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Introduction. In this paper we consider the first initial-boundary value problem for
quasilinear parabolic equations
0 0 . :
(1) 4 Y (=) Di(ay(x) D'u) + a(t, x, Du) = 0
ot |il.l7| sk
in the domain Q = Q x (0, T), where 1€ <0, T) (T < o), Q is a bounded domain
x€Q < EN (N-dimensional Euclidean space) with a Lipschitzian boundary 0Q,
i =(iy,..., iy) is a multi-index, )
ol , l
: with [1| =31,

=25 P
oxy ... 0xy p=1

Di

and Du is the vector function Du = (D'u, M < k).

The function a(t, x, &), £ € E? (d = card {i, Ill < k}) is Lipschitz continuous in ¢
and ¢&.

Initial-boundary conditions are of the form

) u(x, 0) = uo(x), Diu|soxo,ry =0 for [=0,1,...k—1,

where D is the outward normal derivative of order I and u,(x)e W5(Q) (Sobolev
space).

An approximate solution u"(x, t) of the problem (1), (2) is constructed in terms of
functions u(x), s = 1, ..., n which are obtained in the following way:

Let {t,}5-; be the uniform partition of <0, T, h = T/n and ¢, = s . h. Successively

for s = 1, ..., n we solve the linear Dirichlet boundary value problem

(1) s T Mot S (1) Di(ay,Diuy) + a(t, x, Duy_y) =0,
h 1il.17] sk

2) Dyux);g =0 for 1=0,1,...,k—1
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where uo = u,(x) is taken from (2). Then we construct (Rothe’s function)

u'(x, 1) = ug_q(x) + (t = t,-¢) K™ (ux) — us_y(x)) for

t 1 St<t, s=1,..,n.
In fact, this method is Rothe’s method which is called also the method of lines.
Under certain assumptions on a;; (see (3), (4) below) we prove that u"(x, ) con-

verges for n — oo to the unique weak solution u(x, t) of (1), (2) (see Definition 3)

in the norm of the space C(<0, T), L,(Q)). Moreover, we prove that u"(x, t) -

— u(x, t) for n — oo in the norm of the space W3*~'(Q") n W5(Q) for all te(0, T),

where Q' is an arbitrary subdomain of Q with Q' < Q. If (3) is satisfied for I = k,

then our weak solution u(x, 1) satisfies (1) for a.e. (x, ) € Q in the classical sense.
Analogous results are obtained also in the case when u"(x, t) is constructed in terms

of ug (s = 1, ..., n) which are obtained by the following predictor-corrector scheme:
Let v, u;, s =1,...,n be the weak solutions of the linear Dirichlet boundary
value problems (uy = uo(x))

(1) Uy — Uy . Z (=)' Di(a;;Dv,) + alt,, x, Duy_y) =0,
h il |71 =k
(27 Do =0 for 1=0,1,...k—1
and
(1///) M + Z (_1)|i| Di(aiijus) + a(ts, X, DUS) =0,
h lil 171 =k
(2") Dlufsp =0 for 1=0,1,..,k—1.

This is the special case of the predictor-corrector scheme of the Crank-Nicholson
method (see [11]).

Rothe’s method was introduced in [5] and later on has been used by many authors.
The conception of our paper corresponds to the recent papers [1 —4].

NOTATION AND DEFINITIONS

By C%'(Q) we denote the space of Lipschitz continuous functions in @ and by

C™'(@) the subset of all v e C*'(Q) such that D've C*'(&) for all i with |i| = p.
We shall assume
(3) a;i(x)e P+ (Q) for all ]i‘, ]]l <k,

where p;; = max {0, |z| +1—-k-— l} and [ is an integer satisfying 1 < 1 < k.
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Ellipticity is assumed in the form

) Y ay(x) &gz € Ii‘llzké? (€1 >0).

lil,]J]=k

a(t, x, &) is continuous.in all variables 1, x, £ and satisfies
O o d e )] £t o] -]+ - &)

where C is a positive constant.

Let us consider the Sobolev space
W3(Q) = W= {ueLy(Q); D'ueL,(Q) forall |i| <k}

(D'u are derivatives in the sense of distributions) with the norm |||y, = ||*|w =
= Y | D'u||, where ||-|| is the norm in L,(€). The scalar product in L,(2) is denoted
e

Let C3'(2) be the set of all infinitely differentiable functions with support in Q.
We denote W';(Q) = C§(Q), where the closure is taken in the norm of the space W5.
By means of the bilinear form

[Au, v] = J Y a;(x) D'u Divdx for u,ve W5(Q)

o lillj|sk
we define a linear continuous operator A from W5(Q) into W3 *(W 3" is the dual space
toW5(Q)). :
Let X be a Banach space with a norm |+ ||x and let v(7) : <0, T) — X be an abstract
function. By [v(f)|x we denote the norm |- |y of the element v(t)e X at a fixed .

