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THE LATTICE OF SOLID Ö^-^SUBGROUPS 
OF A RETRACTABLE GROUP 

RICHARD D . BYRD, JUSTIN T . LLOYD, ROBERTO A. MENA*, Houston, and 
J. ROGER TELLER, Georgetown 

(Received August I j , 1975) 

L Introduction. The concept of a retractable group was introduced in [2] and there 
it was shown that the class of lattice-ordered groups is a proper subclass of the class 
of retractable groups, which in turn is a proper subclass of the class of torsion free 
groups. In 1942 G. BiRKHOFF [ l ] proved that the collection of /-ideals of a lattice-
ordered group is a complete sublattice of the lattice of subgroups and that this sub-
lattice is Brouwerian. In 1962 this result was generalized by K. LORENZ [5]. Lorenz 
showed that the collection of convex /-subgroups of a lattice-ordered group is a com
plete sublattice of the lattice of subgroups and again this sublattice is Brouwerian. 
In [2, Theorem 4.2 (iv)] it was shown that the collection of ^-(т-subgroups of 
a retractable group is a complete sublattice of the lattice of subgroups. The dual 
assertion is true for Я-cr-subgroups, and hence, is true for solid cr-subgroups. The 
main result of this paper (Theorem 4.4) is that the collection of normal solid ö"-sub-
groups is Brouwerian. This is a generalization of Birkhoff's result cited above. We 
note that the normal solid <T-subgroups are kernels of cr-r-homomorphisms (see [2], 
Section 4). 

In Section 2 we give the definitions and notation that will be used throughout the 
paper. In addition, we recall some results from [2] that will be frequently used. In 
Section 3 we give sufficient conditions for a ^-cr-subgroup to be a A-a-subgroup 
(Theorem 3.1 and Corollary 3.3) and sufficient conditions for the transitivity of 
^-cr-subgroups (Theorems 3.7 and 3.8). In addition to the main result in Section 4, 
we show that if H and J are disjoint solid (Т-subgroups, then they commute element-
wise (Theorem 4.2). Finally, in Section 5 we give an example to illustrate the scope 
and limitations of our theory. 

*) This author's research was partially supported by a University of Wyoming, Faculty 
Sumrner Research Fellowship. 
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2. Preliminaries. Throughout this paper, G will denote a group, written multi-
plicatively and with identity i, and F[G) will denote the collection of all finite, non
empty subsets of G. Then F{G) is a join monoid, that is, F(G) is a join semilattice in 
which A V В = A Kj B, F{G) is a monoid in which AB = {ab\ a e A and b e B}, 
A{B V C) = AB V AC, and (A v B) С = AC v ВС. A homomorphism a of F{G) 
into G such that {g} a — g for every g in G, will be called a retraction of G. We will 
denote by Ret G the collection of all retractions of G. If Ret G is nonempty, then G 
is said to be a retractable group. If a e Ret G then the kernel of с is the set Ker a = 
= {Л| A e F{G) and ЛО* = /} . If Ker d is a convex subsemilattice of F{G), then a is 
said to be an l-retraction of G. There is a one-to-one correspondence between the 
lattice-orderings of G and the /-retractions of G [2, Corollary 3.3]; in this case V ^ 
equals Aa for all A e F{G), 

If Я is a subgroup of G and a e Ret G, let 

^я , . = {{A, B)\ A, BE F{G) and H{Aa) = Н{Ва)} , 

Ая,^ - {{A, B)\A,Be F{G) and (Aa) H = (Ba) H} . 

It was shown in [2, Theorem 2.12] that the mapping given by Я -> ^я,сг is a complete 
lattice isomorphism from the lattice of all subgroups of G into the lattice of all equi
valence relations of F(G). (Dually, so is the mapping Я -> Ан,(г-) It is easily seen that Я 
is normal in G if and only if А^^^ = Q^^^ (or Àjj^ 3 ^я,<г)- We call Я a a-subgroup 
of G provided that Ло* e Я for every A e F[H), If a is an /-retraction, then ^--subgroups 
correspond to /-subgroups. If Я is a cr-subgroup, then the restriction of a to F[H) 
is a retraction of Я and we will denote the restriction by стд. 

If в is an equivalence relation on a set X and xeX, then [x] Ö will denote the equiv
alence class containing x. 

Theorem 2.1. If ere Ret G and Я /s a subgroup of G, /̂zen й е following are 
equivalent: 

(i) Я is a (T-subgroup of G; 
(Ü) F(H) я iiiUeny, 

(iii) if (A, B) e QH,„ and С e F{H), then {A, CB) e q^y, 
(iv) if A 6 F{G), then F(H) ([Л] Q„^,) ^ [Ä] в^у, 
(v) П Я ) (КО] ^ « J ^ [{'•}] бя... 

