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A CONTRIBUTION TO THE THEORY OF STABILITY 
OF DIFFERENTIAL EQUATIONS IN BANACH SPACE 

JiRi NEUSTUPA, Praha 

' (Received December 15, 1976) 

INTRODUCTION 

In this paper, we shall investigate the uniform exponential stabihty and the 
uniform stability at constantly acting disturbances of the zero solution of abstract 
differential equations of the type 

(0.1) - - = ÄU + B{t) и + N(t) и , 
dt 

where Ä and B(t) are certain linear and N(t) a certain nonlinear operator. In most 
cases the problem of stability of a solution UQ of a generally nonlinear differential 
equation in a Banach space can be transformed by simple methods to the problem 
of stability of the zero solution of an equation of the type (O.l); that is why stability 
properties of the zero solution of equations of the type (O.l) are of a great importance. 

From recent works about related mathematical problems we mention especially 
the paper of H. KIELHÖFER [10], who treats the Lyapunov stability of the zero solu
tion of a certain autonomous semilinear evolution equation in a Hubert space and 
J. BARTAK [2], who investigates the Lyapunov stability and the stability at constantly 
acting disturbances of solutions to abstract differential equations of the second order 
in a Hilbert space. 

We list the assumed properties of the operators A, B(t) and N(^t) in § 1. Some 
auxiliary theorems are proved in this section, too. The uniform exponential stability 
and the stability at constantly acting disturbances of the zero solution of the equation 
(O.l) are studied in §2 and § 3. It is proved that these properties of the zero solution 
of tile equation (0.1) are consequences of the uniform exponential stability of the so 
called linearized equation 

(0 .2) : ^== AU + B{t)u: 
dt 

In § 4, it is shown that the derived results can be applied to the Navier-Stokes equa
tions, the wave equation and the Timoshenko type equation. 
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1. FUNDAMENTAL ASSUMPTIONS AND SOME AUXILIARY THEOREMS 

Let X be a Banach space with the norm ||. ||o. The space of bounded linear opera
tors from X into X will be denoted by ̂ {X). If / c= £^ and M с X then ^ ^ 7 ; M) 
(for n = 0, 1, ...) will be the set of n times continuously differentiable mappings 
from / into M and C\l\ M) (for n = 1,2,...) will be the Banach space of all elements 
/ f rom ^€\I\ M) with a finite norm 

| |/iU.M> = Xsup||/<--)(0|lo. 
i = 0 tel 

Suppose that Л is a linear operator from X into X with the domain of definition 
^{A) such that A is the generator of a semigroup of operators e"̂ ' of the class CQ in X, 
i.e. it holds 

(i) lim \Ax - (e^' -^)Що = 0, 

(ii) e^° = I and e^^ e ̂ {X) for all ^ ̂  0, 

(iii) e^ '̂̂ -̂ '̂ ^ - e '̂̂  * e^'^ for aJl t,, t^ ^ 0, 

(iv) X being an arbitrary element of X, the mapping Г i-> e^'x belongs to 
^^«0, +cx));X). 

Remark 1.1. The semigroup of the class CQ is often called "the strongly continuous 
semigroup" in literature (see e.g. [3]). 

It may be proved that A is a closed operator, its domain of definition ^[Ä) is dense 
in X, the limit lim (1/^) log ||И'||^(;^) = у exists and for each Q> у there exists 

Mg e E^ such that the inequality 

(1.1) |Ии,,̂ М,.е '̂ 
holds for alW ^ 0 (see [3]). 

Let us denote 

||x||i = ||x||o + ll^^llo (for xeQj{Ä)) 

and let Xi be the space Qi{À) with the norm || «li. It follows from the closedness of 
the operator A that X^ is a Banach space. 

Suppose that B{t) (for f ^ 0) is a linear operator from X into X with the domain of 
definition ^{В) independent of t and containing Q){À). Let e"*' B(s) x e X^ for all 
x G X i , f ^ O , 5 ^ 0 and let the following assumption be fulfilled: 
(v) there exists a function ki{i) so that k^ e Li((0, /)) for all / > 0 and the inequality 

(1.2) yB{s)x\\,Sk,{t)\\x\\, 

holds for all x e &{A), s ^ 0 and t ^ 0. 
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Let . and III • |||o be norms defined on Xi and, respectively, on a subset ^( | | | • |||о) 
of X containing X^, so that there exist positive constants c,, c'2 and c^ such that 

(1.3) ||x||o й Ct\\\x\\\o й C2\\\x\\\ й c^\\x\\, (for X G X , ) . 

Further, suppose that the following condition is satisfied: 
(vi) there exists a function k2{t) and p > 1 so that /c2 e ^^,((0, /)) for all / > 0 and 

(L4) Ще̂ х̂Щ й М О Н о (for all f ̂  О and x e ^ ( | | | . |||o)), 

|||e^^ B{s) x\\\ й k2{t) \\\x\\\ (for all t ̂  0, s ̂  0 and xeX,) . 

Remark 1.2. We shall investigate the uniform exponential stability and the uniform 
stability at constantly acting disturbances with respect to the norm |||. ||| in § 2 and § 3. 
The norm ||| »Що will be used to determine the magnitude of disturbances in § 3. 

Let N[t) be a generally nonlinear operator from X into X with the domain of 
definition ^{N) independent of t and containing ^{A). Suppose that ê ^ N(s) x EX^ 
for all X e Xi, r ^ 0, s ̂  0 and let 

(vii) there exist a > 0 and functions /сз(^ R), k^i^R) defined respectively on 
<0, + 00) X <0, + 00), <0, + 00) and such that /сз(., R) e Li((0, /)) for a l l / > 0 
and R ^ 0, kj^t, .) and k^ are nondecreasing functions of R for а1И ^ 0 and 
the inequalities 

(1.5) |||ê îV(.)x||| ^ k,{uR)\\x\Y'\ \1ЩАЬ й 4R)Mr^ 

hold for all s ^ 0, ^ ̂  0 and xeX^ such that |||x||| ^ R. 
Further, we shall study differential equations of the type (O.l). By solutions of these 

equations on an interval / c: <0, + 00) we shall understand only functions from 
^^( / ; Xi) n ^^( / ; X) which satisfy the given equation on /. In the case of solutions 
on <0, + 00) we shall not mention this interval exphcitly. 

Lemma 1.1. Let т ̂  0. Then U is a solution of the equation (0.2) on <(т, + oo) 
if and only if U e ^ ^ « t , + 00); X^) n ^ ^ « т , + oo); X) and 

(1.6) U{t) = e^(''^^ U{T) + I e^^ -̂̂ ^ В{а) U{(T) da for t^x . 

Proof. If [/ is a solution of (0.2) on <т, +oo) then [ /G ^ ° « т , + o o ) ; X i ) n 
n ^ i « T , +oo);X) and 

do-

for all r ̂  T and a e <т, t}. Thus, 

(1.7) fV<^-^^ ^ ^ da - [V^^-'^M U(a) da + fV^^"^^ В(а) U{a) da . 
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All integrals in (1.7) converge in X as follows from the estimates 

, , , . , , d (7(a) 

do-
< M„e''<'"''> 

dU((T) 

âe 
^ М,е'<'-' ')| |и||с,«,,о; ДГ) 

|ie^('--U [/(a)||o ^ M, max (1, e«^*'-)) ||C/||co«x.,>;;r,), 

||е^<'-->В((т) L/(<T)||O ^ fciO - a) ||[/||со«,,,>:х.) • 

Using the integration by parts on the left hand side of the equation (1.7), we get (1.6). 
Conversely, let I / G ^ ^ « т , + oo); X^) n ^ ^ « т , +oo);X) and let U satisfy (1.6). 

