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DERIVATIVES OF HYPERGRAPHS

BOHDAN ZELINKA, Liberec

(Received February 2, 1976)

In [1] the following problem of D. K. RAY-CHAUDHURI is proposed:
Let H = (X, &), & = (E;:i€el) be a hypergraph such that |E| = r, Viel. Let

H, = (P(X), E"), E" = (E} : i eI), where P/(X) is the set of r-element subsets of X
and Ej is the set of r-element subsets of E;, i € I. H, will be called the r-th derivative

of H. Note that

E;

= (lb;'l> Find necessary and sufficient conditions under which

a hypergraph K is the r-th derivative of a hypergraph H.

This is Problem 27 from [1]. We shall solve this problem in a special case when the
intersection closure of K is intersecting. A hypergraph is called intersecting, if any
two of its edges have a non-empty intersection.

We shall intrcduce some notions. The r-th derivative of a hypergraph H will
be denoted by 0"H. If H is a finite hypergraph, then the intersection closure of H
is the hypergraph J(H) with the same vertex set as H which is the minimal hypergraph
with the property that it contains all edges of H and with any two edges it contains
their intersection as an edge, provided this intersection is non-empty.

Lemma 1. Let H be a hypergraph whose edges have cardinalities greater than
or equal to r, where r is a positive integer. Then

&J(H) = J(O'H) .

k
Proof. Any edge F of J(H) is of the form () F;, where Fy, ..., F, are edges of H.
i=1

Let FY, ..., Fj, F" be the edges of 0"J(H) corresponding to Fi, ... F,, F respectively.

Each set of the cardinality r which is a subset of each F; for i = 1, ..., k is a subset
k

of F and vice versa. Therefore F" = (N F}. As this is true for each r, the assertion is

i=1

proved.
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The edges of J(H), possibly with the empty set added form a semilattice S(H)
with respect to the set intersection.

A hypergraph is called r-intersecting, if any two of its edges have an intersection
of a cardinality at least r.

Lemma 2. Let H be a hypergraph whose edges have cardinalities greater than
or equal to r, where r is a positive integer. Then ¢"J(H) is intersecting if and only
if J(H) is r-intersecting.

Proof. If J(H) is r-intersecting, then for any two edges Fy, F, of J(H) we have
]F N F 2| = r, therefore there exists at least one r-element subset of F; n F, and
FynFy % 0. As F, F, were chosen arbitrarily, the graph ¢"J(H) is intersecting.
If J(H) is not r-intersecting, there exist edges Fy, F, of J(H) such that [F, n F,| < r.
Then there exists no r-element set which is a subset of both F; and F,, thus
F% n F} = 0 and 0"J(H) is not intersecting.

Lemma 3. Let H be an r-intersecting hypergraph. Then S(H) ~ &(&"H).

Proof. Let « be a mapping of the edge set of J(H) onto the edge set of 0"J(H)

such that «(F) = F" for each edge F of J(H); this is evidently a bijection. As we have
k k

shown, for any edges F, F,, ..., F, we have F' = () F; if and only if F = ( F,.
| A

i=

i=1
Therefore « is an isomorphism of &(H) onto &(0"H).

This assertion is not true in the case when H is not r-intersecting. Let H be a hyper-
graph with the vertex set {1,2,3,4, 5,6} and with the edges {1, 2,3}, {3,4,5},
{5, 6,1}, let r = 2. The hypergraph H is not r-intersecting. The semilattice S(H)
consists of the elements {1, 2, 3}, {3, 4, 5}, {5, 6, 1}, {1}, {3}, {5}, 0. The semilattice
S(0'H) consists of the elements {{1,2}, {1,3}, {2,3}}, {{3.4}. {3.5}, {4,5}],
{{5, 6}, {5, 1}, {6, 1}}, 0. These semilattices are not isomorphic, which is seen from
the fact that they have not the same number of elements.

The multiplication in a semilattice will be denoted by o or []. Let S be a finite
semilattice, let ¢ be a mapping of € into the set N of all non-negative integers. Let A
be a non-empty subset of S, lA\ = m. We define an operator INEX ((p; A) as follows.