The equivalence of (i) and (ii) was given in [2, Corollary 2.13] and the equivalence 
of (i), (iii), (iv), and (v) is straightforward. Of course, (ii) through (v) may be replaced 
by the corresponding assertions involving Яя,^-

Again, let a e Ret G and Я be a subgroup of G. Then Я is said to be a Q-CT-
subgroup (resp., A-cr-subgroup) if A = {a^, ..., a„} e F(G) and h^, ,..,h„eH 
implies that (A, {h^a^, ..., h„a„}) e QH^„ (resp., {A, {a^h^, ..., a„h„}) e Яя,а)- We 
call Я a convex Q-a-subgroup (resp., convex X-asubgroup) if я̂,<т (resp., )^н,^ 
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is a join congruence on F{G). If H is both a ^-a-subgroup and a Â-cr-subgroup, 
then H is said to be a solid cr-subgroup. (In [2] and [3], a ^-a-subgroup was called 
a c-tr-subgroup and a convex ^-(x-subgroup was called a convex (r-subgroup.) 
Clearly, a normal ^-(7-subgroup is a solid cr-subgroup. It was proven in [2, Theorem 
4.2 (ii) and (iii)] that a convex {}-(T-subgroup is a ^-(j-subgroup and a ^-(Т-subgroup 
is a cr-subgroup. Moreover, the collection ^„(G) of all ^-cr-subgroups is a complete 
sublattice of the lattice of all subgroups of G [2, Theorem 4.2 (iv)] and the collec
tion of all convex ^-cr-subgroups is a dual ideal of ^ ^ G ) in which joins and meets of 
non void subcollections agree with those in ^ ^ G ) [2, Theorem 4.1 and Corollary 4.8]. 
In particular, there is a smallest convex ^-a-subgroup, which is necessarily nor
mal in G. Also, the lattice of convex ^-cr-subgroups is a Brouwerian lattice [2, Corol
lary 4.6]. If (Tis an /-retraction then {/} is a convex ^-cr-subgroup, each ^-a-subgroup 
is a convex ^-c-subgroup, and the convex ^-cr-subgroups become convex /-sub
groups in the lattice-ordering of G induced by cr. 

If Ö" G Ret G, Я is a normal solid ö"-subgroup of G, and Xa* = ^({a i , ..., a„] cr), 
for every X = {Ha^, ..., Ha„] e FiGJE), then cr* e Ret GJH [2, Theorem 4.3 (i)] 
and there is a lattice isomorphism between the ^-a-subgroups of G that contain H 
and the ^-cr*-subgroups of GjH [2, Corollary 4.5]. 

In the sequel we will have occasion to use retractions constructed from a given 
retraction cr of G. If ф is an automorphism or an anti-automorphism of G, then фаф"^ 
(we do not distinguish in notation between the image of an element under a function 
and the image of a subset under the function) is a retraction of G [2, Theorem 5.1]. 
If Ф is the anti-automorphism of G given by дф = g~^, then a' = фаф"^ is called 
the dual of a. (if a is an /-retraction, then a' is an /-retraction and induces the dual 
lattice-ordering on G.) If (7 = cr', then cr is said to be self dual. If G is abelian, ф is 
an endomorphism of G, AeF(G), and cr"" is given by ACT''= ((AA"^) (7ф)(Асг), 
then cr̂  is a retraction of G [2, Theorem 5.5]. 

If X Я G, then [Z] will denote the subgroup of G generated by X. The rational 
numbers will be denoted by Q. 

3. Subgroups. We begin this section by showing that if a G Ret G, then the collection 
of convex ^-ö--subgroups is identical with the collection of convex A-cr-subgroups. 

Theorem 3.1. / / a e Ret G and H is a convex g-a-subgroup of G, then H is 
a convex À-a-subgroup. Hence, each convex Q-a-subgroup is a solid G-subgroup. 

Proof. Let J be the smallest convex ^-(j-subgroup of G. Then H ^ J and GjJ 
is a lattice-ordered group, where the join of {Ja^, ..., Jc/„} equals [Jai, ..., Ja„} cr* 
for every {Ja^, ..., Ja„} eF(GjJ) [2, Theorem 4.3 (i)]. Moreover, Hj] is a convex 
/-subgroup of GjJ [2, Corollary 4.6]. Let {A,B)E ?.ij ^ and С e F(G), where A = 
= {öfj, ..., ârj|, J5 = {bi, ..., Ь,,}, and С = {c'l, ..., c ,̂}. Then ({Ja^, ..., Ja^} , 

m 

{J/?i, ..., Jb^}) G Яд/j *̂. Since Hjj is a convex /-subgroup of GjJ, V {JaiHjJ) = 
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= ({Ja,, ..., Ja,,] a^)HlJ = {{Jb,, ..., Jb,} a^)HlJ - \/{Jb,HJJ). Hence, 

m p 

{{Ja^, ..., Ja^, Jc„ . . . , Je,} (7*) Hjj = {\/ (JafllJ)) v ( V (Jc.H/J)) = 

= ( V(J6 ,H/J ) ) V {WiJcfliJ)) = ({Jb, , ..., Jb„ / c , , ..., Je,} CT*) Я / J . 