It follows from the estimate 

ЦЛе^С---» B{CT) U{a% й Це^"'-"* В{а) U{CT)1 S k,{t - a) ||U||co«,.o;xo 

that the integrals 

^' d 
dt 

^Mt-a) Щ jjf^^^^ ^^ ^ Г j^QÄit-a) ßf^^^^ Ц^>) ^^ 

converge, hence we can interchange the order of integration, differentiation with 
respect to t or application of the operator Ä in these integrals after substituting U 
from (1.6) into (0.2). Then after an easy computation we can verify that U satisfies 
the equation (0.2). 

Lemma 1.2. Let т ^ 0 and let U be a solution of the equation (O.l) on the interval 
<(T, + oo). Then и satisfies the relation 

(1.8) U{t) = e^('-^> U{T) + f ê ^̂ -̂ > B{(T) U{CT) da 

+ f e^('""^ N{CT) U{a) da (for t ^ т), 

+ 

Proof. The equality (1.8) can be derived from the equation (0.1) in the same way 
as the equality (1.6) from the equation (0.2). It is only the last integral on the right 
hand side of (1.8) which is added here. The convergence of this integral in X follows 
from the estimates 

й cMt - <т,|||1/(а)|||).|| |и||Г" ^ с У ^ у ^ з ( ^ -<r,'f \\Uia)iy\\U{a)\\\^' й 

й C2 l ^ j /Сз И - 0-, - 5 l l '^l |co«t,r>;X,)] ll'^l|co«T,,>:XO • 
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Lemma 1.3. Let т ^ О and XQEX^. Then there exists a unique solution U of the 
equation (0.2) on <т, + со) satisfying the initial condition U(T) = XQ. This solution 
depends continuously on the initial value XQ in the sense that 

(1.9) |!^(Oi|i ^ ^P Ы^^ (Ь ^^') + 

4- I max(l,e^'')/ci(r - (j)exp Г A'j(/ - ^) d^ d a i ||xoiii . 

Proof. According to Lemma 1.1, we may deal with the integro-differential equation 

(1.10) U(t) = Q^^'-'ho + fV^'-'^^ B{(T) U{a) da 

instead of the equation (0.2). Denoting 

G{U) (t) = Ге^ '̂-'̂ ) B{(T) U{a) da, G%U) (t) = U{t) 

and regarding the linearity of the operator G, we may transform the equation (l. 10) 
into the form 

(1.11) Uit) = tG%V)(t) + G"-'\U){t), 
k = 0 

where V(a) = ê '̂̂ '̂ ^Xo and n is an arbitrary natural number. If Г > 0 then 

||G(^)||co«.,.+T>;xo й max Çk,{t - a) \\U{a)l da й 

й i k^{x + T ~ a)da\. |1/||со«т,г+г>;х,) •> 

and it means that 
ЛТ+Г л Г 

||^IU(co«t,T+r>;xo) ^ ^i(^ Л- T- a)da =^ \ k,{a)da , 

Choosing r > 0 sufficiently small, we may achieve that ||GJ|^(CO«T,T+T>;X,)) U h < ^ 
Then the series 

+ 00 

(1.12) I.G4V){t) (with F((7) = ^^^^-^^xo) 
k = 0 

converges in the norm of the space С^«т, т + Т>; X^). Similarly, we can prove also 
the convergence of the series (1.12) in the norm of the space С (̂<(т, т + Т}; X). 
Hence the sum of the series (1.12) (we shall denote it S{t, т) XQ) belongs to 
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С%(т,т + Ty;Xi)nC\(x,T-{- Т};Х). It follows from ( l .U) that S{t, т) XQ 
satisfies the equation (l.lO), i.e. S(t, т) XQ is also the solution of (0.2) on <т, т + Г>. 
It may be easily shown that 

S{t„ T) - S{t,, r,) * S{t2, T) {for T ut2Ut,UT+ T ) . 

Using this equality, we can extend the definition of the operator S{t т) for а1И ^ т 
in the following way: Every number t ^ т can be expressed in the form t = т + 
-i- тТ + t\ where m is a natural number and t' e <0, T). Then we define 

S(f, T) = S{t, T + тТ) ^ S{z + тТ, т + (m - 1) Т) * ... * *S(T + T, т) . 

The function U{t) = S{t, т) XQ is the solution of the equation (0.2) on <т, + oo) and 
U(T) = XQ. 

Returning now to (1.10), we can obtain the estimate 

||C/(0||i è M, .max(l ,e<") |xo| | , + i'k,{t - a) \\U(a)lda 

and applying the so called generalized Bellman inequality (see e.g. [4], p. 78), we get 
(1.9). The uniqueness of the solution Î7 is a consequence of the inequality (1.9). 

§2. THE UNIFORM EXPONENTIAL STABILITY 

Definition 2.1. The zero solution of the equation (O.l) is uniformly exponentially 
stable with respect to the norm |||.||| if there exist positive numbers ô, K^ and K2 
so that the implication 

(2.1) \\\U{r)\\\<ö^\\\U{t)\\\^K4U{0)\\\,'^^^'-^ 

is valid for each т ^ 0, for every solution U of (O.l) on the interval <т, т + L) 
(where Le (O, + co> depends on L̂ ) and for all Г G <т, т + L). 

Throughout Sections 2 and 3 we shall deal with the stability with respect to the 
norm III. Ill only, without repeating it any more. 

We do not study the existence of solutions of the equation (O.l) in this work. 
Nevertheless, it is known that some solutions of (0.1) with initial values sufficiently 
small exist in many special cases of the equation (O.l), including important equations 
of mathematical physics. Otherwise, of course, the investigation of the uniform 
exponential stability of the zero solution of (O.l) would have no sense. 

The main result of this section is the following theorem: 

Theorem 2.1. Let the zero solution of the equation (0.2) be uniformly exponentially 
stable. Then the zero solution of the equation (O.l) has the same property. 
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Proof. In virtue of the linearity of the equation (0.2), the uniform exponential 
stability of the zero solution of this equation means the existence of positive con
stants КI and К2 such that the inequality 

(2.2) | | |К(г)| |^К,| | |К(т)| | |е-^^<'-> 

holds for every solution F of the equation (0.2) and all т ^ 0, f ^ т. 
Suppose that Я is an arbitrary number from the interval (0, К2). It may be easily 

verified that U solves (O.l) if and only if the function U(t) = e^' U(t) solves the equa
tion 

(2.3) — = AÜ + B{t) Ü +.Ш + Q''N(t){e-''Ü). 
dt 

Similarly, Fis a solution of (0.2) if and only if V{t) = e'̂ ' V(t) is a solution of the 
equation 

(2.4) — = AV+ B{t) V + ÀV. 

dt 

It follows from (2.2) that if Fis a solution of (2.4) and т ^ 0, Г ^ т then 

(2.5) |||F(0|HK,|i|F(T)|||e^^-^^>^-^>. 
Further, let т be any nonnegative number and U a solution of the equation (2.3) 

on <T, T + L) . We shall prove that, if 

(2-6) PWIII<Z^-e^' 

and Ô is sufficiently small, then 

(2.7) III E7(0ili < 2Ki III Щ )̂|11 (for ^ e <^. ^ + L)). 
Let us suppose that this is not true, i.e. that there exists Го ^ '̂  such that 

(2-8) |||C7(fo)l||=2Kj|0(T)|!|, 

(2.9) IFWIII < P('o)i!l (fori€<T,g)-
By Lemma 1.3 there exists a solution F of (2.4) on <т, + oo) such that F(T) = Ü(T). 

