, g) (F(X)) =002 and the assertion holds. 

P r o o f of (b). Let x e d o m / " . Then F(x)Gdomö^" and F(/"(x)) = g\F{x)) by 
1.8. Thus, S{AJ) ( r (x ) ) й S{B, g) {F(f"{x)) = S(B, g) {g\F{x)) by (a). 

3.4. Definition. Let (Л, / ) , {В, g) be c-algebras. Then x e A, x e В are said to be 
a pair of h-elements of {A,f) and {B,g) if, for each neN, x e d o m / " implies 
x' e dom g^ and S{AJ) {f\x)) S S{B, g) {g\x')). 

3.5. Definition. Let {A,f), (B, g) be c-algebras. Then (B, g) is said to be admissible 
for {Ayf) if the following conditions hold: 

(a) if R{B, ^) Ф 0 then R{B, g) \ R{AJ)', 

(b) if R(B, g) = 0 then R(A,f) = 0 and there exists a pair of h-elements of 
{AJ)and(B,g). 

3.6. Lemma. Let {A,f), {B, g) be c-algebras such that (B, g) is admissible for 
{A J). Then, 

(a) i / i ) (^ ,ör) + 0 then D(X,/) Ф 0, 

(b) if ( 4 , / ) is complete then {B, g) is complete. 
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P r o o f of (a). Let D{B, g) + 0. Then, by 2.9 (a), (b), R{B, g) = Q and, for each 
уеВ, |[y](B,,)| < Ко. Thus, by 3.5 (b), R{A,f) = 0 and there is a pair of h-elements 
xeA.x'eBoï {A J) and {B, g). We obtain that, for each neN, xe domf" implies 
x' 6 dorn g\ Since |[х'](в,^)| < Ко we have |[x](^,y.)| < KQ. 

Indeed, let, on the contrary, |[х](^^у)| ^ KQ; then x e d o m / " for each neN, 
Thus, x'edomöf" for each neN and there are i,jeN, i < j \ such that gXx') = 
= g\x') because |[л:'](в,^)| < KQ. Hence Z(J5, ^) ф 0 by 2.8 (b) which is a contra­
diction to R{B, g) = 0. 

We see that R{AJ) = 0 and |[x](^,^)| < Ко which implies D{AJ) Ф 0 by 2.9 (a). 

P r o o f of (b). If {AJ) is complete then D{AJ) = 0 which implies D{B, g) = 0 
by (a). Thus, (B, g) is complete. 

3.7. Lemma. Let {A,f), {B, g) be c-algebras such that (B, g) is admissible for 
( л , / ) . Then there is a pair of h-elements of (A,f) and (J?, g). 

Proof. Let R{B, g) ф 0. We take x' e Z(B, g) arbitrary. Since {B, g) is complete 
by 2.9 (c), it is X e dorn ^" for each neN. Let x e Л be arbitrary. Then for each 
neN such that x e dorn/" we have S{B, g) [g\x')) = 0 0 2 ^ S{AJ) (/"(x)) by 2.10. 
Thus, X e A, x' e В is 2i pair of h-elements of (v4, / ) and {B, g). 

If R{B, g) = 0 then the assertion holds in virtue of 3.5 (b). 

3.8. Definition. Let (A, f) be a c-algebra, x e A arbitrary. We put Ро(л:) = 
= И(у1,/), ^ i W = / "^ (PoW) - ^oW- Let n 6 AT - {0} and suppose that the sets 
Po{x\ Pi(x), ..., P„(x) have been defined. Then we put P„+i{x) =f~\P„{x)). 

3.9. Lemma. Let {A,f) be a c-algebra and xeA arbitrary. Then the following 
assertions hold: 

(a) Z{A,f) Ç Po{x); 

(b) // D{AJ) Ф 0 then d{Äj)ePo{x) and \J Pj^{x) Ç d o m / ; 
00 k = i 

(c) A = \J Pk{x) with disjoint terms. 
k = 0 

P r o o f of (a). Z{AJ) = Z{x) ç [x^^j^ = Po{x) by 2.4. 