It follows that (Ä и С, В и С) е Я/^^ and so Я is а convex Я-сг-subgroup of G. 
In view of Theorem 3.1, we will call a convex ^-d-subgroup simply a convex 

cr-subgroup. We have not been able to determine if each ^;-ör-subgroup is a Я-<т-
subgroup. 

The p roo f s of Theorem 3.2, Corollaries 3.3 and 3.4, and Theorem 3.5 are straight
forward and will be omitted. 

Theorem 3.2. Let ф be an automorphism or an anti-automorphism of G, a e Ret G? 
T = фаф~^, H be a subgroup of G, and J ~ Нф~^. 

(i) If H is a a-subgroup, then J is a т-subgroup of G. 
(ii) //(/) is an automorphism and H is a Q-a-subgroup, then J is a Q-zsubgroup of 

G; / / Ф is an anti-automorphism and H is a g-a-subgroup, then J is a X-x-sub-
group of G. 

(iii) / / Я /5 a solid a-subgroup, then J is a solid т-subgroup of G. 
(iv) If H is a convex cr-subgroup, then J is a convex т-subgroup of G. 

Corollary 3.3. / / (7 e Ret G and H is a Q-a-subgroup of G, then the following 
are equivalent: 

(i) Я is a Q-G'-subgroup; 
(ii) Я is a X-o-subgroup\ 

(iii) Я is a solid (T-subgroup; 
(iv) Я is a solid cr'-subgroup. 

Corollary 3.4. Let a e Ret G and H be a subgroup of G. 
(i) Я is a (j-subgroup if and only if H is a a'-subgroup, 

(ii) H is a convex cr-subgroup if and only if H is a convex a'-subgroup. 

Theorem 3.5. Let G be an abelian group, ф be an endomorphism of G, and cr e 
e Ret G. / / Я is a solid a-subgroup and H is ф-invariant, then H is a solid G^-
subgroup. 

Example 3.6. Let К = ß x g x g, the direct product of three copies of the 
rationals, and define {(a^, b^, c j , ..., (a,„ Ь„, c„)} a = (V<^n V^i^ V^i)-Then ere 
e Ret X and Я = {(0, 0, c)| с e g} is a convex ^--subgroup of K. If ф is the endo
morphism 0Ï К given by (a, b, c) ф ~ (c, ~ c , 0), then neither Я, Яф, nor Я + Нф 
is a (J""-subgroup of K. 
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Let a G Ret G and Я and J be normal solid (т-subgroups of G. We say that G is the 
0-product of Я and J, denoted G = H 0 J, provided that G is the direct product 
of Я and J and if {д^, ..., a j e F(G), then {«i, ..., ÖTJ (x = ({/г^, . . . , / i j сгя) . 
• ({ib • • -^л} ^j). where h^ e Я, j , - e J, and a,- == /i jV If (т is an /-retraction, Я and J 
are normal convex cr-subgroups of G, and G is the cr-product of Я and J, then G is 
the cardinal product of the convex /-subgroups Я and J. The extension of the de
finition of a (restricted) cr-product to more than two factors is immediate. 

A second problem which we have not been able to answer concerns the transitivity 
of ^-(T-subgroups. (Transitivity of (T-subgroups is trivial.) We show in Example 5.1 
that the property of being a convex cr-subgroup need not be transitive. 

Theorem 3.7. Let a e Ret G and Я and J he normal solid a-subgroups of G such 
that G ^ И ® J. 

(i) If К is a Q-ajf-subgroup of Я, then К is a Q-a-subgroup of G. 
(ii) Jf К is a solid cTfj-subgroup of H, then К is a solid a-subgroup of G. 

(iii) / / К is a convex o^-subgroup of H and H is a convex a-subgroup of G, 
then К is a convex a-subgroup of G. 

Proof. The verification of (i) and (ii) is routine. We prove only (iii). Let {A, B) e 
G^^^^^and С G F(G), where Л = {a^, ..., a„,},B = {b^, ..., b„}, and С = {c^, ...,c^,). 
Let a I = /i J j , bi = Siti, and ĉ  = х^у^, where hi, ŝ , x^e H and ji, ti, yt e J. Then 
{A,B)eQH,^ and so (Л u C, Б u C) G ̂ я,.^- Thus, H{{hy, ..., h^, x^, ...,Xp} ад) 
(Ui, ••.,./ш, З̂ ь ••., Ур} 0-j) = H{Ä u С) er = Я(Б и C)a = H{{s,, ..., 5„, 
x^, ...,Xp} ац) ({fi, . . . , r,„ У1, ..,,ур} aj). Since H n J = {i}, it follows that 
{Л. • • •. Jm. Уь • • -, Ур} ^ = [ti. • • -, tn, >',, . . . , jp} (T. Similarly, {A, В) G QH^^ implies 
that ( i l , ...,7„,} a = {t^, ..., f j a. Therefore, (Л, 5) G ̂ ^^^ implies that K{{h^, . . . 
..., / i j cT̂ j) = X({si, ..., 5„} (Тд) and since {x^, ..., x ,̂} e F{H) and X is a convex 
O-^-SUbgrOUp o f Я , X ( { / ï i , . . . , /?„,, X i , . . . , X^,} (Тя) = iC({5i , . . . , S„, X j , . . . , X ,̂} о"я). 