Firstly, suppose that to e (т, т + 2r), where r = (1/(^2 - ^)) log Ki (i.e. e^^""^ '̂' = 
= K^). We shall use the following lemma: 

Lemma 2.1. Let T ^ 0 and let Ü, V be solutions of the equations (2.3), (2.4), 
respectively, on <T, T + L) so that U{T) = V{T). Then 

(2.10) \\\ü{t) - F(0||i й Z{t - T) ^k,{t - c x , e - i | l 7 ( c . ) | | | ) e - ^ - | | | % ) r - d c 7 
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for teÇr, Т + L), where Z is a certain real positive nondecreasing function on 
the interval <0, 4-cx)). 

The proof of this lemma will be given after completing the proof of Theorem 2.1. 
An explicit form of the function Z will be derived as well. 

Making use of the estimate (2.10) (where we put V = Ü, V = F, T = т), we obtain 

\\\U{to)\\\ й \\\V(to)\\\ + Z{to - т ) | \ з ( > о - <T, e-^iiî7(<7)||l) e"^- т<г)\\Г'da < 

fto 

+ ^ Z(2r) [ 4 ( ^ 0 - a,2K,c-"'\\\Щт)\\\)c-''^''{2KSЩт)\\\У'•^da й 

й К4ЩЩ + Z{2r) о-"Ч2К4Щт)\\\У*^ Г'\,{х + 2r-a, ^e"^*^-') da . 
J t 

Thus, we have 
\\\u{to)\\\^2KsumsKsum 

+ (21̂ 1 III[7(T)|I|)^+« C-^^' Z(2r) f /сз(т 4- 2r ~ (T, ô) da 

and using (2.6), we get 

(2.11) 1 ^ lô'' Z(2r) I k^{a, Ô) da . 

Secondly, let to ^ т + 2r. Then ô can be expressed in the form tg = т + rn + I, 
where n is a natural number and / e <r, 2r). Let V„ be a solution of the linear equation 
(2.4) on <T + rn, +oo) such that Vjr + rn) = U(r + rn) (the existence of such 
a solution V„ is ensured by Lemma 1.3). Then 

(2.12) |||F.(0||i S К.ЦЩг + rn)\\\ e(^-^^><—> (for t ^ т + rn) 

(see (2.5)). Now, writing U := U, V= Fand T = т + rn in (2.10), we get the ine
quality 

\\\Що)\\\ й IWMW + 

+ Z(fo - T - rn) Г /сз(Го - <̂ , e-^i|î7(<7)|||) e-^'i|î7(a)iP+« da 
Jt+rn 

and in virtue of (2.12), we have 

|||t70o)||| ^/:,|||[7(т + r«)||| e<^-*^^><"—>. 

. Z{2r) Г k,{to - a, Ô) e-^"i|Ща)\\\'^^ da . 
J x + rn 
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Since г ^ / and Kje*''"*^ '̂' = 1, one has 

(2.13) 1110(̂ 111 ^ |||E7(x + rn)|i| + 

+ Z(2r) Г k,{to - CT, Ô) e-^-|||L/(a)l||i+^dt7 . 
J x + rn 

Similarly, it can be proved that 

(2-14) 111 [/(.+ , ; ) | | | ^ III [7(z + rO--l))l | | + 

+ Z(2r) Г ' ' k,{to - <T, Ô) е-^-|||Е7((7)Г +' d(T 
Jr+ra-i) 

for J = 1, 2,.. . , n. Thus, using (2.13) and (2.14), we get 

iF(ro)|i|^|||t7(t)|||+(2X,|||t7(r)|||)»-. 

• 2(2^) Г Z I ' кз{т + rj - tr, ^) e-^'" d(T + Г /сз(Го - <r, ô) c'^' d(r"| ^ 
Ы-1 Jt+rO-l) Jt + rn J 

^ P ( T ) | | | + (2К,|||С7(т)1||)-"2(2г)ГГ'/C3(a,^)daj Де-^"<'^-->. 

Hence it is 

2iCj|u(T)||| = \\\U{t,)\\\ ^ \Щг)\\\ + {2K,\\\U{r)\Wz{2r)^Ç\,icr, 0)6^^.^^^^ 

and finally we have 

(2.15) (2Ki - 1) ^ 2Ki(5« Z(2r) f '/сз(ст, (5) da ^ ^ . 
Jo 1 — e '''' 

Now we can choose ^ > 0 so small that neither (2.11) nor (2.15) hold, which 
contradicts the assumption of the existence of ito > '̂  satisfying (2.8) and (2.9). 
Hence the inequahty (2.7) must hold. 

If и is an arbitrary solution of (O.l) on <т, т + L) such that \\\U(T)\\\ < è\2K^ 
then the function T]{t) = e'̂ * U{t) is a solution of the equation (2.3) on <т, т + L) 
and 1\ЩЩ < ÖQ^'jlK^, i.e. in virtue of (2.7) it is 

i||L/(0|||<2K,|||L/(T)|||e-('-). 

It means that the zero solution of the equation (O.l) is uniformly exponentially 
stable. 

Proof of Lemma 2.1. Functions Ü and F satisfy the relation 

(2.16) Ü{t) - Щ = ^'е^^'-'Щс) + 11} IÜ(<T) - Щ-] da + 

+ Г e-^"-"' ê " N{<7) {Q-Щ da . 
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In view of (1.4) and (1.5), we get the estimate 

\\m) - V{t)\\\ s j \ { t - a) ( l -, ^ ) 111%) - % ) i | | da + 

J Г ^ 

Now we choose a natural number UQ SO that 1no\{T'^ — \) < p [p is the number from 
the assumption (vi)) and set 2"°/(2"° - l) = p ' 2"'' = ^MJsing the Holder inequality, 
we have 

and regarding the inequality (a + ЬУ ^ 2^'"i(^^' + b^'), we obtain 

+ 

(t) - V{t)f й 2" -^ ( 1 + ^ ) '̂ '̂  ( ' - T ) d(T . 

Since (6> - T) ^ {t - T) for 9 e <Г, f>, it is 

/сГ(< ]«7P ' 

•|j|%)-%)rd<T-2^'-^[^J '.-^-k,{t - <T, e-iii/Hlll) ||li/(<T)||r''daJ'. 

Applying the generalized Bellman inequality, we can derive that 

\m&) - У{ЩГ' й V-' [ | } ' ' " ^ ^ з ( ^ - «T, е - 1 | % ) | | | ) | | | î / (a) | | r ' 'd<Tj ' + 

+ ^У'-' Г | ) " ' ^ " ^ з ( ^ - er, е-^11С/(<т)|||) |i|C/(<T)||r^ d J . 