Definition 1. We denote by L,(<0, T, X) (1 £ p £ ) the set of all measurable
abstract functions v(t) from <0, T) into X (see [10]) such that

T
1212, 0,53 =J Jo(0)|3dt < o0 for 1< p< oo
0

and

[0l cacco,r5,x) = supess [v(t)|x < o0 for p= 0.
te<0,T)
Let C((O, T, X) be the set of all continuous functions
U(t) . <0, T> - X Wlth "v”C((O,T),X) = T(fl);)”v(t)”x < 0.
te N

The set of all abstract functions v(r) : <0, T — X such that x*(u(t)) € C(<0, T)
for all x* € X* (X* is the dual space to X) is denoted by C,(<0, T, X).
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Definition 2. C,,((0, T), L,(Q)) is the set of all v e C(<0. T). L,(2)) such that

%(v(t), w)) € C((0, T)) N L,(€0, TY) forall we Ly(Q)
and

|§ (6(0). )

< ] .

In this case there exists

9(1) € L,(<0, T, L,y(2)) » C,((0, T), L,(2))

(uniquely determined) such that
%(v(z), w) = (g(t), w) forall we L,(Q)

and we denote by d v()/dt = g(t) the weak derivative of v(r).
By F(f) u = a(t, x, Du) we denote the operator from <0, T) x W5(Q) into L,(%)

(see (5)).
Definition 3. u(1) € L,(<0, T, W5(®)) is a weak solution of the problem (1),(2), if

; u(t)e Co((0, T), Ly(2)), u(0) = u,

(ga@ ) + [Au(), o] + (F() u(t). o) = 0

holds for all ve W4() and t € (0, T).
We shall assume the following additional regularity property of u, from (2) and A4:

6) Aug e Ly(Q) .

Remark 1. If ug(x) € W35(Q) and (3) holds for I = k, then (6) is satisfied.

The strong convergence is denoted by — while — stands for the weak convergence.
Positive constants are denoted by C and the fact that C depends on a parameter ¢
is indicated by writing C(g). Symbols C or C(g) can denote also different constants
in the same discussion.

1. A PRIORI ESTIMATES
uge W2 (s =1,...,n)is a solution of (1'), (2'), if
Us — Us—y
) (ﬂh ,v) + [Auy, v] + (F(t,) us_y.0) = 0
holds for all ve W %(Q).
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By Q' we denote an arbitrary subdomain of Q with Q' = Q.

Lemma 1. If (3)—(5) are satisfied, then there exists a unique solution u,€
e WHQ) n WET(Q) (s = 1,...,n) of ('), (2).

Proof. From (3), (4) and due to a lemma of J. L. Lions (see [7] Chap. I, Lemma
5.1) we obtain easily

®) [Au, u] 2 CyJlullyy — Calul?

by virtue of the theorem on equivalent norms in W;(Q) (see [7]). Thus, the operator
Au + h™'u is W% elliptic (see [7]) for all h < hy < C; "

If u,_, € W5(Q), then F(t,) u,_; € L,(Q) because of (5). From the results on linear
elliptic equatlons [7] (Theorem 3.1, Chap. 1) we conclude that there exists a unique

solution u, € W% of (1) (2) for h < hy. Since u, € W5(Q), we obtain successively
us € W2 fors=1,...,n

On the other hand, uy € W(R) is a solution of the equation
s — Us—1
Au =" F )y =

where f,,seLz(Q) We prove that D*f, ;e W§™**" for |of < 1 — 1 (W5*"" is the
dual space to W% '()). Indeed, we have

sup I(szh,w (p)l = Sup ‘(fh,s’ Da(P)' =
@eCo™(92) @eCo> ()
loliwak-1=<1 ’ llollwak-1=1

= sup \J‘ fus(x) . D* o(x) dXIl < “f,,'su .
9eCo>(92) 2
loliwak-1<1

(Here (D*f,s @) denotes the value of the distribution D’f, ; at the point ). Thus,
from [7] (Theorem 1.2, Exercise 1.2, Chap. 4) we deduce that u, e W5*/(Q') and the
estimate '

©) sl e 10y = @) (sl w + llf;.s“)

holdsforallh £ hpands=1,...,n
In the sequel we shall assume that (3)—(6) are satisfied.

Lemma 2. There exists C and hy > 0 such that the estimates

[ 5. Elulysc

take place for all h < hy, s <1,...,n
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Proof. Let us put v = u, into (7) and then sum up for s = 1,..., p where 1 <

< p £ n. We obtain

14 P )4
(10) Yo(ug — ug_g,u) + by [Aug u] + Y h(F(t) us—y, u) = 0.
s=1 s=1 s=1

From the identity

)4 P
23 (= ) = 3 = sl + ] = [l
s= s=

and from (8) we deduce

4 P p
1) Jupl* + Co X hluli = Juol® + C2 X hllu|® + X h(F(t) uey, u).
s=1 s=1 s=1
Applying Young’s inequality
8202 b2
12 bl < 22 4
( ) |a | - 2 262
we estimate : .
p )4
(1) S ne-ro )] = 30 s ] <
P ¢h P h
=Y SR us]® + X - fud®.
s=1 2 s=1 2¢
Owing to (5) we have
(14) IE(t) uy-i ] = C5 + Callus—s 3

and hence, due to (11), (13) and (14), we conclude
2 )4 2 1 P
lup* + (C1 = 2C) ;h””suw < Cluo) + (Cz + 7‘8> ;h”“suz .
Let us choose ¢ > 0 so that C; — ¢C, = £C;. Then we obtain
p )4
(13) lupl* + €, X hluslv < €5 + Co T hlus|?
and, in particular,
14
[u,]|* £ Cs + Co Y hl|uy||> forall p=1,..,n,
s=1

which (h £ hy < cgi) implies successively

lus]? = C5(1 = Coh)™", [Juz|? = Cs(1 = Coh)™" (1 + Csh(1l = Ceh)™")
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and
(16) [ug> £ Cs(1 = Ch)™ (1 + Csh(1 — Cgh)™'y~!
for s = 1, ..., n. There exists C such that