P r o o f of (b). By 2.3, there is neN such that x G d o m / ' ' and /"(x) = d{Aj). 
00 

Thus, d{AJ) e [x]^Aj) = Po{x) and U P,(x) ç dom/ . 
k=l 

P r o o f of (c). By 3.8 and (b) we have: if keN, ye Pk{x) and neN ме arbitrary 
then n < к implies yedomf" and /"(y) еР/^_„(х) and n "^ k, yedomf" implies 
Г{у)еРо{х). 

Now, let k,leN,k^l; then P^(x) n P,(x) = 0. Indeed, if we had у e Р^{х) n 
n P,(x) and, for example, /c > 1 then we should have f''~^(y)e Pi{x) because 
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y e Pk{x) and к - 1 < к and /^ ^(y) e Po{x) because y e Pi(x) and /c — 1 ^ /; 
thus, f^'^y) G Pi(x) n Po(x) which is a contradiction to 3.8. 

00 

It holds Л = и Рк{х). 
к = 0 00 

Let, on the contrary, уеА — \J Pi^(x). Then yedomf because а{А,/)еРо(х). 
00 k = 0 

Hence/(3;) 6 Л — [) P,^(x) by 3.8. We obtain by induction that yedomf" impHes 
00 k = 0 

f"(y) e A — \J Pk{x). Further, there exist p, q e N such that у e dom/^ x e dom/^ 
fc=0 

and/^(>') = /^(x) G Po{x) which is a contradiction. 

3.10. Lemma. Let {A,f), (В, g) be c-algebras. Then the following assertions hold: 

(si) Let ye A, у'еВ he such that S{Aj){y) й S{B, g){y'). Then for each 
X ef~^{y) there exists x' e g'^^iy') such that S{A,f) (x) ^ S{B, g) (x'). 

(b) Let Xo G Л, neN be arbitrary. Let a map F : PJ^XQ) -^ В be defined such 
that, for each у e P„(xo), S{AJ) {y) ^ S{B, g) {F{y)). Then, for each x e P;,+ i(xo), 
there exists x' eg-\F{f{x))) such that S{AJ) (x) й S{B, g) {x'). 

Proof of (a). Suppose that 5(^, /)(v) й S{B,g){y') holds for у e A, / e B. 
Let X G/~^(3;) be arbitrary. 

If S(J5, g) {/) = 002 then, by 2.17 (b), there is x' e g"\y) such that S{B, g) (x') = 
= 002. Thus, S{AJ) (x) ^ S{AJ) {y) й S{B, g) {y') = 0O2 which implies 
S{AJ){x)^S{B,g){x'). 

Similarly, if S(B,g)(y') = ooj then, by 2.17 (a), there is x' eg~\y') such that 
S(ß, g) (xO = (Ю1 and S{AJ) (x) й S{B, g) (x). 

Finally, let S{B, g) [y') e Ord. Then S{AJ) {y) e Ord and S{AJ) (x) < S{AJ) {y) 
by 2.26 (a). Therefore S{AJ) (x) < 5(Б, g) {y') and, by 2.25 (b), there is x eg-'(y) 
with the property S{A,f) (x) g S(B, g) [x') < S{B, g) {y'). 

Proof of (b). Let Xo G Л, n G AT be arbitrary. Suppose that, for each y e P„(xo), 
we have F{y) e В such that S{AJ) {y) ^ S{B, g) {F{y)). Let x e P„+ i(xo) be arbitrary. 
Then/(x) G P„(xo) by 3.8 and S{AJ) (/(x)) й S{B, g) (F(/(X))) . Since x ef-\f(x)), 
there is, by (a), x' G g-'{F(f{x))) such that S{A,f) (x) S S(B, g) {x'). 