Consequently, K[A u С) a = X(JB U C ) (T and so X is a convex (т-subgroup of G. 
As a second instance of transitivity we have 

Theorem 3.8. / / Я is a normal subgroup of G, т G Ret Я such that for every 
g E G and every A e F{H), {^g~^Ag) т = g~^[Ax) g, ^ is a linear ordering of GJH 
such that (GjH, S) is a linearly ordered group, then there is an extension a oj т to 
a retraction of G such that {a^, ..., a^ a — ({a„,ö~\ ..., a^a~^] ^) ciny ^here 
{a^, ..., a„} G F(G) and Ha^ ^ ... ^ Ha^^^ < Ha^ = ... = Ha„, and H is a convex 
a-subgroup of G. Moreover, 

(i) if J is a Q-T-subgroup of H, then J is a g-a-subgroup of G; 
(ii) if J is a solid x-subgroup of H, then J is a solid a-subgroup of G; 

(iii) if J is a convex z-subgroup of H, then J is a convex a-subgroup of G. 

Proof. First we note that in [3, Theorem 3.18] that the existence of a was estab
lished and it was shown that Я is a convex cr-subgroup of G. 
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(i) Let {aj, ..., a j 6 F(G), where Ha^ S •-• ^ i^^m-i < ^^^hn = ... = Ha„, and 
j^,...,j„eJ, Then {a^a;\ ..., a^a~^} e F(H) and so {a,„a;\ ..., a„a;^} т = 
"= j{{jm^hian\ '",]п^п^г;^}т), for some J e J. Now, Hj^a^ й • й Hj^^^a^^^ < 
< Щт^т = . . . = Я / A and hence, / ({ j i^ i , . . . , 7 X } G) = J({J^^m^n"VrT^ ••• 

..., а^йп^} T) a„ = J({fli, ..., a„} cr). Therefore, J is a ^-cr-subgroup of С 
(ii) is immediate from (i) and the dual assertion for x-a-subgroups of G. 

(iii) Let({ai , ..., a^}, {bj, ..., b„})e^j,^and {ci, ..., Cp}GF(G), whereHöi g ... 
. . . й Har-^ < На, - ... = Яа„„ Hb, й . . . S Hb,^, < Hb, = ... = ЯЬ„, and 
Не, й ... S Не,., < Яс, = ... = Яс^. Then ({aj, . . . ,a^},{bi , ..., b„})G^H,^and 
hence, Ha^ = ЯЬ„. 

Case L HCp < Ha^. Then {a i , . . . , «,„, Cj, ..., ĉ ,} cr = ({ö ,a^ \ ..., a^a~^} т) a^ 
and {bj, ..., b,„ Ct, ..., ĉ ,} (J = ({Ь,Ь~^ •••. ^nb„~^} т)Ь„, Since ({ÖJ, ..., a^}, 
{bi, ..., b„})eQj^^, we have that J ( { Ö , , ..., a„„ c^, ..., Cp} Ö") = ^/({bi, ..., b„, 

Case 2. Яс^ = Ha^. Then, since a^b~^ e H and ({c/j, ..., 0^}, {b,, ..., b„}) e ^j ,̂> 
J{{a,b;;\..., a^b;^} т) = /({а,а~^а^Ь„"\ ..., а^а~^а^Ь;^} т) = 
= J{{a,a~\ ...,а^а~^} т)а^Ь„"^ = j ({ai , ..., «„,} ö-)b„"^ = J({bi, . . . , b j ö-)b„''' = 
= J{{b,b;\ ..., Ь Л " ' } tb„) b;' = J({bA~' , .•-, Ь Л " ' } Л Also, с Л ~ ' ^ Я and 
{c,Cp ,̂ ..., CpĈ , ̂ } G F[H). Thus, {Cfb« ,̂ ..., Cp6„ }̂ G ^ ( Я ) . Since J is a convex 
T-subgroup of Я and {{a,b;\ ..., a ^ " ^ } , {Ь^Ь~\ ..., b,b;^})eQj,, 
({оЛ7\ ..., а^ь~\ c,b~S ..., Cpb;^}, {b,b;\ ..., /?A"\ ^A~^ •••. ŝ n"̂ }) ̂  ^ъ,,. 
Therefore, J{{a,a~\ ..., a ^ ö ^ \ c ,a~\ ..., c^a'^} т)а^Ь;^ = J{{a,b~\ ..., a > ~ \ 
c,b„"\ ..., Cpb"^} T) = J{{b,b;^\ ..., b > ~ \ c,Ь~^ ..., c ,̂b~^} i). it follows that 
J{{a,, ..., a^, Cj, ..., ĉ ,} a) - J{{b,, ..., b„ Ci, ..., c j 0"). 