• ( [ fc?'(' - '̂ ) df̂ Y ' (s - r)1 d5 
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and using the integration by parts on the right hand side of this inequality, we get 

Xc,Y 

\U{^) - ЩЩ^' ^ 2«'-^ Г Г е ~ ' ^ % ( г - (7,е-^"|||(;((т)|||) |||0((т)|||^+^ d d T 

+ exp^2« ~M 1 + 1 / 1 . ^ ^ 

The last inequality was derived for all Ö e <T, r>. If we set 5 = r, we get (2.10) where 

Z{t ^ T) = 2(^'-^>/^'exp J2^'- i ( 1 + i ^ ^ ' ^rO-djdo-T'' {t-T)lq\. 

§3. THE UNIFORM STABILITY AT CONSTANTLY ACTING DISTURBANCES 

Definition 3.1, The zero solution of the equation (O.l) is uniformly stable at con
stantly acting disturbances if to an arbitrarily chosen r] > 0 there exist ô^ > Oand 
(̂ 2 > 0 so that if {H[t) is any operator from X^ to ^(|[].|||o) (depending generally 
on t) and и is any solution of the equation 

(3.1) ^ = AU + B{t) и 4- N{t) и 4- H{t) U 
dt 

on an interval <т, т + L) (where L G ( 0 , +OO>) such that |||^(т)||| < S^ and 
IIJH(r) l/(r)|||o < (̂ 2 for alU G <T, T + L) which satisfy IIIL7(r)||| < ?|} then the inequality 
||jc/(rj||| < f] holds for all t e <т. т + L). 

Remark 3.1. The number L in Definition 3.1 depends on the solution U. The 
uniform stability at constantly acting disturbances is sometimes defined in such 
a way that the inequality |||Я(^)F(r)|j]o < Ô2 is required to be fulfilled for all te 
e <T, T + L ) and not only for such ^ e <(т, т + L) which satisfy |||f/(0||| < Ц- However, 
then the stability at constantly acting disturbances is a weaker property than that 
defined in Definition 3.1. 

Theorem 3*1. Let the zero solution of the linear equation (0.2) be uniformly expo
nentially stable, Then the zero solution of the equation (0.1) is uniformly stable 
at constantly acting disturbances. 

Proof. I. First we shall prove that the zero solution of the linear equation (0.2) 
is uniformly stable at constantly acting disturbances. Let rj > 0 Ы given. Put 
Ô1 = ^I^K^ (Ki and K2 are the numbers from the definition of the uniform exponen
tial stability of the zero solution of (0.2)). Suppose that т is an arbitrary nonnegative 
number and I/is a solution of the equation 

(3.2) ä ^ = л и + B{t) и + Ê(t) и 
dt 
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on <т, т + L) such that ||Щт)||| < ô^. Ê{t) is an operator from X^ into ^(|||-|||o) 
If the inequality |||t/(0|ll ^ ^i ^^^^ ^^^ ^^^^ ^̂ ^ ^̂ ^ Г 6 <т, т + L) then there exists 
Те(т , T + L) such that \\\U{T)\\\ = ^̂  and |||t/(0||| < ^i for all Г G <т, Т). Let F be 
such a solution of (0.2) on <т, + oo) that F(T) = U(T). Then it may be derived in 
a similar way as in the case of the inequality (2.10) that 

(3.3) \\\U{t) - V(t)\\\ è'-^Z{t- T) {'k,{t - a) | | !%) U{a)\\\o da , 

where Z is the same function as in (2.10). Suppose that IIIÄ(Ö') t/(ö-)|||o < à2 (where Ô2 
will be specified later) for all ÖT ^ т satisfying | |ЩО")||| < Y}. Let t ^ Tbe such a num
ber that |||ö'(ö')||| < r\ for all a e <T, t}. Then by (3.3) we have 

(3.4) \\\um s |||F(Oi|| + ^ Z ( r - T)^ , r f c . ( r - . ) d . ^ 
Ci J г 

^К,|||К(Т)|||е-^^^-^> + ^ Z ( r - r ) ^ , r ~ \ ( a ) d a . 
1̂ Jo 

It can be shown that there exist to > 0 and С > 0 so that 

(3.5) K,c-^''' + ^ Z{to) С I ^^((j) d(7 < 1 , 
1̂ Jo 

(3.6) /Схе"""^' + - Z{s) С I /C2(a) da < 2K, for 5 e <0, о̂> • 
^1 Jo 

Put 

(3.7) 02 = Co, {^CrijlK,). 

In virtue of (3.4)-(3.6) we have \\\U{(T)\\\ < rj for all a e {Z T + to} n <т, т + L). 
But if T + to < T + L then by (3.5) it is \\\U{T + fo)||i < ^1 as well and hence we 
can derive in the same way that the inequality |||t/(ö")||| < П holds also for all a e 
e<T+ to, T+ 2to} n {T + to, T + L) and consequently for all (т G <T, т + L). 

IL We shall now prove the uniform stability at constantly acting disturbances of 
the zero solution of the equation (O.l). Put Ê(t) U = H{t) U + N{t) U. Let rj' be an 
arbitrary positive number. There exist rj e (0, rj') and ^2 > ^ ^^ that 

(3.8) ^4(^)^ '^" + ^2 < CrjjlK, 

(where С is the number from (3.5)). Put ô[ = rjjlKj^. 
If 17 is a solution of the equation (3.1) on <т, т + L) and |||С/(т)||| < ô[, \\\H{t) 

U(t)\\\o < S[ for all f ^ T satisfying |||î^(r)||| < ^' then by the inequality rj ^ rj' it is 
|||Я(г) U{t)\\\o < Ô2 for all f G <T, T + L) satisfying \\\U{t)\\\ < rj. But this impHes that 
|1|Ä(0 U{t)io й Hn) n'^' + ^2 for r G <T, r + L) satisfying |||t7(011| < П- By (3.8) 
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we have |||Я(^) U{t)\\\o < CrjIlKi and hence, considering (3.5), also \\\Ê{t) U(t)\\\o < 
< Ô2 for those t, too. Using the results of part I of this proof we obtain the estimate 
\\\U{t)\\\ < n for all r e <T, T + L), i.e. also \р{Щ\ < t]' for all Г e <т, т + L). 

§4. APPLICATIONS 

4.1, THE NAVIER-STOKES EQUATIONS 

The flow of a viscous incompressible fluid in a domain Q is described by the 
Navier-Stokes equations 

(4.1.1) ^ _!_ (U, V) U = F - - grad p + vAU 
dt Q 

and the equation of continuity 

(4.1.2) d i v ü = 0 , 

where U is the velocity of the flow, p is the pressure, F is the body force, Q is the 
density of the fluid and v is the kinematic coefficient of viscosity. 