(1 + Csh(l — Csh)™'y}~t < C forall h<hy<Cg!t

and s = 1, ..., n. Thus, (16) implies the first part of Lemma 2. The rest of the proof
follows from (11).

Lemma 3. There exist C and h, > 0 such that the estimates

2
Us — Ug— g

. SC, hMu,—u | £C

take place for all h < hy and s = 1, ..., n.

Proof. Let us consider (7) for s =i and s =i — 1, putting v = u; — u;_;.
Subtracting these equalities we obtain

('i:% u; — ui—l) + [A(“i - ”i—1), u; — ui—1] +

+ (F(ti) Uiy — F(ti—[) Uiy U; — ui—l) = (1‘4—1:%—“5—2 , Uy — “i—1)

from where, due to (8), we deduce

a2
LBt Clh_l”ui - ui—l“ﬁ’ =

(17)

Uy — Uiy
h

Uij—g — Ui— Uy — Ui

|F(t)uiy —

2
Uy — Uiy

— F(t;y) “i—zll + G h

By virtue of (5) we estimate

(18) [F(t) — uiey — F(t;—y) ui—z” =
SC.(h+ h”ui—l.”W + ”"i—1 - “i—z”w)-

Applying (12) we estimate

u; — 2

Uiy — Ui i

h

Uiy

h

<1 U — Uiy
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and, owing to (18)

Uiy — Uiy

h

2
Ui — Uiy

”F(ti) Uiy — F(’i—l)“i~2“ =G h

ht

+ Cyh + Cshlu;_ i[5 + C(2h) ™" JJuioy — u;s||3 -

From these estimates and from (17) we obtain

2

R (L = Coh) + Coh™u; — u;_y|[fy <

h

(19)

. 2
Bt R O iy = i + Collulh + el -

h

< ho < Cgl)

The estimate (19) is recurrent and enables us to obtain successively (h

Ui — Ui

(20) (

2
' + Clh_l’[ui - ”i—l“lﬁ') (1 — Csh)i-l <
|

Uy —u
< 1 0

R i
Co™ g = wolfy + X (1= Co)' ™ oy 3 +
ji=2

i—1

+ Y (1 = CehY ™t Cyh
i=1

where 2 < i < n.Since 1 = (1 — Csh)' "' 2 e " forallh < hgand i = 1,..., n,
(20) implies

2
Uy — Uj—y Uy — U +

(1)

2
+qrwm_mﬂwgc(

+cwﬂhL_%m+§¢WhJ;+Q.
p

Now, we estimate the right hand side in (21). Putting v = u; — u, we have from (7)

(ul ; Yo , Uy — uo) + [Auyg, uy — ug] + (F(ty) ug, uy — uo) = 0.

Hence we deduce

22

Uy — Uy

Uy — Up
h

2
+ h™ ' A(uy — ug), uy — ug] £ Clug)

_I:Auo’ Uy — ug .
h
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Owing to (6) we estimate

U —u
[Auo, 1 h 0]

and hence applying (12) we obtain from (22)

Uy — Uy

< [ Auo|

2
uLh—uo (1 = &C) + h™'[A(uy — uo), uy — uo] < Cluo, €) -

Thus, due to (8) we have

_ 2
(23) 'Lkh—@ (1 = &C = C3h) + Cih™Huy — ug|y < C(uo. ) ;

since h < hy < C;l we can choose ¢ > 0 so that (1 —&C — Czh) > o > 0 for all
h < hy, where a is a suitable constant. The proof of Lemma 3 follows from (23), (21)
and Lemma 2.

Lemma 4. There exists C and hy > 0 such that
(24) ”u,.”W <C forall h=hy and i=1,...,n.

Proof. From (8) and (7) with v = u, we obtain

Us — us—l)

P sl + 1FGs) e ] + Caflu]® -

Cofluw =

Owing to (5) the estimate

(23) [F(t) uss]l = € (1 + Jus )

takes place and hence Lemma 2, Lemma 3 and (24) imply
Cillugliv = Cs + Callug—y|w -

Due to Lemma 3 we have

[l = Nusllw + Jlus = i = sl +

and thus the estimate
C, ”us”fV < Ce + C4”us”W

takes place for all h < hy and s = 1, ..., n. Applying (13) to the last inequality we
obtain the result required.
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Lemma 5. There exist C(Q') and hy > 0 such that |uy|y,xs10y S C(Q') for all
h=<hyands=1,...,n.

