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INTRODUCTION

The recent results of J. L. TAYLOR in the spectral theory for several operators ([10],
[11]) allow to obtain an axiomatic theory of spectral decompositions for systems of
commuting operators, very similar to that for one operator ([6]).

I have presented in ([9]) some results which seems to be essential for such a gener-
alization. For example we have a uniqueness theorem for the spectral capacity and
a characterization of it by means of a local spectrum. The uniqueness theorem may
be proved directly ([12]), without to use a local spectrum, but this notion is very
useful in problems of quasinilpotent equivalence and commutators. All systems of
operators having an appropriate functional calculus ([1]) have also the spectral
decompositions in our sense. Let us remark that such a system may have several
functional calculi, no one of them valued in bicommutant of the system ([2]); however
it has only one spectral capacity.

In this paper we obtain a new characterization of the spectral capacity, by extending
to decomposable systems of commuting operators a result for one operator proved
in a previous paper ([8]). This characterization has been suggested to me by a paper
of E. BisHop ([4]). Actually I have proved in ([8]) that for a %-scalar operator, the
two spectral manifolds of E. Bishop corresponding to any closed set of the complex
plane are identical. This special spectral property remains valid also for any de-
composable operator ([7]). In what follows we shall give a variant of this result for
several operators.

PRELIMINARIES

For the convenience of the reader we shall summarize some definitions and results
of general spectral theory in several variables which will be used here.

Consider a complex Banach space X and let a = (ay, ..., 4;) be a system (k-tuple)
of mutually commuting linear continuous operators on X (we shall denote the
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operators by small letters as in ([10]) instead of capital letters as it is in use). The
non-singularity of a on X in the sense of J. L. Taylor means the exactness of a certain
complex defined conveniently in the terms of a and X; this may be either a chain
complex of Koszul type or a cochain complex of exterior forms, the two complexes
giving the same notion of non-singularity. The spectrum of a on X, denoted by
sp(a, X), is the set of all z € C* such that the system z — a = (z; — ay, ..., 2, — @)
is singular; the complement C*\ sp(a, X) of the spectrum will be called the resolvent
set of a on X and will be denoted by r(a, X).

The cochain complex of exterior forms which defines the non-singularity is obtained
as follows. Let o = (s, ..., 5) be a system of indeterminates and let us denote by
A[6,X], pe Z, the space of exterior forms of degree p in sy, ..., s, having the
coefficients in X (we put A?[¢,X] =0 for p <0 or p > k and A%[0, X] = X).
Then the cochain complex is the object consisting of the sequence (A?[, X]),cz
and of the left exterior multiplication by a,s; + ... a,s; as coboundary operator.
Therefore a is said to be non-singular if this complex is exact.

If U is an open set in C* then #(U, X) will stand for the space of all X-valued
functions defined on U which are co-times continuously differentiable with respect
only to Z,, ..., Z, in the sense of distributions; %(U, X) will stand for the space of all
X-valued analytic functions on U endowed with the topology of compact‘ convergence.
We shall denote by o the operator on the exterior forms in sy, ..., s, having the
coefficients in #(U, X) (or (U, X)) defined by [af](z) = [(zy — a1)s; + ...
oo + (zx — a) sc] A ¥(2), ze U, and by « @ 0 the operator on the exterior forms
in sy, ..., S dZy, ..., dZ, having the coefficients in (U, X) defined by [(« @ 9) V] .
(2)=[(z1 — ay) sy + - + (zx — @) s +(08/0Z,) dz, + ... + (0/0z,) dZ,] A ¥(2),
z e U. (the system (sy, ..., 8, dZy, ..., dZ,) will be written ¢ U dZ).

It is known that for any open set U < r(a, X) the complex consisting of the se-
quence (A?[o, B(U, X)]),.z and of « as coboundary operator, is exact ([11], Theorem
2.16). If we replace ¢ by ¢ U dzZ and a by « @ 0 then the complex obtained is exact
so much the more ([11], Lemma 1.3). If we replace #(U, X) by %(U, X) then (for
k > 1) the complex obtained is not necessarily exact but it is exact for any open
polydisc U < 1(a, X) ([11], Lemma 2.3).