3.11. Definition. Let (^, /) , (B, g) be c-algebras such that (ß, r̂) is admissible for 
{A,f). We define a map F : A -^ В m the following way: 

(i) We take a pair of h-elements XQ e A, XQ e В of (^,/) and (P, ^) (see 3.7). Then 
we put, for each /"(XQ) G PO(XO), Р(Г(ХО)) = ^"(^o)-

n - l 

(ii) Let n G N - {O}. Suppose that, for each xe\J Pk{xo\ we have defined P(x) 

in such a way that S{AJ) (x) g S(P, ^) (P(x)). 
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Let хеР^Хо) be arbitrary. We take x' e g~\F{f{x))) such that S{A, f){x) ^ 
й S{B, g) {x') (see 3.10 (b)). Then we put F{x) = x. 

Then we say that the map F : A -^ В has been defined by the construction c-K 
(with respect to {A,f) and (Б, g)). 

3.12. Theorem. Let {A,f), (Б, g) be c-algebras and F : {A,f) -> (Б, ^) a homo-
morphism. Then the following assertions hold: 

(a) {B, g) is admissible for {A,f). 

(b) The map F : A -^ В is defined by the construction c-K. 

P r o o f of (a). The property (a) in 3.5 follows from 3.1 (d). The property (b) in 3.5 
follows from 3.1 (c) and 3.3 (b) where we take an arbitrary x E A and put x' = F(^x), 

P r o o f of (b). By (a), (B, g) is admissible for {A,f). Let Xo e ^ be arbitrary. We 
put Xo = F{xo). Then, by 3.3 (b), XQ E A, X'Q E в is a pair of h-elements of ( Л , / ) 
and {B, g). 

Thus, for/"(xo)GPo(x) we have F(/"(xo)) = ^"(^(^o)) = QX^O)-
Further, let ПЕМ -- {O}, x E P^{XQ). Putting x' = F{x) we have S{A,f){x) ^ 

^ S(B,g){x). Since, by 3.9 (b), x e d o m / we have x ' E dorn ^ and F{f{x)) = 
= g{F{x)) = g{x'). Thus, x'e g'\F{f{x))). 

3.13. Theorem. Let {A,f), (B, g) be c-algebras and F : A -^ В a map defined 
by the construction c-K. Then F : {A,f) -> (Б, g^ is a homorphism. 

Proof. Let a map F : A -> В be defined by the construction c-K as in 3.11. Then 
XQE A, XQE В is 3. pair of h-elements of {A,f) and (ß, g). 

Let X E Po(^o) be an arbitrary element and let x = /"(XQ). Then F(x) E dom g" 
and F(X) = д"{х'о). If x = d(A,f) then in virtue of 1.3 we have nothing to prove. 
Thus, let X Ф d[A,f). Then F(x) Ф d(B, g) because, for n Ф 0, we have F(x) e 
e dom of" ^ dom g by 1.6 (b) and, for n = 0, we obtain x = Xo and XQ = x Ф 
Ф d(A,f) imphes F(x) = F(XQ) E dom g by 3.4. 

We see that x e d o m / implies F ( x ) e d o m ^ ; further, we conclude F(/(x)) = 
= F{f-^\xo)) = g''*\x'o) = g{Fix)). 

00 

Suppose X e (J Pfc(xo). Then x e d o m / by 3.9 (b). Since F is defined by the con-
/ c = l 

struction c-K we have F(x) E g~^{F{f(x)y) by 3.11 (ii). Thus, F(x) Ф d(B, g) and 
JF(X) e dom g. Finally, д{Р{хУ) = F(/(x)). 

The map F : A -^ В is SL homomorphism F : [A,f) -> (ß, g). 

3.14. Theorem. Let {A,f), (B, g) be c-algebras, F:A -^ В a map. Then F:(A,f) -^ 
-^{B, g) is a homomorphism if and only if F is defined by the construction c-K 
with respect to {A,f) and (B, g). 