Suppose that ß is a bounded domain in £3 with a lipschitzian boundary dQ. We 
shall denote by ê{Q) the space of infinitely differentiable vector-functions U defined 
in Q and such that div U = 0 in ß , and by ^{Q) the space of all functions from 
S{fl) which have a compact support in Q. J(Q) or /iC^) will be the closure of <f (ß) 
in L2(ß) or in Wl{Q), respectively, while ^J{Q) or ^^(ß) will be the closure of ^ ( ß ) 
in 12(0) or in Wl[Q), respectively. Let us denote A = vP^ * Л, where P^ is the 
orthogonal projection of L2(ß) onto У{0) and Л is the Laplace operator. The opera
tor A will be considered on ^{A) = ^^{Q) n W^{Q). Put X = ^{Q) and following 
§ 1, let Xi be the Banach space ^(A) with the norm Ц.Ц̂  = ||.||o + Щ-Цо (where 
II. ||o is the norm in ^J{0)). The norm in % ( ß ) will be denoted | • \\oj^. It is shown in 
[6] and [7] that the operator A is the generator of a semigroup of operators e"*̂  of 
the class CQ in X and, in addition to other properties, e^'x G X ^ for x E ̂ JAQ) and 
there exists a nondecreasing function x on (O, + 00) so that 

(4.1.3) | |е- 'х| | ,^х(/) | |х |1„,.А^/* 

for all I >0, te(0, /> and xe°Ji{Q) 
Suppose that U^eC^iO, +00);/(fl)) n C°«0, +oo);j2{Q)) is a solution of the 

system of equations (4.1.1) and (4.1.2), satisfying the boundary condition 

(4.1.5) Uo(0|aß = Щ (for ' ^ 0 ) . 

The stability of the solution U^ depends on the behvaiour of differences U(t) — Ug(^t) 
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for every solution U e ^ i « T , т + L);J{Q)) n ^ ^ « т , т + L);J2{Q)) (where т ^ 0, 
L G ( 0 , +OO>) of the system (4Л.1) and (4.1.2), satisfying (4.1.5), Substituting y{t) = 
= U(r) — ^o(0 ^^ ^^^ ^^^^ ^ solves the system of equations 

(4.1.6) ^ + (Uo, V) V + (\̂ , V) Uo + (V, V) V = - - grad p' + v AV, div V = 0 
dt Q 

and satisfies the boundary condition 

(4.1.7) y{t)\en = 0 (for ^e<T,T + L)) . 

It follows from (4.1.7) that V{t)EXi and дЩ]с1еХ for Г G <т, т + L ) , i.e. VG 
G ^4<т, т + L); X) n ^^(<т, т + L); Xj). Also it is seen that the stability of the 
solution UQ of (4.1.1), (4.1.2) and (4.1.5) is equivalent to the stability of the zero solu
tion of (4.1.6), (4.1.7). 

Applying the projection P^ to the system (4.1.6) and denoting 

B{t) y = -p . [ (Uo(0 , V) y + (V, V) Uo(0] , NV = -РМУ, V) V] , 

we get the equation (O.l). The term P„ grad p is equal to zero, because grad p' is 
orthogonal to each element of ^^}{Q) in L2{Q) (see e.g. [11]). It may be easily verified 
that a function \ ^ G ^ ^ ( < T , T + L); X) n ^ ^ « т , т + L); X^) satisfies (4.1.6) and 
(4.1.7) if and only if it is a solution of the equation (Ö.1) on the interval <т, т -f L). 

The operators B{t) and iV are defined on ^J^{Q). Using the embedding theorem (see 
^•g- [11]» P- 33), the Holder inequahty and the inequality ||x||o/2(«) ^ const. ||х||^ 
which is for example a consequence of Theorem 3 in [11], p. 102, we can derive that 
there exists C4 > 1 such that 

(4.1.8) < ||ß(Oxj|o,, ^^C4||x||,, ||iVx||o^^ ^с^ЦхЦ? 

for all r ^ 0 and X G X I . Thus, it follows from (4.L3) and (4.1.8) that if we put 
k^{t) = C4 x(t)lt^^^ and a = 1 then the conditions (v) and (vii) from § 1 are fulfilled. 
Further, put III.Ill = IMI., IIMIIo = ||. | |o,., ^(IIMIIo) = «Л(0), M O = с.^ф^'^ 
and let p be an arbitrary number from the interval (1,4/3). Then also the inequality 
(1.3) and the condition (vi) from § 1 are fulfilled. 

Hence we can use Theorem 2.1 and Theorem 3.1 and conclude that if the zero 
solution of the linear equation (0.2) is uniformly exponentially stable then the zero 
solution of the equation (O.l) has the same property and also it is uniformly stable 
at constantly acting disturbances. On the other hand, the uniform exponential 
stability of the zero solution of the equation (O.l) is equivalent to the same property 
of the solution UQ of (4.1.1), (4.1.2), (4.1.5) and it may be easily proved that the uni
form stability at constantly acting disturbances of the zero solution of the equation 
(0.1) implies that the solution UQ of (4.1,1), (4.1.2), (4.1.5) has this property as well. 
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Besides, taking into account the relation between the equation (0.2) and the system 

(4.1.9) — + (V, V) (Jo + (Uo, W)V = - - grad p" + v AV, div V = 0 
Bt ' Q • 

(4.1.10) V(f)|,„ = 0 

we can write: -• ; , , , • 

Theorem 4.1.1. Let the zero solution of the system (4.1.9), (4.1.10) he uniformly 
exponentially stable. Then the solution UQ of the system of equations (4.1.1) and 
(4.1.2) with the boundary condition (4.1.5) is uniformly exponentially stable and 
uniformly stable at constantly acting disturbances. 

Remark 4.1.1. If the assumptions of Theorem 4.1.1 are modified in such a way 
that we require the zero solution of (4.1.9) to be uniformly exponentially stable 
regardless of the boundary condition (4.1.10) (i.e. not only solutions of (4.1.9) 
satisfying the boundary condition (4.1.10), but all solutions of (4.1.9) are exponential
ly decreasing to zero as ^ ->• + oo) then it may be proved that the solution UQ of the 
system (4.1.1) and (4.1.2) is uniformly exponentially stable and uniformly stable at 
constantly acting disturbances (i.e. roughly speaking we have information about the 
behaviour of differences U(t) — Ugij) as Г-^ + oo in the case of all solutions U and 
not only in the case of those solutions U which satisfy the boundary condition 
(4.1.5)). The proof of this result is quite analogous to the proofs of Theorems 2.1 and 
3.1. The only difi'erences are: a) We work with the systems of equations (4.1.1), 
(4.1.2) and (4.1.9) instead of the equations (O.l) and (0.2). b) Given a solution U 
of the system (4.1.1), (4.1.2) on <т, +oo), we cannot use Lemma 1.3 in order to 
establish the existence of a solution V of (4.1.9) on <т, + oo) such that V(T) = Ц'^), 
^(Ol^ß "̂  ^ 0 | ß ß (f̂ ^ ^ = T). Nonetheless, using Lemma 3 in [7], p. 47, we can prove 
that to a given solution U of (4.1.1), (4.1.2) on <т, + оэ) there exists a solution 
W e '^\{т, + cx)); X) n ^ ^ « т , + œ); X^) of the system 

— + (W, V) Uo + (Uo, V) W = - 1 grad p + v AW + (U, V) U , 
dt Q 

div W = 0 

such that W(T) = 0, W|^^ = 0 and then V :;= Ü + W is the solution of (4.1.9) that 
we are looking for. c) The difference ^U — У (see Lemma 2.1) is an element of 
^^X<T, +oo) ;Z) гл^^{{Т, +oo) ;Z i ) and satisfies the equation 