We shall close this preliminaries by recalling the definition of the Cauchy-Weil
integral. Consider an open neighbourhood U of the spectrum sp(a, X) and an analytic
function f € #(U, X). The Cauchy-Weil integral of f with respect to a is an element
of X obtained as follows. If we regard the form fs; A ... A s, as an element of
A¥o U dz, #(U,X)] then its cohomology class with respect to o @ & contains
a form y with compact support ([11], § 3); it must keep the part of y containing
only dz,, ..., dz,, denoted by ny. Then the Cauchy-Weil integral of f, denoted by
fuR.—af(z) Adzg A ... Adz, is given by: [yR,_,f(z) Adzg A ... Adz, =
= [u(=1)*n x(z) A dz; A ... A dz; it depends only on the cohomology class of x
and it is continuous as a function of fe #(U, X). With the preceding results of
exactness at hand it is easy to obtain directly such a form y. Indeed, taking into
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account that (« @ 8)fs; A ... A 5, = o and denoting ¥ = U \ sp(a, X), we deduce
there exists a form ¢ € A*"![¢ U dz, Z(V, X)] such thatfs; A ... A 5 = (x ® 3) ¢;
now we have only to multiply the form ¢ by a suitable C® scalar function & on U
and to define y = fs; A ...s, — (2 @ 3) hp. Now we can pass to our proper
subject.

DEFINITIONS AND SOME AUXILIARY RESULTS

We present firstly a result of general spectral theory which completes Theorem 2.1

from ([9])

Proposition 1. Let U be an open polydisc containing sp(a, X). Then an element
fsy Ao A sce Ao, %(U, X)] belongs to the range of the operator a:
: Ao, 2(U, X)] » A", %(U, X)] if and only if the Cauchy-Weil integral of f
with respect to a is equal to zero.

Proof. If fs; A ... A s, belongs to the range of the operator a then fs; A ...

. A 8 = g where ¢ € A“" [0, %(U, X)] and in the definition of the Cauchy-
Weil integral (see Preliminaries) we may take x = o, whence [y R,_,f(z) A dz; A ...
...dz, = 0. Conversely suppose that [y R,_,f(z) A dz; A ... A dz, = 0. Since
U =U,; x ... x Ugis a polydisc, by the projection property of the Taylor spectrum
([10], Lemma 3.1), we have sp(a;, X) = U;, 1 £ j £ k. Let I'; be a circumference
in U, containing inside sp(a;, X), 1 < j < k. Then we have [y R,_,f(z) A dz; A ...

Aadzy = [r ... fr(zy — a))7" .. (z — @)  f(2) dzy ... dz;. Let us write now
the Cauchy integral formula for f:f(w) = (1/Q2ni)*) [r, ... fr,(za — wy) ™" ...
coo(ze — wo) "' f(2) dz; ... dz,, where w; is inside of I'; (1 £ j < k). We have the
following identity f(z) = (zy — ay) ... (zx — @) (z¢ — ag) ™' ... (z — @)™ f(2) =
=[(zy = wy) + (we —a)] ... [(ze — we) + (W — @) (21 —ag)™ ... (2 — @) ™"
.f(z). By performing in the last expression the product of the first k factors and
passing to the integral we shall obtain terms containing at least a factor z; — aj,
except the term containing (z; — wy) ... (z, — w,); but, by assumption, the integral
corresponding to it is equal to zero. Since the integrals are analytic functions of w
when w; is inside of I'; (1 < j £ k) and are not modified by the dilatation of the
circumferences I';, we shall obtain actually an equality of the form f(w) = (w, — a,).
.g:(w) + ... + (W, — a) g(w), we U, where g; are analytic functions on U, so
that the proof is finished.