P r o o f is a consequence of 3.12 and 3.13. 
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4. (PARTIAL) UNARY ALGEBRAS 

4.1. Lemma. Let {A,f) be a unary algebra and let Q{Ä, f) be defined by 1.9. 
Then Q(ÄJ) is an equivalence on A. 

Proof. Q{A,f) is reflexive because, for each x e A, xedomf^ and x = /^ (^ ) -
Clearly, Q{A,f) is symmetric. Further, let x, y, z e A and {x, y) e Q{A, f), {y,z)^ 
e д{А,/)- Then there are m, n, n', peN such that x e dorn/'", у e dorn/", y e 
6 dorn/"' , z G domfP and we have /'"(x) = f"{y), Г\у) = /^(z). We suppose that, 
for example, n ^ n\ Then /"(y) G dorn/" '"" by 1.6 (d) and this implies / ' " (x)e 
edorn /" ' "" . Thus, by 1.6 (e), we obtain/ '"^"'-"(x) = / " ' - " ( / " (x ) ) =/" '- ' ' ( /"(j;)) = 
= f"'{y) = /"(z). Hence (x, z) G ^ ( Л , / ) and Q{A,f) is transitive. 

4.2. Definition. Let {A,f) be a unary algebra. Then we denote 0{A,f) = Л/^(Л,/)-

4.3. Lemma. Let {A,f) be a unary algebra and let Те 0(A,f). Then 

(a) {TJ I T) is a subalgebra of {A J); 

(b) ( T , / I T) is a c-algebra. 

P r o o f of (a). If X G T is such that x G d o r n / then (x,/(x)) G ^(Л, / ) because 
X G dorn/, / (x ) G d o m / ^ and / (x ) = /^( / (x)) . Thus, / (x ) G T. 

P r o o f of (b). The assertion follows from (a) and 4.2. 

4.4. Lemma. Let {A,f), {B,f) be unary algebras, F : {A,f) -^ (В, g) a homo-
morphism. Then, for each Te 0(AJ), there is T e в{В, g) such that F{T) S T'. 

Proof. Let X, y' G F{T) be arbitrary. Then there are x, y e Г such that F(x) = x\ 
F{y) = y'. Thus, {x, y)e Q[A,f) and there are m,neN such that x G dorn/'", 
ye dorn f" and /'"(x) =/"(V). It follows, by 1.3, x 'Gdom^'" , / G dorn ^" and 
^-(xO = g-{F{x)) = F ( r ( x ) ) = F{f"{y)) = g%F{y)) = g%y'). Thus, x', / e Q{B, g) 
and there is T e 0{В, g) such that F{T) Ç T, 

4.5. Definition. Let {A,f), (B, g) be unary algebras. We define a map F : A -^ В 
in this way: 

(i) We take a map Ф : 0{A,f) -> G(B, g) such that, for each Те e{A,f), 
{Ф{Т), g \ Ф{Т)) is admissible for the c-algebra ( Т , / | т ) . For each Te0{Aj\ 
we define a map F^ : Г ->• Ф(Г) by the construction c-K. 

(ii) We put F = (J F^. 
Т€(9(Л,Л 

Then we say that the map F : A ^ В has been defined by the construction К 
(with respect to {A,f) and (ß, g)). 
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4.6. Theorem. Let (AJ), {В, g) be unary algebras, F : {AJ) -> (ß, g) a homo-
morphism. Then the map F : A -y В is defined by the construction K. 

Proof. Let TG0{AJ) be arbitrary. Then there is (precisely one) T e в{В, g) 
such that F{T) Ç r by 4.4. We put Ф{Т) = Г and FT = F\T. Then {TJ \ T), 
{T\ g I r ) are c-algebras by 4.3 (b) and Fj : ( T , / | T) -> ( Г , ^ | Г ) is a homo-
morphism. Consequently, by 3.12 (a), {T\ g \ Г ) is admissible for {Tj\ T) and 
F j : Л -> Б is a map defined by the construction c-K by 3.12 (b). 

Further, clearly F = [J FT. 
Тев^А,/) 

4.7. Theorem. Let (AJ), {В, g) be unary algebras, F : A-^ В a map defined 
by the construction K. Then F : (AJ) -> {B, g) is a homomorphism. 