Proof. From Lemma 3, Lemma 4 and (25) we deduce that there exists C such that
(26) [fus] < C forall h<hy, and s=1,..,n

where f,, = — (u, — u,_,)/h + F(t;) u,_y. Thus, the result follows from (26),
Lemma 4 and (9).

In the sequel we present some consequences from the a priori estimates just
obtained.

We denote by u"(t) Rothe’s function

u'(t) = ug_q + (t — t_y) h ™ "(uy — uy_y) for 1., <t

lIA

te, s=1,..,n.

Lemma 6. There exists u(t) e C(<0, T), L,(Q)) and a subsequence {u™(t)} from
{u"(r)} such that u™(t) - u(t) in the norm of the space C(<0, T, L,()).

Proof. Lemma 4 implies the estimate
(27) [u" (1) W@y £ C forallmand 1e0, T)

(C is independent of n). From the compactness of the imbedding W5(Q) — L,(Q)
we conclude that for fixed ¢ € 0, T it is possible to choose a subsequence of {u"(t)}
convergent in the norm of the space LZ(Q). By the diagonal method we choose a sub-
sequence {u™(f)} such that u™(r) is convergent in L,(Q) for each rational point
te <0, T). Owing to Lemma 3 we prove that u""(t) is convergent for all ¢ € <0, T).
From Lemma 3 and the triangle inequality we deduce

(28) |un(t) — u(¢')] < C|t — t'| forallmand t,1 €<0,T).

Let ' € (0, T) be an irrational point and 7 e {0, T) a rational one. Thus, the
inequality

(29) Ju() = w ()] = Ju™() = w™ @] + [u™() — w" @] +
+ Jum() — w ()]

together with (28) implies that u™(r) is convergent in L,(®) for all ¢ € <0, T). There
exists u(f) : <0, T) > L,(Q) such that u™(t) » u(r) in L,(Q) for all te<0, T).
Regarding (28) we have u(t) € C(<0, T», L,(R)). From (29), passing to the limit for
r — o0, we conclude that u™(f) — u(t) locally uniformly, i.e., if &¢ > O there exist
K > 0 and §,(¢) > 0 such that |[u™(¢') — u(t')| < & for all ¢ satisfying |’ — 1| <
< &(¢) and k = K. Thus, the rest of the proof follows from the Borel covering
theorem.
For a moment, denote the sequence {u™(f)} from Lemma 6 by {u"(1)}.
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Lemma 7. Let u(t) € C(€0, T, L,(Q)) be the same as in Lemma 6. The following
assertions hold:

a) u(t) is Lipschitz continuous from {0, T) into L,(Q), i.e., [u(t) — u(t)]| <
< C|z — t’| for all t,1" €0, T;

b) u(t) € L (<8, T, Wh(Q) n WET (@) for all 0 <8< T If useWs'(Q),
then 6 = 0.

c) u"(t) = u(?) in the norm of the space W5 Q') n WETH(Q) for allte (0, T).

d) u(t) € C(<8, Ty, W™ =HQ) 0 W71 (Q)). If ug e W5*'(Q), then & = 0.

Proof. Assertion a) follows from Lemma 6 and (28). b) The space H = W%(Q) n
N WETY(Q') is a separable Hilbert space (with respect to the scalar product

(5 )m = (o Iwaxey + (5 Iwaerian) -

Since L,,(<0, T, H) is the dual space to the separable Banach space L,(<0, T, H')
(see [8]), where H' is the dual space to H, bounded sets in L,(<0, Ty, H) are compact
with respect to the weak* topology (see [9], [10]). From Lemma 4 and Lemma 5
we deduce that
(30) max ||u"(t)”H < C for all n (C is independent of n) .

te{T/n,T)
Thus, if 0 < 6 < T then there exists we L, (<5, T), H) and a subsequence {u"}
of {u"} such that u™ — . w in L, ({3, T, H) (weak* convergence). From this fact it
follows also that u™ — w in L,(¢8, T), L,(?)) > L, (<8, T), H) (weak convergence)
and hence due to Lemma 6, we have u(t) = w(z). If uy € W5"'(Q) then we can put
8 = 0. Moreover, owing to (30) and Assertion a) we deduce easily that u(r)e H
for all te (Tn, T) and the estimate

(31) sup u(t)|y £ C forall 6 >0, where Cisfrom (27).
1e¢5,T

(If ug € W5*Y(Q), then § = 0.)
c) Assertion c) follows from the compactness of the imbeddings W5(Q) — W5~ (@)
and W5(Q') » W5*'7(Q'), from the estimate (30) and Lemma 6.

d) Assertion d) follows from (31), from the compactness of the imbeddings
wh(Q) - w5T(Q), Wit (@) - wittt(@)
and Assertion a).

Remark 2. In virtue of (31) and Lemma 7 (a)) we prove easily that u(f)e
€ C,(¢8, Ty, H) for all 0 < § < T. If ug e W5*!(Q), then & = 0.