If we consider on A?[o, %(U, X)] the topology of convergence of the coefficients,
we obtain the following

:Corollary. For any open polydisc U containing sp(a, X), the operator « of the
preceding proposition has the closed range.
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Proof. Indeed, by Proposition 1, the range of « consists of all forms fs; A ... A s
having the Cauchy-Weil integral equal to zero. Since this integral is continuous as
a function of f, the corollary is proved.

Before to state the following result it must give some definitions. We shall deal
with systems of operators having a certain type of spectral decomposition, so-called
decomposable systems of operators. For one operator there are two equivalent
definitions for this type of decomposition; the one is in the terms of maximal spectral
spaces ([5], Chapter 2), the other in the terms of spectral capacities ([3], [6]). The
most natural seems to be the second definition which is very similar to that of the
spectral operators in the sense of Dunford. The notion of spectral capacity is a broad
generalization of that of spectral measure (compare for instance the property of
additivity requested for the spectral measure to that for the spectral capacity).

In ([9]) we have given the definition of the decomposable systems of operators
in the terms of spectral capacities. Let us denote by #(C*) the family of all closed
subsets of C* and by &(X) the family of all linear closed subspaces of X.

Definition 1. A spectral capacity on C* is an application & : #(C¥) » ¥(X)
satisfying the following conditions:

(@) 4(0) = {0}, 6(c*) = X.
(ii) é’( ﬂ F) = ﬂ £(F ) for any sequence (F,),ey < f(C")
(iif) For any open covermg {U,;}7-, of C* we have X = Z &(U;) (i.e. any element

x € X may be written, not necessarily in a unique manner in the form x = Z X;,
x; € 6(U))).

Definition 2. A system a = (ay, ..., a,) of mutually commuting operators is said
to be decomposable if there exists a spectral capacity & on C* such that:

(iv) a; 6(F) = 6(F), 1 £j £ k and

(v) sp(a, 6(F)) = F for any set F e #(C").

Lemma 1. If a is a decomposable system then for any set F e ﬂ(c"), we have
sp(a, X/6(F)) = C*\F°.

Proof. For every z° € F° let us take an open set U such that F° and U cover C*
and z° ¢ U. Then we have by (iii), X = &(F) + &(U). By a well known isomorphism
theorem we deduce X/&(F) is isomorphic to &(U)/&(F) n &(U) = &(U)|&(F n U);
on account of a result of Taylor on the spectral inclusions ([10], Lemma 1.2 or [11],
Lemma 1.5), we have sp(a, &(U)/6(F n U)) = U and therefore z° ¢ sp(a, X/&(F)),
as desired. '

In the following proposition we show that the decomposable systems of operators
have a property similar to the property § of E. Bishop ([4])- '
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Proposition 2. Let U be an open polydisc in C* and (y,) = A*"'[o, %(U, X)]
be a sequence such that for n — o, o, — o, a being defined by the system a =
= (ay, ..., a). If a is decomposable then for every open relatively compact poly-
disc D, D < U, there exists a sequence (¢,) = A*"'[o, %(D, X)] such that a, =
= a@, and for n - o, @, > o.

Proof. Consider two open polydiscs D, and D, such that D =« D = D, = D, =
c Dy = Dy = U. Denoting X; = &(D,), X, = &(C*\ D,) we have by (iii), X =
= X,; + X,, whence the following short sequence 0 » X; n X, - X; ® X, —»
— X — 0 is exact (the first application is given by x — x @ (—x) and the second
by x; @ x, = x; + x,). Since U is a polydisc, on account of a result of exactness
from ([10], Theorem 2.2), the sequence 0 — %(U, X; n X,) — %(U, X,) ®
® (U, X,) - (U, X) - 0 is also exact. By using the exactness in the last step (i.e.
the surjectivity) we obtain there exist the sequences (y,) = A*[o, %(U, X,)],
(¥n) = A*"'[o, %(U, X,)] such that y, = ¥, + ¥,. Consider now two other open
polydiscs D}, D} such that D = D, =« D, « D, and D, =« D} =« D] <« U and let
us denote Y = X/&(D} \ D3). By applying Lemma 1 we obtain sp(a, Y) = D5 U
U (€*\ D}). Therefore sp(a, Y) has two separated parts and we may apply the
variant given by J. L. Taylor for the theorem of idempotents; thus there exist two
linear continuous projections p and g such that p + ¢ = 1 and sp(a, pY) = D},