Case 3. Яс^, > Ha^. Then {01, ..., a^, Cj, ..., c J a = ({̂ '̂ ^p ^ •.., ^pS^} т) ĉ , = 
- {bi, ..., b,„ c,, ...,Cp} cr. 

Consequently, J is a convex (Т-subgroup of G. 

Theorem 3.9. If a is a self dual retraction of G and H and J are g-a-subgroups 
of G, then H J = JH. 

Proof. Let h E H and j e J. It was shown in the proof of [2, Corollary 5.3] that 
if {/, h} a = a, then a^ = h. Hence, h = a^ = ({/, h] a) ({z, h} a) = {/, h, /z^} cr. 
Thus, if A = (f, /7, /2^}, we have h = Aa and iEAeF{H). Similarly, j ~ ^ = Ba, 
where В = {/, j " ^ ; " ^ } G F(J). Since Я is a ^-cr-subgroup of G, Л u Б G F ( G ) , 
iE An В, and i,h-\h-^EH, H{A и B) a = Н{Ва). Similarly, J{A и B) a == 
= J(^ö-). Therefore, (Л u Б) Ö" = hj"^ = j,h, for some h,E H and Ji G J. Hence, 
hj =j-'h,E JH. It follows that H J = / Я . 

We conclude this section by giving a description of the cr-subgroup generated by 
a subset of G. 
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Theorem 3.10. Let ст e Ret G, Z ^ G, H, = [X], H, = [{Aa\ A G F(Я„._,)}] for 
/î > 1, and H = и я „ . 

(i) Я is t/îe a-subgroup of G generated by X. 

(ii) / / xy = yx for all x,yeX, then H„ - {[Aa) {Ba)-^\ A,BeF{H^^^)] for 
n > i and Я is abelian. If, in addition, G is an l-retraction, then H2 ~ H. 

(iii) / / a is self dual, then Я„ = {Aa\ A e F[H^_ 1)} for n > 1. 

Proof, (i) For each n, Я„ ^ Я^+j. Hence, Я is a subgroup of G. If [h^, ..., h^] G 
e F(H), then {h^, ..., / i j eF(^H^) for some n, and so {h^, ..., /7,„} сгеЯ^+i ^ Я. 
Therefore, Я is a cr-subgroup of G. If J is any cr-subgroup of G containing Z , then 
J ^ Я, = [Z] . If J 3 Я„, then AaeJ for every Л e ^(Я„). Thus, Я„+1 ^ J 
and so Я ^ J. 

(ii) First we show that Я is abehan. Clearly, H^ is abehan. If Я„ is abelian, then 
Я„ Ç С(Я„), the centrahzer of Я„. By [2, Theorem 2.14], the centrahzer of any 
subset is a a-subgroup. Hence, C[H^) is a cr-subgroup and the center of С(Я„) is 
a c7-subgroup that contains Я„. Therefore, Я is abelian. 

For n > 1, let T= {{Aa){Ba)-'\ A, В e F[H„_,)}. Then T ç Я, . If x, >̂  e T, 
then X = (Aa) {Ba)-^ and j = (Ca) {Da)'^ for some A, B, C, D e F{H„_i). Thus, 
x>'-i = (Aa) {B(T)-^ {DO) (Ca)-^ = (AD) a{{CB) cr)-^ G T and so T = Я„. 

Next suppose that cr is an /-retraction. Then [2, Theorem 3.2 (v)] there is a lattice-
ordering of G so that the join of A equals Acr for every A e F[G). Hence, to show 
that Я2 is a cr-subgroup, it suffices to show that {i, /1} a e H2 for every /i G Я2. Now, 
h G H2 implies that h = [AG) (BO)"^ for some A, В e H^. Then {i, h} a = 
= {f, {Ad) {Ba)-^} G = [BG, AG] G{BG)-' = {{A u Б) a) {BG)"^ G Я2. 

(iii) For П > 1, let T = {AG\ A e F{H,_,)}. If A, В G ^ ( Я „ _ , ) then ЛБ G ^ ( Я „ _ , ) 
and so {AG) {BG) = {AB) G G T. Moreover, A~^ G F{H^_^) and (^Ö-)~^ = (Л~^) a G 
G Tsince G is self dual. Hence, Т = Я ,̂. 

4. Distributivity. In this section we prove our main result. First we establish 
a theorem which appears very similar to the definition of cr-product. 

Theorem 4.1. Let G G Ret G, H be a Q-G-subgroup of G and J be a X-G-sub-
group of G such that H n J = [i]. If /ij, ..., h^e H and j j , ..., j„ G J, then 
VhJi, ..., hj,} G = {{h^, ..., /?J (J/^)({7i, . . . , л} ö-j). 