^^^LZ^ = A(U - V) + B{t) (U - V) + A(ü - V) + iV(e-^^ü), 
d^ 

hence it satisfies the relation (2.16) and also the inequality (2.10). 
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Remark 4.1.2. The same results as in Theorem 4.1.1 and Remark 4.1.1 could be 
proved als_o if we put Z = С^(Й), | | j . | | | = | . | 2 + (Й), ||M||O = |.|i+(/,>, where/i e(0, 1) 
and Ö^\Q) is the Banach space of continuous vector functions f = [ /1 , /2 , /з] 
defined on Д with the norm |.|o+(/,). (The norm \-\i+(h) (/ = 0, 1, 2) is defined as 
follows: 

k = 0 \m\=k xeQ i = l 

iï{D-fix,)-D-fix,)yr" 
+ X max -^ . ) 

4.2. THE WAVE EQUATION 

Let UQ be a solution of the problem given by the wave equation 

(4.2.1) Utt - u^^ = F{t, x, u, w„ u^) {t e <0, + oo), xe <0, тг» 

and by one of boundary conditions 

(4.2.2) u{t, 0) = u{t, n) = 0 (for ^ ^ 0 ) , 

(4.2.3) u^t, 0) + oco u{t, 0) = u{t, тг) = 0 (for t ^ O) 

and 

(4.2.4) M^r, 0) + ao u{t, 0) = u^{t, тг) + a„ u{t, тг) = 0 (for t ^ 0) . 

In the following the symbol x means the space variable and is not used for elements 
of some Banach spaces as in the previous sections. 

We shall sometimes denote м̂  = и, и2 = ŵ , "з = ŵ - The function F is supposed 
to satisfy the following conditions: 
(^s^l) F together with its partial derivatives 

df dF d^F d^F d^F . . . , ^ ,ч 
— , — , , , (i, J = 1, 2, 3) 
dx dui dUidx duiduj duidujdx 

is continuous and bounded for ^ ^ 0 , x e <0, тг>, [ui,U2,U2]e<!^ — R,Ry x 
X <^ — R,Ry X < —jR, i?> ( я being an arbitrary positive number), 

(j/2) F{t^ ^' 0, 0, M J = F{t, ТГ, 0, 0, u^) = 0 or F{t, тг, 0, 0, u^) = 0 for f ^ 0, u^ e F^ 
in the case of the boundary conditions (4.2.2) or (4.2.3), respectively. 

Further, we shall study the equation (4.2.1) with boundary conditions (4.2.2) and 

(4.2.5) u^t, 0) = u{t, тг) = 0 (for t ^ 0) 

(4.2.6) u^t, 0) = u^{t, тг) = 0 (for t ^ 0) 
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instead of (4.2.3) or (4.2.4), respectively, without loss of generality, because it may 
be easily proved that if x{^) is a sufficiently smooth function defined on <0, тг) and 
satisfying the condition 

(4.2.7) x'{0) = ao 

or 

(4.2.8) Z'(0) = ao , хЬ) = °^n 

then a function и satisfies the equation (4.2.1) and the boundary conditions (4.2.3) 
or (4.2.4) if and only if the function v = и ,e^ satisfies the equation 

(4.2.9) Vft ~ Vxx = {f - X'^) V + 2/v^ + e^F{t, x, e~^v, e"^t;„ -/Q'^V + Q~^v^) 

and the boundary conditions (4.2.5) or (4.2.6), respectively. However, the equation 
(4.2.9) may be considered as an equation of the type (4.2.1). 

Provided UQ e C\{0, +oo); C^(<0, тг») n C\{0, -hoo);C\<0, тг») n C ° « 0 , oo); 
C^(<0, ТГ»), the problem of the uniform exponential stability (or the stability at 
constantly acting disturbances) of the solution WQ can be easily transformed to the 
same problem concerning the zero solution of the equation 

(4.2.10) Utt — u^x = ^{t^ x)u + b{t, x) Ut + c(t, x) u^ + 
3 

+ Y. ^ij{^^ »̂ W» W„ M J . Ui . Uj , 
i j = l 

where 
dF 
ou 

dF 
K^' ^) = -T- (^ ^' "o(^ ^), Uolt, x), Uo^t, x)) , 

OUt 

dF 
C{t, x) = —- {t, X, Uo{t, X), Uo,{t, X), Mo;c(^ ^ ) ) . 

pi /*1 ^2p 
dij{t, X, u, Ut, M̂ ) = (r, X, Wo(r, x) + aßu , 

Jo Jo duiduj 

UQt{t, x) + (xßUf, UoJ^t, x) + ccßu^) ß da dß 

(for i,j = 1, 2, 3). It is a consequence of (̂ ß î) that the functions a, b, с and dij are 
continuous in all variables, continuously differentiable with respect to x and bounded 
for fe<0, +oo), XG<0, тг>, [w, м„ M J e < - Я , Я> x(-R,R} x < - Я , i?>. The 
equation (4.2.10) will be of course examined with the same boundary conditions 
as the equation (4.2.1). It follows from the properties of the function F that c{t, 0) = 
= c{t, тг) = ^зз(г, О, О, О, и^) = ^зз(^ ^, О, О, w,,) = О or c(t, тг) = ^зз(^, ^, О, О, w )̂ = 
= О if we deal with the boundary conditions (4.2.2) or (4.2.5), respectively. 
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Using the notation u^ = u, U2 = u^.u^ ^ u^, we can rewirte the equation (4.2.10) 
in the form of the following system of equations: 

(4.2.11) uu = и 2 ' 
3 

Uit = ^ixx + «Wi + bU2 + CUi^ + ^ dij . Ui . Uj . 
f j = l 

Let X be the space of all e lements / = [ A , / 2 ] e C^«0, тг» x C^«0, тг» such 
that Л(0) = Л(7г) =: Л(0) = Л(7г) = 0 or / ;(0) = Л(7г) = / . (я ) = О or /1(0) = 
= /1(71) = О if the boundary conditions (4.2.2) or (4.2.5) or (4.2.6), respectively, are 
considered. X is a Banach space with the norm 

(4.2.12) ll/llo = max | / , (x ) | + max | / ; (x) | + max | / , (x) | . 
X6<0,7r> JCe<0,7t> ХЕ<0,Я> . . 

P u t / ; V'' •• • 

ЩА) =Xn {[Л, Л ] I /1 б C^«0,71», f2 e C^«0, тг», Л(0) = Л(тг) = 0}> г 

or 
S)(A) =Xn { [ Л , Л ] | Л e C2«0, тг», /^ e C ' « 0 , тг», Л'(0) = /;'(я) = 0 } " 

or ' ^ i '̂ : . 