PN
sp(@, qY) = C*\ D{ ([11], Theorem 4.9). We shall prove that p ,(z) = ¥,(z) and
PN

q ¥(z) = Y(z), z € U, where x — % stands for the quotient natural map of X on Y.
It will be enough for this to prove that p% = o for any x € X, and g% = o for any
x € X,. The two equalities follow directly by applying the definition of the Cauchy-
Weil integral (see the preliminaries). Let x be an element of X,; since D, < r(a, X,)
(X, = 6(C*\D,)) there exists a form heA* '[o udz, #(D,, X)] such
that x s; A ... A 5, = (¢ @ ) h, whence p £ 5y A ... A 5, = (o @ 3) ph, therefore,
on account of the inclusion sp(a, pY) = D3 we deduce p% = o. Analogously one
proves the other statement. By using now the equalities from above and the as-
sumption of our proposition we deduce for n — oo, a, — 0 and af} — o. Since D
is an open polydisc contained in r(a, qY) and ¥, € A*"'[o, %(D, qY)], by the
exactness result recalled in preliminaries, there exists the sequence (x,) = A*~'[a,
(D, qY)] such that for n — oo, x, — o on D and o = ayj on D. If we use for ()
the Proposition 1, we obtain analogously that there exists a sequence () =
< AF ‘[a, (U, pY)] with similar properties. Thus denoting x, + x» by x» we have
ay, = ay’ and for n — oo, x¥ — o on D. Let us use now the exactness of the sequence
0 - @(D, Y) - %(D, X) > %(D, X|Y) > 0; we obtain that yr = £, where for
n— o, x,— o0 on D. The situation is now clear; we have «(y, — x,) € A¥[o,
(D, (D} \ D3))] and for n — oo, ai, — x,) = 0; since D is disjoint from D} \ D,
we deduce a(y, — x,) = an, where for n — oo, , — o0 on D. Denoting x, + 1, by ¢,
we have o, = a@,, ®, - o for n - co and thus the proof is finished.
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THE MAIN RESULTS

Theorem 1. If a is a decomposable system then, for any open polydisc U, the
operator o : A*"'[o, %(U, X)] - A*[o, %(U, X)] has the closed range.

Proof. Since A*™* = A*"'[o, %(U, X)] is a Fréchet space and ker « is a closed
subspace, the quotient space A* ™! [ker « is a Fréchet space. Let us denote y — ' the
natural quotient map A*~' — A*7!/ker o, and by & : A*”![ker & — A, the operator
coinduced by a on A*"![ker «, 4 = . Obviously, the range of « is equal to the
range of & and it is enough to prove that &y, — o implies ¥, — o. Indeed, if this last
property is satisfied then & has the continuous inverse and therefore is a linear
topological isomorphism. Let ({,) = A*~!/ker « be a sequence such that &}, — o
and let us prove that {, — 0. Let K = U be an arbitrary compact set and D be an
open relatively compact polydisc such that K =« D = D < U. Since o, = 8, — o,
by applying to (¥,) the Proposition 2 it follows the existence of a sequence (¢,) =
= A* '[o, %(D, X)] such that ey, = ag, and ¢, — 0 on D. Since a is decomposable,
the sequence A*~?[g, %(D, X)] 5 Ao, %(D, X)] 5 Ao, %(D, X)] is exact
([9], Theorem 3.1); consequently, taking into account that «(¥, — ¢,) = 0 on D,
there exists a sequence (x,) = A*"?[¢, %(D, X)] such that ¥, = ¢, + ayx,. By using,
for any n, the Taylor expansion of y,, we may write x, = %, + X, Where the coef-
ficients of y, are polynomials and for n — o, x, — o uniformly on K. Thus for any n,
Y, — oys = @, + ays on D, the left hand being defined on U. Therefore we have
obtained the sequence (Y, — ax;) = A*"'[o, %(U, X)] satisfying the following
properties: ayf, = (¥, — oxn), ¥, — ax, — o uniformly on K. This fact means just
that , — o in the seminorm of A*~!ker o corresponding to the compact set K; this
compact set being chosen arbitrarily, we have i, — o in A*™![ker « and the proof is
finished.