Proof. Since Я is a ^-cr-subgroup and hï\ ..., h~^ e H, H{{hJi, ..., hj„} G) = 
= H{{ji, ..., j„} G), and since J is a Я-cr-subgroup and j ï \ ..., j ~ ^ e J, 
({/iiji, ..., /îj,,} G) J = ({/ïi, ..., //„} (т) J. Thus, there exist he H and j G J such 
that /?({ii, ..., j j Ö-) = {/ij/i, ..., /v„} cr = ({/zi, ..., / i j ex) j . Therefore, 
{{h„ ..., / î j cr)-^ /г =j{{ju '-'Jfi} ^ )"^ e H n J = {/}. Hence, ({/îi, ..., /z„} tr^). 
. ({ jb . - - . i j ^j) = {{hi. •.., M ör)({7i, . . . , j j er) - {hj„ ..-JbJn} 0-. 
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It is well known that if G is a lattice-ordered group and H and J are convex /-sub
groups of G such that H n J = [i], then H and J commute element wise. Since 
each convex <j-subgroup is a solid ö'-subgroup, our next theorem is a generalization 
of this result. 

Theorem 4.2. If a e Ret G, H and J are solid a-subgroups of G such that H n J = 
== {/}, h e H and j e J, then hj = jh. 

Proof. The proof is divided into steps. 

(1) {{i,h}a)({i,j}a)^{{i,j}a){{i,h}.). 

Since Я is a g-ff-subgroup and J is a /l-a-subgroup, we have by Theorem 4.1 
that {h,j} <j = {hi, ij] a = ({/;, /} a){{i,j} a). Dually, {hj} a = {{i,j] a){{i, h] a). 

(2) [hj, /} a = {jh, /} ff . 

By (1) and Theorem 4.1, {hj, i] a = {{h, /} a) ({./, /} a) = ({/, /} ст) ({/г, (} a) = 
= {y/i, '"} o. 

(3) ( { / r ' , r ' } 'г)/, = / i ( { / t - ' , r 4 T) and ( { / Г ' , Г Ч <T)i = j ( { / i - S r 4 '^)-

Since /t and j are arbitrary, we have by (2) that ({/î~^J~^} o)h =• {/, j~^/i} Ü = 
= {̂  ^U"^} ^ = ^ï({^î~S/~^} ö̂ )- Similarly, we obtain the other equality. 

(4) hj = jh . 

By (3), hji{h-\j-'} a) = / < { / i ~ S r ^ } a)j = {h^j} a = j{{h-\j-'} a) h = 

= jh{{^ Kj"^}^)' Hence, hj == jh. 

Corollary 4.3. If a e Ret G and H and J are solid a-subgroups of G such that 
H n J == {/}, then [ я u J ] = HJ and H J is the a-product of H and J. 

Before proving our main result, we recall some properties of the lattices mentioned 
in Section 2. If cr 6 Ret G, then the collection .^^(G) of ^-cr-subgroups is a complete 
sublattice of tlie lattice of all subgroups of G. Dually, the collection «^ .̂(G) of X-a-
subgroups is a complete sublattice of the lattice of subgroups of G. The intersection 
^^(G) of thèse two collections is the collection of all solid cr-subgroups, contains 
all normal ^-cr-subgroups, and is also a complete sublattice of the lattice of all 
subgroups of G. By Theorem 3.1 the collection of convex cr-subgroups is a subset 
of ^^a(G) and, consequently, is a dual ideal of c9̂ (̂G) in which joins and intersections 
of nonvoid subcollections agree with those in <9'^(G). Since ^ ^ G ) is a complete 
sublattice of the lattice of subgroups of G, the collection of normal solid cr-sub
groups is a complete sublattice of the lattice of subgroups of G. 

Theorem 4.4. If a e Ret G and J^^{G) = {Н\ H -is normal solid a-subgroup of G}, 
then j\'\{G) is a Brouwerian lattice. 
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Proof. Since J'\{G) is compactly generated, it suffices to show that J^„{G) is 
distributive. Suppose (by way of contradiction) that ^ЖДО) is not distributive. 
Since J^„{G) is modular, there exist H, J,Ke J^^{G) such that H J = HK = JK, 
H n J = H n К = J n К, and Я, J, and К are pairwise incomparable. If т is the 
retraction of HJJH n J induced by cr, then the sublattice {H n J, Я, J, iC, HJ} 
is isomorphic to a sublattice of J'^^^HJJH n J). Hence, we may further assume that 
G =; / i J a n d H n J = [i]. 

Next we show that cr must be self dual. Let {//j, ..., h„] e Ker (7^. Then for 
every 1 ^ Ï g n, /ẑ  = у̂ /с̂  for some j^e J and к^еК. Then by Theorem 4.1, 
/ = {/zi, ..., / i j 0-Я = {Л^ь •••,7ЛЛ er = ({Л, . . . , л } ^j)({/ci, ..., /с,,} Ö-K)- Since 
J пК = {f}, {ji, ...,j„} cr = f = {/cj, ..., /c„} a. Now /ĉ  = jT^hi and, as above, 
/ = {/ci, . . . , / c jo- = ({7Г\ . . . ,у~^} ö-)({/zi,-.., M ^ ) - Hence, {7Г\ . . . , j7^} Ö" - /. 
Thus, Ker ö-я Ç (Ker а-я)"\ where (Ker адУ^ = {^~'\ Ле Ker (7^}. By [2, Corol
lary 5.2 (i)], Ker а'н == (Ker (Тн)~^ ^^^ by [2, Theorem 2.9 (ii)], Ö-̂  = cr .̂ Therefore, 
<Тя is self dual. Similarly, (Xj is self dual and since G is the cr-product of H and J, a is 
self dual. 