^(Л) = X п { [ / „ / , ] | / , е С2«0, Tt», /2 е С ' « 0 , тг», Д О ) = ^(тг) = 0} 

in the case of the boundary conditions (4.2.2) or (4.2.5) or (4.2.6), respectively, and 

Af==lf,JU{forfe^A)). 
It may be proved that the operator A is the generator of a semigroup of operators e^' 
of the class CQ in X such that 

(4.2.13) (e^7) (x) = ^ Гл (х + 0 + Л(х - О + Г V2W d^ , 

/ ; (х + о - Л ( ^ - О + Л ! ^ + О + /2(^ - О 

f o r / e X . The symbols/^ and Л in (4.2.13) mean the functions/^ a n d / 2 with an 
extended domain of definition so that 

— /1 and /2 are odd, 27r-periodic functions on E^ in the case of the boundary con
ditions (4.2.2), 

— /1 a n d / 2 are even, 47r-periodic functions such that/^(x) = —fii^n — x) for )̂1 
X 6 E^ in the case of the boundary conditions (4.2.5), 

— /1 a n d / 2 are even, 27r-periodic functions on Ei in the case of the boundary ):on-
ditions (4.2.6). 0 
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Denote by X^ the space 9{Ä) with the norm | j . [|i = [|. ||o + Щ . fô  as in Section 1. 
Put^(jj).jllo) = X, jjj.jjio = |j-j|o,and i||.||| = | | . | | i . Further, put 

B{t)f{x) - [0, a(/, х)Л(х) 4- h{u х)Л(х) + c{u x) / / (x)] , 

ЩА^) = [0, E d,j{u X,Л,Л,/0 ./,(x)./,(x)] 

(we denote/з(х) = fl{x)). Now, using the notation U — [u^, 1/2] = [̂ ? ^rl^ we can 
write the system (4.2.11) in the form (O.l). The operators B(t) and A (̂̂ ) map Z in to 
itself and it may be verified that Q^^B(s)f and e^W(5)/ belong to Xj if feX^. 
Further, i f / = [ / i , /2 ] e X j and t ^ 0, s ^ 0, it is 

| | e^4^) / ! | i = JM e^'^(^)/||o + e^^^(5)/j|o = 

(a(s, (j)f,{(T) + b{s, (T)f2(cr) + c(s, (T)/;((!)) da , 
J x-t 

a(s, X -h t)fj^(x -\- t) + b(s, X + t)f2{x + t) + c(s, x + / ) / i (x + /) + 

+ a(s, X ~ t) fi{x - t) 4- b{s, X - t)f2{x - t) + c{s, x - t)f[{x ~ t) -f 
Jllo 

+ ~ i r r ^ (^(^'' ^ ) / i W + K'^ ^)/2(^) + Ф , с7)П{а)) da , 

a(5, X + t)f^{x + t) + b(s, X + t)f2(x 4- r) + c{s, x 4- t)fi(x + t) + 

+ a(5, X - t)fi{x - t) -f b(s, X - /)/2(x - /) 4- ф , X - г)/;(х - t) 
Jllo 

= i||[ß(5, X + t)fi(x + О 4- b(s, X + 0/2(^ + 0 + Ф' ^ + 0 Л(^ + 0 + 
4- ö(5, X - t)fi(x - t) + b(s, X - t)f2(x - i) + ф , X ~ 0/i '(x - r) , 

a^s, X 4- 0 / i ( ^ + 0 + «(^' ^ + 0 / i ( ^ + t) + bj^s, X + /)/2(x 4- 0 + 

4- b(5, X 4- t)f2{x + t) + с ф , X + t)f[{x + t) + ф , X + t)fi{x + t) -

- а ф , X - t)f^{x - t) - a(s, X - t)f[{x - t) - b^(s, x - t)f2{x - t) -

- b{s, X - t)f^{x - 0 - Ф^ ^ - 0/i(^ - 0 - < '̂ ^ - 0/Г(^ - Olio + 
1 ИГГ"""̂ ^ 4- - (a(5, ö-)/i((r) + 7̂(5, (т)/2((т) + ф , ^) Л(ог)) d(T , 

a(5, X + t)f^{x + t) + b{s, X + t)f2{x 4- 0 + Ф ' ^ + 0 / i ( ^ 4- 0 + 

4- a(5, X - t)f,(x -t) + b(s, X - /)/2(x - t) + c(s, x ~~ t)fi{x - tul = 
Jllo 

= i max \a(s, x + t)f,(x + t) + b(s, x + t)f2(x + t) + ф , x 4- t)f;{x + t) + 
д:е<0,7с> 
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+ a{s, X - t)fi(x - t) + b{s, X ~ t)f2(x - t) + c{s, x - t)fi{x - t)\ + 

+ i max \a^{s, x + t)fi{x + t) + a{s, x + ' ) / i ' (^ + 0 + H^> ̂  + О/гС^ + 0 + 

xe<0,ii> 

+ b{s, X + t)f[{x + t) + ф, X + t)f'l{x + 0 + Ф. ̂  + 0/l(^ + 0 + 
+ aj,s, X - t)fi{x -t) + a{s, x - t)fl{x - t) + K{s, x - t)f2{x - t) + 

+ b{s, X - t)f2{x -t) + ф , X - t)fi{x -t) + c{s, X - t)f';{x - t)\ + 

+ i max |a^(s, x + t)fi{x + t) + a{s, x + 0 / i ( ^ + 0 + bx{s, x + tjfjix + t) + 
jce<0,n> 

+ b{s, X + t)fi{x + t) + ф , X + t)fl{x + t) + c{s, X + t)fl{x + t)-

- als, X - i)f,{x -t)~ a{s, x - 1)П{х - t) - b^s, x - t)f,{x - t)-

- b{s, x - t)n{x - 0 - Ф, X - t)fiix - 0 - Ф ' X - t)f'l{x - 01 + 
I f»x+t I 

+ i max {a{s, G)fJ^a) + b{s. cr)f2{(^) + c{s, (т)/1{(т)) da\ + 
^е<0,я> \j x-t I 

+ i max \a{s, x + t)fi{x + t) + b{s, x + ОЛС^ + 0 + Ф ' ^ + 0 / i ( ^ + 0 " 
JC6<0,7r> 

- a{s, X - t)fi{x - t) ~ b{s, X - ijfii^ - t) - c{s, x - t)fi{x - t)\ + 

+ i max \a{s, x + t)fi{x + t) + b{s, x + O ^ l ^ + 0 + Ф ' ^ + 0 / i ( ^ + 0 + 
д;е<0,я> 

+ a{s, X - t)f,{x -t) + b{s, X - t)f2{x -t) + c{s, x - t)f[{x - r)| ^ C5 . ^. \f\^ 

(where C5 is a positive constant). Similarly, it may be derived that there exists a non-
decreasing positive function C^(R) SO that the indequality 

y^s)fluc,{R)t\\f\\\ 
holds for alW ^ 0, s ^ 0 a n d / e X ^ such that l|/||i ^ R. 

Now, we see that the conditions (v), (vi) and (vii) of Section 1 are fulfilled with an 
arbitrary p > 1 in (vi) and a = 1 in (vii). 

Using Theorems 2.1 and 3.1, we see that the uniform exponential stability with 
respect to the norm 

(4.2.14) |||„0,.)Г = 11|[«0.0.««0.-)]||| = 
= max \u{t, x)\ + 2 max \ult, x)\ + max \uj^t, x)\ + 

осе<0,я> xe<0,n> xe<0,7t> 

4- max \utJ^t, x)\ + max \u^y,{t, x)\ 
л:б<0,я> jce<0,7r> 

of the zero solution of the equation 

(4.2.15) Ua - M̂cx = a{t. x) w + b{u x) u, + c{t, x) u^ 
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is a sufficient condition for the uniform exponential stability and the uniform stability 
at constantly acting disturbances with respect to the norm | | j . ||| of the zero solution 
of the equation (O.l) (hence also for the same properties, but with respect to the norm 
III'III', of the zero solution of the equation (4.2.10)). Considering the relation between 
the zero solution of the equation (4.2.10) and the solution UQ of the equation (4.2.1), 
we may conclude: 

Theorem 4.2.1. Let the zero solution of the linear equation (4.2.15) (with one of 
the boundary conditions (4.2.2), (4.2.5) and (4.2.6)) be uniformly exponentially 
stable with respect to the norm |||.|||'. Then the solution UQ of the equation (4.2.1) 
{with the same boundary conditions as in the case of the equation (4.2.15)) is uni
formly exponentially stable and uniformly stable at constantly acting disturbances 
with respect to the norm Щ-Щ'. 