Proof. Let F : Л -• Б be defined by the construction К and let x e Л be such that 
jc G dorn/ . Then there is Te 0{A,f) such that xeT By 4.3 (b), {T,f \ T), {Ф{Т), 
g I Ф(Т)) are c-algebras. Thus, f{x) e T and F{x) = FT{X), F{f{x)) = Fj{f(x)) 
where Fj\T-^ Ф{Т) is a map defined by the construction c-K. Thus, Fj : (Г, / | T) -^ 
-> {Ф{Т\ g I Ф{Т)) is a homomorphism by 3.13. We obtain F(x) = Fr(x) G dorn g 
and ^(F(x)) = g{Fr{x)) = F^(/(x)) = F(/(x)). 

4.8. Main Theorem. Let {A,f), {B, g) be unary algebras, F : A-^ В a map. 
Then F : {A,f) -> (ß, g) is a homomorphism if and only if F is defined by the 
construction К vnth respect to {A,f) and (ß, g). 

P r o o f is a consequence of 4.6 and 4.7. 

5. COROLLARIES 

Some corollaries for complete unary algebras can be found in [5]. 
Let Л, ß be sets, oc ^ A x В arbitrary. Then a is said to be a correspondence from A 

to ß. If a is a correspondence from Л to ß then we put 

dom a = {x e A; there is у G ß such that (x, y)ecc} , 

Im a = {y E В; there is x G Л such that (x, y)ecc] . 

If a is a correspondence from A to B, A ^ С ^ dom a, ß ^ D ^ Im a then 
a n (C X D) is a correspondence from С to D. Further, if â  is a correspondence 
from Ai to B] for i EI then \J a,-, П ^i ^^^ correspondences from \J Ai to \J Bi. 

ieT iel iel iel 

Finally, if a is a correspondence from A to B, ß ^ oc then jS is a correspondence 
from A to B. Clearly, the correspondence a from X to ß is a partial map from A 
into ß if (x, У1), (x, У2) E a implies y^ = ^2-

The partial map a from A into ß is said to be injective if (x^, y), (x2, y) e a implies 
Xi = X2. 
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The map ос : A -^ В is said to be surjective iïlma = В and bijective if it is injective 
and surjective. 

If (p : A -^ Bisa, map, n G N — {0} arbitrary then we put, for each (xi, X2,..., x„) e 
e Л", 9"(xi, X2, ..., x„) = (^(xi), (p{x2), ..., (p{x„)); it is a map cp" : A" -^ B\ 

5.1. Definition, (a) Let (A, J^) be a complete universal algebra, neN — (0} 
arbitrary. Then we put J^(0) = ^ n A, ^{n) = {/e #"; / : Л" -^ A]. 

(b) Let {A, i^), [B, ^ ) be complete universal algebras. Then {A, ^ \ {В, ^) are 
said to be similar if there is a bijection a: J^ ^ ^ such that, for each neN, cc{^(n)) = 
= ^(n) and a | ^ ( 0 ) n A n В = idsFiO)nAnB and, for each neN - {O}, f e ^(n), 

/ I Л" n Б" = a(/) I A" n B\ 

5.2. Problem. Le^ A, В be sets, Ф a set of maps A -^ B, Construct a system ^ 
of complete operations on A and a system ^ of complete operations on В in such 
a way that (A, #"), (Б, ^ ) are similar universal algebras and that each cp e Ф is 
a homomorphism of i^A, #") into {B, Щ. 

5.3. Lemma. Let A^, A2, B^, B2 be sets, f a partial map from A^ into A2, g 
a partial map form B^ into B2. Let Fi : Ai -^ B^ u Б2 (/ = 1, 2) be maps such that 
Fl I Л1 n У42 = F2 I ^1 n A2. Then Fj(/1^) я B^ {i = 1, 2) and, for each x e d o m / , 
FiiJix)) = 9{F,{x)) iffF,{A, - dorn / ) ç В„ F2{Ä2 - I m / ) ^ B2 and F i u F2 : 
: (y4i u ^ 2 , / ) -^ (^1 и B2, g) is a homomorphism. 