]f 0̂  G G and {/, g] a = a, then, since cr is self dual, a^ = g, (This was observed 
in the proof of Theorem 3.9.) Also, by [2, Theorem 2.4 (ii)], if r j , ..., r„ are integers 
with ri < ... < r„, then {g'\ ...,0'''"} Ö" = a'^^'^'g"'. Let г ф /ceiC. Then /c = hj 
for some i ф h E H and i Ф 7 e J. Let /i^ = {/, h} a and j ^ = {/, j} (Т. Then, by 
Theorem 4.1 and the above, {/l~V^ /^~V, h) a =- {h~'^p, h~^j, hi} a = ({ / i " \ h} a). 
• {{f\jy 0 ÖT) = (^i^~^)(ji) = J' Since iC is a solid cr-subgroup, Kj = 
^ iC({/i-y, h-'j, h} a) = K{{ih~Y, ih-'j, кЧ] a) = K{{h-'j\ h-'j\ h'f} a) = 
^ K{{h-\ h'} <j){{j,f} a) = K{hth-'){jj) = Khjj, = Kkj\ = Kj,, Therefore, 
Ji = JiJi^ = JJi^ ^K and hence, j = jl е К , a contradiction, since J n К = {/}. 
Thus, J^^{G) is a distributive lattice. 

Corollary 4.5. / / G is an abelian group of finite rank and a e Ret G, then G has 
only finitely many solid cr-subgroups. Hence, ^ ^ G ) is a finite distributive lattice. 

Proof. If D is a divisible closure of G, then cr can be uniquely extended to a retrac
tion T of D [3, Theorem 3.7]. Moreover, there is a one-to-one correspondence between 
the solid cr-subgroups of G and the solid т-subgroups of D [3, Theorem 3.9 (iij]. 
Thus, we may assume that G is divisible. Now each solid cr-subgroup of G is divisible 
[2, Corollary 4.10]. Since G has finite dimension as a rational vector space, the length 
of each chain in ^^G) is bounded by the dimension of G. Since ^ ^ G ) is distributive, 
it follows that ^ ^ G ) is finite. 

The subgroup generated by two (x-subgroups need not be a cr-subgroup, even 
for /-retractions. In Theorem 4.7, which was first proven by J. JAKUBIK for lattice-
ordered groups, we give a sufficient condition that the subgroup generated by a col
lection of cr-subgroups be a a-subgroup. In fact, the remaining propositions in this 
section represent generalizations of corresponding theorems for lattice-ordered 
groups (see [4, Chapter 1]). 
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Corollary 4.6. If (TE Ret G, H, J, X, Le ^ ^ G ) such that G ^ H ® J =- К ® U 
and H ^ K, then J ^ L. 

Proof. L = LnG = Ln{H V J) = {Ln H) v {Ln J) ^ ( L n X ) v {Ln J) = 
= {i} V ( L n J) с J. 

Thus, a ö--complement of a tj-factor is unique. 

Theorem 4.7. Let о е Ret G, Я;̂  be а so//rf a-subgroup of G for each AE A, T^ be 
a a-subgroup of G contained in H^, and suppose that if X,y E A with X ф у, then 
Hx n Ну = {/}. / / Tis the subgroup of G generated by U^A^ ^^en Tis a a-subgroup 
of G, T = Y, ® я̂» the restricted a^-produci of the T^s, and Ту is a normal solid 
aj-subgroup of T for each у E A. If Ту = Ну for each у in Л, then T is a solid a~ 
subgroup of G. 

Proof. By Theorem 4.2, xy = yx for each x E H^, у E Ну, with у ф Я. Therefore, 
for each у E Л, Ну and Ту are normal in [ U ^ A ] and [УТя], respectively. By Theorem 
4.4, Я , n [ и Я , ] = [ и (Яу n Яя)] = {/}. Thus Ту n [U T,'\ = {/} and so T is 

уФЯ ЛФу ЯФу 

the restricted direct product of the T^'s. 
If (fj, ..., t^ E F{T), then there exist Aj, ...,À„EA and t^j e Тя. for 1 ^ г ^ m 

and 1 ^ J ^ и such that f,- = /̂ ^ ... Г̂ „. Since T̂ .̂ ^ Я^̂ ,., we have by Theorem 4.1 
t h a t { r i , . . . , f„,} Ö- = ({fi i , . . . , r;„i}cr)({ri2, . . . , ^i„, . . . , ^m2. ••.. O / ^ ) . and, by induc
t ion, {^12, . . . , ^1^, . . ., r^2, • • - tmn} ^ = ( {^2 , • • ', t^l} <7) • . • ({^In, • • •. r̂m} ^)- ThcrcforC, 
{^ь • • -5 ̂ m} CT ^ T, Tis a cr-subgroup of G, and Tis the (Xj-product of the T;^''s. 