Indeed, if t, — to (t,, to € {5, T) then u(t,,) — w in the reflexive space H, because
of (31). But, owing to Lemma 7 (a)) we have w = u(ty). Thus, u(t,) -~ u(ty) in H
from which the required result follows.
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2. EXISTENCE, UNIQUENESS, REGULARITY AND CONVERGENCE
OF THE METHOD

In this section we prove that u(f) from Lemma 6 is the unique solution of (1), (2).
Let us define the step function w"(f) : (0, T) — H where H = W5™(Q") n W(Q)
by
wi(t) =u, for t_;<t=<t, s=1,..,n

and w"(t) = u, for t e {—T}n, 0).

Similarly, we define F"(t): W5 — L,(Q) by F"(t{)u = F(t,) u for all ue W5(Q),
oy <t=<t,s=1,..,nand F'(0)u = F(0)u.

The identity (7) can be rewritten in the form

(32) (M v) + [Aw(o), o] + <F"(t) w"(t _T )v) —0

dt n

for all ve W’;(Q) and 1€ (0, T), where d~[dt is the lefthand derivative. Integrating
(32) over <0, t) we obtain

(3 () o) + J (:[A wi(z), o] de + J 0 < Fr(z) wr (r - ;T ) v) dr —
— (o, v) = 0 forall ve WiQ).

Before we pass to the limit n — oo in (33) we prove some auxiliary assertions.
Lemma 3 and (30) imply

(34) [w"(t) — w'(t)]| < Cn™" forall te0,T)

. T

w(t— =
(-2)
From (34), (35) we deduce easily that

(36) wi(t) > u(f) and w" <t I ) s u(t)

and

Gs) W@l +

< C for all n and %T<t§T.
- n

in the norm of the space W5"'~'(Q) n W57'(Q) for all t € (0, T).

Lemma 8. a) If v e W%(Q), then
T
(F"(t) w" <t — ~), v> = (F(t)u(t),v) for n— o ;
n
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b) (F(2) (), v) e C((0, T)) N L(<0, TY) and the estimate
|(F(x) u(®), v)] < C|lv]
takes place for all t € (0, T) and v e L,(2).

Proof. It suffices to prove a), b) for ve C5(R), because of the density. To ve
€ C3(Q) there exists Q' with Q' < Q such that the support of v is a subset of Q'.

From (36) and (5) we obtain

Fr(l) w (: - ;T) S F()u(l) with n— oo in Ly(@)

from which a) follows.
b) Similarly as in Assertion a) from (5) and Lemma 7 (c)) we deduce (F(r) u(t), v) €
€ C((0, T)). From the estimate (31) and from (5) we obtain

(@) u(®), o)] = [F@) u@)] o] = C]o]

for all 1€ <0, T, ve L,(R) and the proof is complete.

Lemma 9. Let u(t) be from Lemma 6. Then
a) A u(t) e Ly(RQ) for all t e 0, T) with
[4u@t)]| £ C forall 1e<0,T).
b) [A u(?), v] € C((0, TD) for all ve W5(Q).
Proof. From Lemma 3 we have |d~ «"(t)/dt| < C for all 1€ (0, T). From the

definition of w"(r), Lemma 4 and (5) we deduce easily the estimate

Fr(1) w"<t - T)” < C forall 1€40,T)
n

and hence (33) implies the estimate

(37) |[4 w"(t), v]| < C|lv| forall 1€<0, Ty and veCJ(Q).
Since .
(59 4w ] — [A i) o]

(see (36)), we obtain from (37) that
(39) |[4u(t), v]| = C|v] forall 1e<0, Ty and veCH(R).

The density Cg’(2) in L,(£2) and (39) then implies Assertion a).
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b) It suffices to prove Assertion b) for v e C(€). In this case the result required
follows from the continuity of the operator 4 : W% — W;* and from Lemma 7 (d)).

Remark 3. Lemma 9 implies
Au(r) e L,(<0, T, L,(Q)) 0 C,((0, T, Ly(Q)) -
Indeed, it follows from Lemma 9 (a), b)), (39) and the density of W%(Q2) in L,(®) that
[4u(t),v] e C((0, T)) forall veL,(Q)

and hence (see [10]) A4 u(¢) is a measurable abstract function from (0, T) — L,(Q).
The rest of the proof follows from Lemma 9.
Our main result is

Theorem 1. There exists a solution u(t) of the problem (1), (2) with the following
properties:

a) u(t) : <0, Ty — L,(Q) is Lipschitz continuous;
*b) u(t)e Co((0, T), L,(Q)) and there exists u'(t) (strong derivative) for a.e.te(0, T)
with u'(t) = d u(t)[dt € L (<0, T, L,(2));

¢) u(t) € L,(<0, Ty, WE*!(Q') n Wh(Q)) n C,((0, T, WiH(Q) n Wh(Q)). If uy €
€ W5*!(Q) then we can put {0, T instead of (0, T).

d) u(t) e C(<8, TY, WEH=H Q) n W51(Q) for all 0 < < T. If uy e Wit'(Q)
then 6 = 0.

e) Au(f) e L,(<0, T), L,(Q)) n C,((0, T), L,(Q)).