For each positive integer j such that 1 £ j £ m let &/; be the set of all j-element
subsets of 4. Then

INEX (@5 4) = ¥ (1) ¥ o([] %)
j=1 Bed ; xeB
If S is a finite semilattice whose elements are sets and in which the multiplication is
the intersection of sets and if ¢(a) denotes the cardinality of the element a of &,
then INEX ((p; A) is the cardinality of the set union of all elements of A. This is the

well-known Inclusion-Exclusion Principle and this is also the reasen of the notation
INEX (¢; A).
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Lemma 4. Let S be a finite semilattice, let ¢ be a mapping of € into the set N
of all non-negative integers. Let A be a subset of S with at least two elements,
let ae A. Then

INEX (p; A) = INEX (¢; A — {a}) + ¢(a) — INEX (¢; a o (A — {a})).

Remark. By a o (4 — {a}) we denote the set of all elements of & of the form
a o x, where xe A — {a}.

Proof. Let j be an integer, 1 £ j < m, where m is the cardinality of 4. Let &/
(or o ) be the set of all j-element subsets of 4 (or A — {a} respectively). Denote
A" = A — {a}. Further, let &/ = o; — o/}. Bach element of &/ for j 2 2 is ob-
tained from an element of A}_l by adding a for j =1 we have &7 = {{a}}. Thus
for j = 2 we have

Lo(llx) =2 o(ll0)+ % o(l[0) =3 o(l[0)+ 3 e(I](a-x).

Besl j xeB Bedd ;' xeB Cesl ;" xeC Best j’ xeB oA j-

For j = 1 we have

WL AU =Y e() = 3 o)+ o).

xeB xeA xed—{a

Thus

m

INEX (0, 4) = X (~1** % o []+) =

Bedl xeB

n

=2EDTY oMo+ 3 o([T(@0x) =

Beso/j’  xeB Cedl'j—

m

= I+ S S o) +oto -

Cesl j—y

— INEX (¢, A') +:_"=i:(—1)fce T o(I](aex) + ola) -

j-1  Xe

= INEX (¢, A') _':‘i("l)"”%,"’(ﬂ(" o X)) + ¢(a).

If Ce ¥}, then there may exist xe C, ye C such that x + y, aox = ao y.
Nonetheless, we shall prove that in spite of it

’:g_:(—— I)j+1CEZH/(p(££(a 0x)) = INEX (p; a0 A).

Let the cardinality of A’ be p, let the cardinality of a o A" be q. Let a . A’ =
={c, .} Let Dy ={xed'|aox =c} for i =1,...,q. The elements of D,
will be denoted by b, ..., b{() for each i = 1, ..., g. Let {cyyy, .., €5y} be a subset

t
of a o A’. There are y = [ (2™ — 1) subsets C of A’ such that {a o x l xeC} =

I=1
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= {Cyiys -+ Cs(ny}- But, as well-known, 3(u + 1) of them have cardinalities con-
gruent with ¢t modulo 2 and 4(u — 1) have cardinalities congruent with ¢ + 1 modulo
2. As the expressions @( [](a o x)) occur in the expression

xeC

m—1
Y (=1)*1 Y o(]](a - x)) with the plus (or minus) sign if C has an odd (or even
ji=1 Ce¥U;” xeC
respectively) cardinality, we see that really
m—1
(17" Y o([](a-x) = INEX (g, a o A
ji=1 Ced;” xeC
and thus the assertion is proved.

Now let a finite semilattice © and a mapping ¢ of & into the set N bel given. In
the semilattice © we put a < b for ae S, be S if and only if a = b, ao b = a.
We say that the semilattice & with the mapping ¢ is representable by a system of
subsets of a set M, if there exists a system of subsets of M which forms a semilattice
isomorphic to & with respect to the set inclusion and the cardinality of the set from
this system which corresponds in the isomorphism to the element x € € is equal
to ¢(x).

Lemma 5. Let € be a finite semilattice, let ¢ be a mapping of € into the set N
of all non-negative integers, let q be a positive integer. The following two asser-
tions are equivalent:

(i) INEX (¢; @) £ n, INEX (¢; &(x)) £ ¢(x) for each x€ & and ¢(x) < ¢(y)
forxe S, ye S, x < y (here S(x) denotes the subsemilattice of S consisting of the
elements y < x.