Proof. The condition is necessary: We have F (^ i — d o m / ) я F (^ i ) ç B^, 
F ( ^ 2 — I m / ) ^ ^(^2) ^ ^2- Further, let xeA^ u ^2 and let x e d o m / Then 
F2(/(x)) is defined and F2(/(x)) = ^(Fi(x)). Thus, Fi(x) e dom g. Since x e d o m / ^ 
^ Л1 we obtain (Fi u F2) (x) = Fi(x) and since/(x) e Л2 we have (Fi u F2) (/(x)) = 
= F2(/(x)). Thus, (Fl u F2) (x) 6 dom g and (Fi u F2) (/(x)) = F2(/(x)) = ^(Fi(x)) = 
= é'((Fi u F2) (x)). F l и F2 is a homomorphism. 

The condition is sufficient: Let x e d o m / . Then (Fi u F2) (x) e dom Ö' and 
(Fl u F2) (/(x)) = g{{F^ u F2) (x)). Further, x e yli and / (x) e I m / ç A2 which 
implies (Fl и F2) (x) = Fi(x) and (Fi u F2) (/(x)) = F2(/(x)). Hence F2(/(x)) = 
= {F, u F2)(/(x)) = ^(Fi u F2) (x) = ^(Fi(x)). 

Further, Fi(x) = (Fi u F2) (x) e dom g Я B^ and we have F i ( d o m / ) ç B^. 
Thus, Fi(v4i) = F i ( d o m / ) u Fi(yli - d o m / ) ç B^. 

Finally, let y e I m / b e arbitrary. Suppose, without loss of generality, that / (x) = y. 
Then р2{у) = F2{f{x)) = g{F^{x)) elm g Я В^. Thus, F2( lm/) ç Б2 which implies 
^^2(^2) = F2{lmf) u F2(^2 - I m / ) ^ Б2. 

5.4. Tlieorem. Let A^, A2, B^, B2 be sets, f a partial map from A^ into A2, g 
a partial map from B^ into Б2. Let F^ : Л^ -> Bi [i = 1,2) be maps such that 
Fl I ̂ 1 n Л2 = F2 I ^1 n A2. Then, for each x e d o m / , F2(/(x)) = g[Fi(x)) if 
and only if Fi u F2 : (^i u ^ 2 , / ) ->• (^i u B2, g) is a homomorphism. 

Proof. The theorem is a corollary of 5.3. 
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5.5. Theorem. Let A^, A2, В^, B2 be sets, f a partial map from A^ into A2, g 
a partial map from B^ into B2. Let Fi : Ai -^ B^ [i = 1, 2) be maps such that 
F^l Ai n A2 = F2\ A^ n ^2- Then the following three conditions are equivalent: 

(A) The diagram 

F, 

is commutative. 

( B ) Fl U F2 : (/li U A2,f) -> (ßi u B2, g) is a homomorphism. 

(C) The map F^ и F2 : A^ KJ A2 -^ B^ и B2 is defined by the construction К 
with respect to (A^ u ^2^/) ^"^ (^1 ^ ^2^ O)-

Proof. (A) and ( B ) are equivalent by 5.4, (В) and (C) are equivalent by 4.8. 

5.6. Definition. Let A, В be sets, Ф a set of maps A -^ B. 

(i) We put /?g = {(x, (^(x)); x e A such that x e A n В implies (p{x) = x} for each 
<p e Ф. 

(ii) If neN - {0}, cp e Ф are arbitrary then we put ß^ = {(/, g);f: A" -> A, 
g : B" -> B,f и g is a map defined by the construction К with respect to (A" u Б", cp") 
and (A u B, (p)}. 

(iii) We put ß, = f) ßn for each n e N. 
(реФ 

00 00 

(iv) We take oc ^ \J ß„ such that a is an injective partial map (from dom (J ß„ 
00 n = 0 n = 0 

into Im (J ßn). Then we put J^ = dom a, ^ = Im a. 
/1 = 0 

Then we say that (A, #"), (ß, ^ ) is a pair of complete universal algebras defined 
by the construction A—К with respect to Ф. 

5.7. Theorem. Let A, В be sets, Ф a set of maps A -^ B. Then (A, ^), (B, ^) are 
similar complete universal algebras and cp : (A, J^) -> (Б, ^ ) a homomorphism 
for each (p e Ф if and only if (A, #"), (ß, ^ ) is a pair of complete universal algebras 
defined by the construction A—К with respect to Ф. 