Proof. We prove that u(f) from Lemma 6 is a solution of (1), (2). Let ve C3(R)
in (33). Owing to Lemma 6, Lemma 8, (37), (38) and Lebesque’s theorem, the limiting
process n — oo in (33) enables us to deduce

(40)  (u(t),v) + J:[A u(z), v] dr + J:(F(t) u(t), v) dt — (uo,v) = 0 for all

te(0,T> and veCP(Q) and hence also for ve W5(Q).

From (40), with regard to Lemma 8, Lemma 9 and (39), we conclude u(f)e
e C((0, T), L,(Q)). Differentiating in (40) we obtain that u(t) is a solution of (1), (2).
The identity (d/d) (u(t), w) = (d u(?)/dt, w) for all te (0, T) and w e L,(Q) implies

the identity
f :(u(t), V() w)dt = — f ' (d_;‘;(’_) () w) dt

[

for all we L,(Q) and y(t) e C(<0, T). Thus, u(f) e W3(<0, T), Lo(Q)) — see [2]
(Definition 3) — and hence, owing to [2] (Lemma 1) there exists the strong derivative
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u'(¢) for a.e. te(0, T) and the equality u'(r) = d u(t)/dt is true. From (40), owing
to Lemma 7 and Lemma 8, we deduce

(5)

The continuity of (d u(f)/dt, w) implies the measurability of the abstract function
d u(t)/dt. Thus, Assertion b) is proved. The other assertions are proved in the previous
lemmas and remarks. Assertion c) follows from Lemma 7 and the estimate (31),
where C is independent of 6.

The idea of the proof of uniqueness is due to [6].

S Clo| forall te(0,T) and wveL,(Q).

Theorem 2. The solution of (1), (2) is unique.

Proof. Let u,(f) and u,(f) be two solutions of (1), (2). Then u(t) = u,(t) — u,(r)
satisfies

(1) (E‘% v> T [A (), 6] + (F(0) () — F(2) ur(t), o) = 0

for all ve W%(Q). Let us put v = e~ * u(f) into (41). From the properties of u(f)
(Theorem 1c)) and from (41) we deduce that [4 u({), u(f)] is a continuous function
in te (0, T). Thus, integrating (41) over the interval <0, t,) (0 < t, < T) we have

(42) J;ﬂe“_‘ (93@, u(t)> dr +

dt

+ J :e"“{[A u() u(t)] + (F(8) us(t) — F(1) us(e), u(i)} dt = 0.
Since (d/d?) |u(?)|* = 2(d u(t)/dt, u(r)) and
e S = S (WOl ) + 4. Ju(@]? e

due to u(0) = 0, we obtain from (42) that

+

@) 27 fu()| e+ J:e"“(/I 27 u()]* + [Au(@), u(®)]
+ (F(2) uy(t) — F(r) uy(1), u(r)))dt = 0.

Owing to (5) and Schwartz’s inequality we estimate

(44) |(F () ua(t) = F(2) (1), u(®))] < Clu@lw - Ju()] =

<2 27 u@y + ¢ 272 u()]?.
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From (8) and (44) (putting ¢ = \/C;) we obtain

(A u(0), u(t)] + (F() us(r) = F() ua(0) u(r) 2 — Clu()]*

for all € (0, T). If we take A > 2C, then (43) implies ||u(to)| < Oforall0 < t, < T,
which yields the result required.

In Lemma 6 and Lemma 7 (c) we have proved that there exists a subsequence
{u™(1)} of the sequence {u"(1)} (sequence of Rothe’s functions) which converges
to the solution u(r) of (1), (2) in the corresponding norms. As a consequence of the
Uniqueness Theorem 2 we obtain

Theorem 3. The sequence of Rothe’s functions converges to the solution u(t)
of (1), (2) in the following norms:

a) u"(t) — u(r) in C(0, T, Lo(Q)),

b) u"(t) > u(t) in the norm of the space W5™'(Q) n Wi*'=1(Q') for each t € (0, T).

Theorem 4. If the assumption (3) is satisfied for | = k, then the solution u(t) =
= u(x, t) of (1), (2) satisfies (1) in the classical sense for a.e. (x,1)e Q = Q x
x (0, T).

Proof. Owing to Theorem 1 (c) with I = k) it suffices to prove that there exists
the distribution derivative du(x, 1)/t € L,(Q) (see [7], Theorem 2.2 Chap. 2 and
Remark 1.2 Chap. 4). Let y(1) € C'(<0, T) and ¢(x) € C§(Q). Then, we have

LT Lu(x, ) Y'(1) o(x)dx dt = — J-: Lg(x, 1) ,/,(,) o(x) dx dt

where g(x, 1) € L,(Q) is generated by the abstract function d u(t)/dt e L, (<0, T),
L,(Q)) = Ly(Q) — see the proof of Theorem 1. Since linear combinations of all
(1) ¢(x) are dense in CF(Q), Theorem 4 is proved.

Remark 4. If we consider a nonhomogeneous problem (1), (2), i.e., if (2) is of the
form

u(x, 0) = uo(x,0), D} u(x,1)

20x(0,T) = Di “o(x, t)laax(o,r)

for1 =0,1,...,k — 1, where uy(x, 1) is a sufficiently smooth function in Q, then we
solve the homogeneous problem

oz + Y (=DM Di(a;(x) D'z) + a*(t, x, Dz) = 0
ot il)7] sk

2(x,0) =0, Dyz(x,1)|sox.1y =0 for I=0,1,...k—1
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where
a*(t, x, Dz) = a(t, x, Duy + Dz) —

_ — 1)l Di(a. (x) Diu _6u0(x,t)
Iil,,zﬂgk( DI DY(ay(x) Dluo) = ===

Then the solution is of the form u(x, t) = z(x, 1) + ue(x, ).