The last theorem contains the characterization of the spectral capacity announced
in the title. To state it let us make a convention of language.

We say that an element x € X may be uniformly approximated locally on an open

k
set G = C* by the functions of the form ) (z; — a;) fi(z), if for any point z°€ G
i=1

there exists an open relatively compact polydisc D, z°e D = D < G satisfying the
following condition: for every & > o there exist n X-valued analytic functions

k
Jieo -3 Sue: D= X such that | ¥ (z; — a3) fi.(2) — x| < &
i=1

Theorem 2. Let a = (ay, ..., a;) be a decomposable system of operators and &
be its spectral capacity. Then for any closed set F = C*, 8(F) consists of all elements
x € X which may be uniformly approximated locally on C*\F by the functions

of the form i (Zi - ai)fi(z)'
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Proof. By ([9], Theorem 3.2) &(F) consists of all elements x € X which may be
K

represented locally on C*\ F in the form x = Y, (z; — a;) f{(z), where f; are analytic
i=1

X-valued functions, 1 < i < k. Therefore &(F) is the set of all elements x € X such
that x s; A ... A s, belongs locally on C*\ F to the range of a. By the preceding
theorem this set is equal to the set.described in the enunciation, as desired.

References

[1]1 E. J. Albrecht: Funktionalkalkiile in mehreren Verinderlichen, Dissertation zur Erlangung
des Doktorgrades, Johannes Gutenberg-Universitidt zu Mainz, 1972.
[2] E. J. Albrecht: An example of a non-regular generalized scalar operator, Rev. Roum. Math.
Pures et Appl. 18 (1973), 983 —985.
[3] C. Apostol: Spectral decompositions and functional calculus, Rev. Roum. Math. Pures et
Appl. 13 (1968), 1483—1530.
[4] E. Bishop: A duality theorem for an arbitrary operator, Pac. J. Math. 9 (1959), 379—397.
[5] I. Colojoard and C. Foias: Theory of generalized spectral operators, Gordon and Breach
New York 1968.
[6] C. Foias: Spectral capacities and decomposable operators, Rev. Roum. Math. Pures et Appl.
13 (1968), 1539—1545.
[7] C. Foias: On the maximal spectral spaces of a decomposable operator, Rev. Roum. Math.
Pures et Appl. 16 (1970), 1599—1606.
[8] St. Frunzd: Une caractérisation des espaces maximaux spectraux des opérateurs Z-scalaires,
Rev. Roum. Math. Pures et Appl. 16 (1970), 1607— 1609.
[9] St. Frunzd: The Taylor spectrum and spectral decompositions, to appear in J. Functional
Anal.
[10] J.L. Taylor: A joint spectrum for several commuting operators, J. Functional Anal. 6 (1970),
172—191.
[11] J. L. Taylor: The analytic functional calculus for several commuting operators, Acta Math
125 (1970), 1—38. :
[12] F. H. Vasilescu: An application of Taylor’s functional calculus, Rev. Roum. Math. Pures
et Appl. 19 (1974), 1165—1167.

Author’s address: University of Iasi, Mathematics Faculty, Iasi, Socialist Republic of Romania.

362



		webmaster@dml.cz
	2020-07-03T00:57:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