Proof. The condition is necessary: 
Let [A, ^), {B, ^) be similar complete universal algebras and let a : , ^ ->• ^ be 

a bijection such that (х{^{п)) = ^{n) for each neN and a | #"(0) n A r\ В •= 
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= ^^sfio)nAnB and, for each neN - {O}, fe^{n), g = a(/) impHes /1 Л" n Б" = 
= g\Ä" n B\ 

We put a„ = a I ^{n) for each neN, 

Let фбФ be arbitrary. Let {f,g)e(Xo. Then / e J^(0) ç Л; further, we have 
9 = ф(/) because ф is a homomorphism and / e #"(0) n Л n В impHes g = f^ 
Thus, (/, g) G j9g. Further, let (/, g) e (x„ for an arbitrary neN - {0}, Then, for each 
(xi, X2. ..., x„) e Л^ we have (p{f{x^, x^,..., x„)) = О̂ СФС̂ Х̂ ), (^^(хг),..., cp{x„)) = 
= g\(p\x^, X2, ..., x„)) (because ф is a homomorphism). Thus, the diagram 

is commutative. Further, f \ A" r\ B"" =^ g \ A" r\ B"" which imphes that the 
map f и g is defined by the construction X with respect to (v4" u Б", ç") and 
( / lu5,(p)by5.5.Thus,( / ,^)G^^ 

We obtain a„ Ç )9̂  for each (p e Ф and each neN. This implies (x„ ^ f) ß*^ = ß„ 

for each n e iV. 
OO 00 

Finally, a = и a„ Ç и jg„ and dom a = #", Im a = ^. 

The condition is sufficient: 
Let {A, J^), (B, ^) be a pair of complete universal algebras defined by the con-

00 

struction A—К (with respect to Ф) where ^ = dom a, ^ = Im a for an a Ç U ßn 
00 и = 0 

by 5.6. We put a^ = a n ß„ for each neN. Then a = U «n with disjoint terms 
и = 0 

because j9„ are mutually disjoint. 
Further, dom ao Я dom a n dom ß^ ^ ^ n A, Im OCQ ^ Im oc n Im ßo ^ ^ r\ В 

and, for each neN — {0}, dom a„ ^ dom a n dom ß„ ^ ^ n {f;f : A"^ -> A}, 
Im a„ Ç Im a n Im j5„ Ç ^ n {of; ö' : 5" -^ 5}. Thus, dom cc„ = ^{n), Im a„ = ^(n) 

00 00 

for each n e iV. a is an injective partial map (from dom U ßn into Im (J î n) by 5.6. 

Then a : #" -> ^ is a surjective (complete) map because dom a = J^, Im a = ^. 
Thus, a : J^ -> ^ is bijective. 

Further, a(i^(«)) = a„(i^(n)) = a„(dom a„) = Im a„ = ^(n) for each neN. 

Finally, a | ^{0) пАпВ = id^(o)^^nß by 5.6 (i) and if / e J^(n) for each n e 
G ]V - {0} and g = a(/) then / 1 Л" n Б" = Ö̂  | Л" n B" because / u ^ is a map 
Л" u Б" -̂ ^ Л u Б by 5.6 (ii). 
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Thus, (A, J^), {B, ^ ) are similar complete universal algebras. 
Further, let (p еФ be arbitrary. Let fe^,g = a{f). 
If / e i^(0) then g e ^(O) and (/, g)e(Xo ^ ßo ^ ßl which implies (p{f) = g 

by 5.6 (i). 

Suppose n e iV - (0). If / G J^(n) then g e Цп) and (/, g)eoi„^ ß„^ j ^ ^ We 

have, for each (x^, X2, . . . , x„) e A", (p{f{xi, X2,..., x„)) = g{(p"{xi, X2, . . . , x„)) = 

= ^(^(^i) . ^(^2), . • -, Фп)) by 5.6 (ii). 
Thus, Ф is a homomorphism. 
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