Remark 4. The assumption that {t,};_, is a uniform partition of the interval
<0, T) is not essential in this paper. We can consider an arbitrary partition {t;}}-;
of {0, T), the norm of which converges to zero with n — 0.

Now, we shall be concerned with the dependence of the solution u(f) on u, from
(2) and on the operator F(t).

Let ut) (i = 1,2) be the solution of (1), (2) corresponding to u, = u,; and
F(t)u = F(t)u = ayt, x, Du).

Theorem 5. If

(45) |Fi(®)u — Fy(t)u| < a(r) + b(t) |u|lw forall ue w5(Q),

where a(t), b(t) are continuous nonnegative functions in <0, T, then the estimate
(46)
t
s = w1 5 & (Lo = ol + mas sl | a
1e¢0, T

0

(x) de + j ;bZ(T) dr)

takes place for all t € 0, T). (The constant K > 0 depends only on Cs, C4 from (8)
and C from (5).)

Proof. From Definition 3 we deduce

D =60y — )+ [AG() = a0 ) = o] +
+ (F() () = Fa( us(t)y wr(t) — ws() =0

for all t € (0, T). Hence, integrating this equality over <0, t) and using (8) We obtain
t
@) Jus) = s + & [ ue) = w0l 5
0
t
S Jaor = ol + [ 1009 = F@ ] i) — el .
0
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Owing to (5) and (45) we conclude
IF3(t) us(t) = Fo(t) ua(0)]] < [Fu(t) us(t) = Fat) us(0)]| +
+ [ Fa(t) us(0) = Fa() ua(9)] < a(t) Jus())lw + Cllus() = wa()]lw + b()

and hence if (12) is applied suitably, then (47) yields
t
@) Jnl) ~ w0 + s [ () ~ @l e < o~ wosl? +
0
t t t
+ max [lu,(¢)[% J‘ a*(t)de + J‘ b*(r)dr + Kf Jus(x) — uy(7)|* dr.
te(0,T> 0 0 0

Thus, (46) is a consequence of Gronwall’s lemma (see [12]).
Let u,(t) (n = 1, ...) be the solution of (1), (2) corresponding to u,, (from (2))
and to the operator F,(t) v = a,(t, x, Dv). We shall assume that

at,x, &) —at,x, &)\ sC.(t-t|+]t=r||g +]¢-¢)
holds for all t,t' € <0, T), &, éeE®and n = 1, ... and
IF()u — F(O) ul| < a,(1) [ullw + (1)

As a consequence of Theorem 5 we obtain

Theorem 6. If

T T
f ax(r)dc >0, f bi(r)dt > 0, |ug, — uel = 0

0 0
for n — oo, then u,(t) — u(t) in the norm of the space C(<0, T, L,(Q)).

3.

In this section we shall be concerned with the approximate solution u"(t) (Rothe’s
function) which we construct by means of the predictor-corrector scheme — see the
problems (1”), (2”) and (1”), (2”) in the introduction. First of all we prove a certain
a priori estimate for u"(¢) from which, similarly as in § 1, § 2, we deduce that u"(r)
converges to the solution u(t) of (1), (2). A priori estimates are obtained by similar
techniques as in § 1 and thus we do not go into details. Assumption (5) will be
considered (for simplicity) in the more special form

(5*) ]a(t, X, f) — a(t', X, f’)| <cC. (|t _ t,l + lf _ é’[) .
vye W) (s = 1, ..., n) is a weak solution of (1), (2") (u,_, being given) if
(49) (vs__hi‘:i , w) + [Ao,, w] + (F(t;) us—y, w) = 0

holds for all we W5(Q).
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uge Wh®) (s = 1, ..., n) is a weak solution of (1”), (2”) if
(50) (£%£a0+u%@+w@%w=o

holds for all we W(<).
Existence, uniqueness and regularity of uy, v; (s = 1, ..., n) are guaranteed by

Lemma 1.

Lemma 10. There exist C and hy > 0 such that the estimate |[(u; — u,_,)[h||* +
+ h™!u; — us_y||i £ C holds for alls = 1,...,n and h < h,.

Proof. Subtracting (49) and (50), where w = v; — u,, we obtain

(v—s—;—us, vy — us> + [A(vy — uy), vy — ug] + (F(t;) ug—y — F(t,) vy, v, — u) =0
and hence by applying (12) and (8) we deduce

_ 2
B (1= Cah) + Coh o, — uglp < Ci(dh) 7 uy — o2

Since
”us-l - vsllfV = 2””5 - lls._1H$V + 2””3 - vs”%’

we have the estimate
Uy — U

G |25

Let us consider (50) for s = i and s = i — 1 with w = u; — u;_,. Subtracting these
equalities we obtain

(E;hu':l > Uy — “i—1> + [A(ui - ui—l)a u; — “i—1] =

C= —(F(t;) v; — F(t;oy) v;q, u; — ui_y)

2 .
(1 = C3h) + C;(2h)" o, — ulliy = C(2R) 7" JJuy, — uy—y |3 -

and hence applying again (12) and (8) we conclude that

Uy — U;—q 2 -1 2
(52) —jr_]u-qm+c¢|m_mﬂhg

Ui — Ui

2
p + Cy(12h)7" |lo; — vy |3 + Csh.