(ii) There exists a set M of the cardinality n such that the semilattice G with the
mapping @ is representable by a system of subsets of M.

Proof. (i) = (ii). We shall proceed according to the number of clements of .
If this number is 1, the assertion holds trivially. Let k = 2; suppose that the assertion
holds for each € with at most k — 1 elements. Let © have k elements. Choose a maxi-
mal element a of S; as S is finite, such an element exists. The set &' = & — {a} is
a subsemilattice of &, because a, being maximal, cannot be a product of two elements
different from a. From Lemma 4 we have

INEX (¢; ©) = INEX (¢; &') — INEX (p; a - ©') + ¢(a).

If the condition (i) holds for &, it holds also for &'. As a > a . x for each x € &',
we have S(a) =a.@ and INEX (¢;ao.S’) =< ¢(a). Thus INEX (¢; S) =
2 INEX (¢; ©'). As INEX (¢; S) < n, we have INEX (¢; ') < n + INEX .
.(¢; a0 &) — ¢(a); denote it by n’. Obviously & and a o & satisfy the other
conditions from (i), because they are subsemilattices of . According to the induction
assumption there exists a representation of &' by a system of subsets of a set M,
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of the cardinality n’ (where the corresponding mapping is the restriction of ¢ onto &').
Also there exists a representation of a o« &' by a system of subsets of a set M, of the
cardinality ¢(a). Take both these representations and identify the elements of M,
and M, so that the sets which represent the same element from a « & coincide. The
result is the required representation of & by subsets of a set M with the cardinality
n' + ¢(a) — INEX (¢; a0 &') = n.

(ii) = (i). This follows from the Inclusion-Exclusion Principle.

Theorem. Let r be a positive integer, let N be the set of all positive integers.
L . ) . m

Let N(r) be the set of all positive integers which can be written in the form( ),
R

m

where m € N. Let \y be defined so that |//<( )) = m for each me N. Let K be an

r

intersecting hypergraph. Then K = 0"H for a hypergraph H, if and only if:

(o) the number ny of vertices of K is in N(r);
(B) the cardinality of each edge of J(K) is in N(r),

(v) if o(F) = 1//(|F|) for each edge F of J(K), then INEX (¢; S(K)) < n,,
INEX (¢; &(K) (F)) £ @(F) for each edge F of J(K) and ¢(F,) < ¢(F,) for
F,cF,, F{ *F,.

If these conditions are fulfilled, the hypergraph H is r-intersecting and is deter-
mined by K up to isomorphism.

Remark. The symbol &(K) (F) has an analogous meaning as &(x) in Lemma 5.

Proof. Necessity. Suppose that there exists H such that "H =~ K. As J(K) is
intersecting, J(H) must be r-intersecting according to Lemma 2. The condition (a)
follows from the definition of the r-th derivative, the condition (B) follows from
Lemma 1. Now S(H) = &(K), thus H is a representation of the semilattice S(K)
with the mapping ¢ by a system of subsets of a set with n vertices, where n is such an
integer that (n

) is the number of vertices of K. Thus (y) follows from Lemma 5.
.

Sufficiency. It follows from Lemma 5.

The hypergraph H is determined up to isomorphism, because from the proof of
Lemma 5 we see that the construction of the representation of & with ¢ by sets gives
a unique result up to isomorphism.

In the case when K is not intersecting, the hypergraph H is not determined uniquely
up to isomorphism. This is caused by the fact that if two edges of J(K) are disjoint,
we cannot determine uniquely the cardinality of the intersection of the corresponding
edges of J(H); it may be equal to an arbitrary integer between zero and r — 1.
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Let H, be a graph with the vertex set {1, 2, 3, 4} and with the edges {1,2} {3, 4},
let H, be a graph with the same vertex set and with the edges {1, 2}, {1, 3}. We see
that H; non = H,, 0*°H, =~ 0*H,.

This fact and the fact that for H which is not intersecting the semilattices S(H)

and S(0"H) need not be isomorphic complicate considerably the situation and thus
the problem for such graphs remains open.
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