Since T;^ = H;^ n T, T^ is a normal solid (Xj-subgroup of T [2, Theorem 4.9 (i)]. 
The last assertion of the theorem follows from the fact that the collection of solid 
cr-subgroups of G is a complete sublattice of the lattice of subgroups of G. 

The following corollaries are immediate from Theorems 4.4 and 4.7. 

Corollary 4.8. / / (т e Ret G, G = J\ ® Я^, where {Яд| ÀEA} Ç ^ ^ ( G ) and 

H E J^,{G), then H = Y®{^ <^^ Яя). 

Corollary 4.9. If a E Ret G and G = Y. ® ^л = Y. ® Jy, w/iere {Яя| Я e Л} u 
ЛеЛ уеГ 

U {Jy\ уеГ} ^ >"^G), then G = ^ ® (^A ^ ^y)-
(Я,у)б/1хГ 

5. Example. If G is a lattice-ordered group and M is a convex J-subgroup of G 
that is maximal with respect to not containing some g in G, then M is called a regular 
subgroup. It is well known that the collection of convex /-subgroups that contain 
a regular subgroup is a chain. It is trivial that the property of being a convex /-sub
group is transitive. The following example shows that even though a solid ö--subgroup 
represents a generalization of a convex J-subgroup, neither of the above properties is 
true for retractable groups. 

Example 5.1. Let К and a be as given in Example 3.6, and ф be the endomorphism 
of К given by {a, b, c) ф = {b + c, 0, 0). If H, = {{a, 0, 0)| a E Q], H^ = 
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= {{a, b, 0)1 a, be g} , and Я3 = {{a, 0, c)\ a, с e ß} , then H^, H2, and Я3 are 
convex (T-subgroups of iC and are ф-invariant. Thus, by Theorem 3.5, H^, Я2, and Я3 
are solid 0"^-subgroups of K. We assert that these are the only proper solid a^-
subgroups of X. Suppose (by way of contradiction) that Я is a proper solid a""-
subgroup of G, where Я ф [H^, H2, Я3}. Since К is divisible, Я must be a subspace 
of the rational vector space K. Note that if Л — {{a^, bj , c^), ..., (a„, b„, c„)} e F[K), 
then from the definition of Ö"", Aa"" = (V^i + Vb^ - ДЬ/ + V^i ~ A^t, V^f, V^i)-

Case 1. The dimension of Я is 1. Then Я = {r(a, b, c)| r e Q}, for some (0, 0, 0) ф 
Ф (a, b, c) in K. There are numerous subcases and we present only one of these to 
indicate how a proof could follow. If a Ф 0, then, since Я ф Я^, Я has а basis of the 
form (1, b, c), where Ь Ф 0 or с Ф 0. If Ь > 0 and с > 0, then {(0, 0, 0), 
(1, b, c)] or'' = (1 + Ь + с, Ь, с) = r(l, Ь, с) for some г G Q. But then, b + с = О, 
a contradiction. The other subcases are done similarly. 

Case 2. The dimension of Я is 2. Then Я n Я2 and Я n Я3 are solid cr"'-sub
groups of К of dimension 1. Since H^ is the only solid (т "^-subgroup of dimen
sion 1, H ПН2 = H, = H глН^, But then, H^ = {H n H^) v (H n Я3) = 
= H n (Я2 V Я3) = Я n iC = Я, a contradiction. 

Therefore, the lattice of sohd cr''-subgroups of К is {{(0, 0, 0)}, Я^, Я2, Яз, К}, 
Now {(о, О, 0)} is а maximal solid er ̂ -subgroup with respect to not containing (1, 0, 0) 
and the solid О-""-subgroups that contain {(0, 0, 0)} do not form a chain. It is easily 
verified that H^ is the smallest convex tr "^-subgroup of К (or see [2, Corollary 4.6]). 
Also, {(0, 0, 0)} is a convex cr^ -subgroup of Я^, but not a convex cr^-subgroup of X. 
Therefore, the property of being a "convex cr-subgroup" is not transitive. Note that 
the restriction of а"" to F(H^) is an /-retraction and the retraction of KJH^ induced 
by a^ is an /-retraction, but cr'̂  is not an /-retraction. 

Finally, we note that the lattice of solid 0^-subgroups of К cannot be isomorphic 
to the lattice of all convex /-subgroups of a lattice-ordered group. Recalling Corol
lary 4.5, we ask the following question: 

If L is a finite distributive lattice, is there a retractable group G and a e Ret G 
such that Lis isomorphic to the lattice of normal solid (Г-subgroups of G? 
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