=

The estimates

o = o=l < 3uws = wully + 3y = wialiy + 3Juiy — 0y,
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(51) and (52) yield

2
Uy — Uiy

(53 3

(1= Cah) + C20)7" Jluy = uyey iy <

< ||Hi-1 = Ui-2 2 -1 2
< |2 4+ 2R uioy — uiy|y + Csh

where i = 2,...,n and h £ hy (h, is sufficiently small). From (53) we deduce suc-
cessively

(54) (

2
Uy — Uiy

+ Cy(2h) 7" fu; — ui~,||§y>(1 — C4h) 7% <

Uy — u?

IIA

+ Ci2h) ™" Juy — uo|py + CT (j=2,...,n).

It remains to estimate the right hand side in (54) From (49) for s =1 and w =
= vy — Uy we have

<vl ; Yo , Uy — uo) + [A(vy — uo), vy — up] = —(F(ty) ug, vy — uo) —
— [Aug, vy — ug] .
Hence, by applying once more (12), (8) and (6) we conclude

vy —u

(55)

h) + Cih™ o, — weli £ C.

Similarly, (50) yields

u; — uy?

(56)

(1 = Coh) + Coh™ fluy = uolliy = Cs + Calloy [ -

But, (55) implies [|v; — uo|lw < C and hence the result required follows from (56)
and (54).

Lemma 11. There exists C and hy > 0 such that the estimate

vy — ug?

+h Yo, —uli = C
h ”” “HW

takes place for all s = 1,...,nand h < h,.

Lemma 11 is a consequence of Lemma 10 and (51).
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Lemma 12. There exist C and hy > 0 such that the estimate |ug|y + ||v,|w < C
holds for all s = 1,...,n and h < h,.

Proof. From Lemma 10 and the triangle inequality we deduce
(57) ”us” <C forall s=1,...,n and h < h,.

From (50) for w = u, we have

(&;hb , us> + [Aus, us] = _(F(ts) Us, us) .

Thus, owing to (8), (57) and Lemma 10, we deduce
(58) lusl < €1 + Collvg||lw forall s=1,...,n and h<h,.
Due to Lemma 11 we have the estimate
lodlw = Cs + Julw
and hence, using (12), we conclude from (58) that

[us|lw < C forall s=1,...n.

The rest of the proof follows from Lemma 11.
By means of u, v, s = 1, ..., n we define Rothe’s functions u"(¢), v"(). Lemma 11
implies

(59) Ju(t) = (@O < cn™*

and Lemma 10 and Lemma 11 yield

Us T V-1l < ¢ forall s=1,...n and h<h, where v, = u,.

(60 |==

By virtue of the a priori estimates in Lemma 10, Lemma 11 and (59) we prove
by the same method asin § 1 and § 2

Theorem 7. Let u"(t) be (Rothe’s function) of the form: u™(t) = u,_y + (t — t,_y).
hT N ug — ug—q) for ti_y St =Sty s=1,..,n (uy = ue(x) from (2)), where u,
(s = 1,..., n) are solutions of (50). Then u"(t) converges to the unique solution u(t)
of (1), (2) in the following norms:

a) u"(t) > u(t) in C(0, T), L,(Q)),
b) u"(t) > u(t) in the norm of the space W5 '(Q) n W5*'~}(Q') for all te (0, T).
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Remark 6. Rothe’s function v"(f): v"(t) = v,_y + (t — t,_4) h™ ' (v, — v,_y) for
ty_y St=<t,s=1,...,n (v, = u,) where v, (s = 1,..., n) are solutions of (49)
also converges to the solution u(r) of (1), (2). Theorem 7 holds true for v"(t) instead
of u"(t), since the same a priori estimates have been proved for v, (s = 1,..., n)
asforu, (s =1,...,n).

Remark 7. Using the results on regularity for linear ellipfic equations in the
interior of the domain @ we have proved regularity of the solution u(t) of (1), (2):

u(t) e L (<0, TY, W5*(Q") n C,((0,T), W5 (Q)) n (<3, T, W5 '~ 1(2))

(see Theorem 1). However, if 0Q is sufficiently smooth (0Q € C**"') then Lemma 1
and (9) hold true for Q' = Q — see [7] (Theorem 2.2, Chap. 4). Hence, by the same
techniques we can prove regularity of u(f) in 2 (we can put Q instead of Q' in (61)).

The results similar to those presented in this paper can be obtained also for more
general boundary value problems than the Dirichlet problem by using the cor-
responding result for more general boundary value problems of linear elliptic equa-
tions — see [7] (Chap. I. 2.6 and Chap. IV. 2.2, 2.8).
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