Remark 4.2.1. The same results as in Theorem 4.2.1 could be proved also with 
respect to the norm 

lil"(̂ ' -)\¥ = ] I ["̂ (̂ ' ^) + "?(̂ ' ^) + "̂ (̂ ' ^) + ^U^^ ^) + "̂ x(̂  ^)] àx\ 

instead of |||»|||'. Then the magnitude of disturbances could be determined by the 
norm 

I 1/2 

[t/^(f, x) + ul{t, x) dx \\u{t. 

(see [12]). We investigate in detail the uniform exponential stability with respect to 
the norm |||. jjj" of the zero solution of several rather more special cases of the linear 
equation (4.2.15) and then apply the results obtained to the corresponding special 
cases of the equation (4.2.1) also in [12]. 

4.3. THE TIMOSHENKO TYPE EQUATION 

Suppose that Я is a Hubert space with the norm ||. ||^ and L is a selfadjoint, strictly 
positive linear operator in H with the domain of definition ^ ( L ) (the strict positivity 

4 
of the operator L means that Q = inf Sp (L) > 0). Let UQ G П C ' (<0 , + oo); ^{Ü ~ '^'^)) 
be a solution of the equation *"^ 

(4.3.1) u"\t) + aL̂ /̂  u\t) + ßLu{t) = 

= F{t, u, Ü'^u, Ü'4, Ü'^u, u\ Ü'^, Ü'\\ u\ Ül^u\ u'") , 
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where a, ß are real constants and F is a function with values in H. The operators Ü 
(for V = 0, i , i , Î) may be defined as follows: 

*+00 

Пи s" d£(s) и , 

where E{s) is the spectral resolution of identity corresponding to the operator L. 
Provided F is sufficiently smooth, the problem of the uniform exponential stability 
or the uniform stability at constantly acting disturbances of the solution UQ maybe 
transformed to the same problem concerning the zero solution of the equation 
of the type 

(4.3.2) w"" + ocL^^^u" + ßLu = a,{t) и + «2(0 ^̂ "̂"̂  + «з(0 ^^^^" + ^ДО ^^^""^ + 

+ b,{t)u + h2{t)Ü'''u + h^{t)Üi^u' + c,{t)u" Л- cJ^i)Ül^u" + 

+ d{t) и" + G(r, w, Ül^u, Ü^4, Ü'^, u\ Ü'^u, i}l4\ u\ Ül^u\ u") , 

where ai{t), «iW' •••' ^2(0' ^(0 ^^^ bounded linear operators in Я such that 

al) llfliW и, + a^W L '̂*u^ + . . . + d{i) м , | „ g c^ ^ I |b^'' '"i|U 
i = 1 j = 0 

(for Ï è 0 and [i/i, M2, «3, W4] e ^(L^'*) x в){1}1'-) x ®(L^'*) x Я), 
bl) if \и„и^,щ,и;\е2{Ь) X ®(L^/*) x ^{и"-) x ®(L»/*) , then 

a,{i) Ml + a2(t) L '̂̂ ^u, + .. . + d{i) u^ e 2{Ül% 

cl) \U'\a,{t)u, + ^^(0 bi/*ui + . . . + d{i)u,%, ucs^ i:'l|b^''*"i|U 

(for ( ^ 0 and [ M „ M2, M3, U4] e ®(L) x &{Û'*) x ^ ( L I / ^ ) X ^{Ü'% 

G{t, u, L '̂*M, L^'^M,..., L''*M", M'") is a nonlinear operator in H such that 

a2) |lG(f, ui, L»'*u„ Ü'^u,, Û'^u,,u„ Û'^u^, Ü'4„ u„ Û'*u^, и^)\\н S 

йc,{R)dЪ\^^''^*i\UT 
î = l j = 0 

(for r ^ 0 and [wi, W2, W3, W4] G ^(L^^^) x ^(L^^^) x ^{Ü^"^) x Я such that 

i = i i = o 

Ь2) if [ui , M2, "3 , «4] 6 ®(i^) >̂  ®(b^") X ^{Ü") X ©(Li/-*) then 

c2) W'M^, uu L'/*Mb L^/^Ui, Û'^u,,..., Ü'^u,, м,)1|„ ^ c^R) [ £ ' f Ц!.--/*«.!«]^ 
-' " ^ i = l j = 0 

(for t ^ 0 and [Ml, M2, мз, "4] e ®(L) x @(L^/*) x ^ ( L ^ ' ^ ) X ®(L1/*) such that 

i = l J = 0 
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Put X = ^(L^/*) X 2i{Û'^) X ^(L^/*) X H and define 

i|/io = i 'i\\L''%\U (for / = [ Л , Л , / з , / 4 ] e ^ ) . 

Since L" (for v = 0, i , i and f) are closed operators in H (see e.g. [18]), Z is a Banach 
space with the norm ||. \\Q. 

Let us define 

Af = [ /2, /з , /4, -o:L"% - iSL/,] (for / 6 i ^ ( L ) x &{Û/^) x £ (̂£1^ )̂ x ^(L»'^) = 

s ®(^)) , 

5 ( 0 / = [0, 0, 0, а ,(ОЛ + «2(0 b^'Vi + аз(0 L'"A + • • • + 0^(0 Ь^'^/з + ^ ( O M . 
iV(0/ = [0, 0, 0, G{t,f„ Ü'^f,, Ü''f„ ..., Ü'%,f^)] (fovfeX). 

Then denoting U = [u, м', м", м'"], we can rewrite the equation (4.3.2) in the form 
(0.1): 

— = AU + B{t) и + N{t) и . 
dt 

It may be proved that if 

(4.3.3) a > 0 , ß > 0, а 2 - 4 ) 5 ^ 0 

then the operator Л is the generator of a semigroup of operators e^^ of the class CQ 
such that 

(4.3.4) e ^ ' / = r i C'^mlt,s)dE{s)U S П ^JH^ аЕ{з)/,, 

f o r / = [/ i , /2, /35/4] e ^ , where m^(., 5) (i = 1, 2, 3, 4) are solutions of an ordinary 
differential equation 

(4.3.5) ^^^-^~-^ + aJs '^^-^ + ßsmh, 5) = 0 

on <0, + 00), fulfilling initial conditions 

(4.3.6) ^MQ^^) ^ ^ (for f = 1,2,3,4; ; = 0,1,2,3; 5 E (^, + a ) ) ) . 

We can find that 

Mt, s) = - Д ^ cos (̂ "̂̂ Я^О + Т Г ^ ^ cos (^''"^20 . 
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where Ai = V(a - V(«^ - 4jß))/2, Aj = V(« + V(«^ " 4)9))/2. Thus, it is 

5f̂  
^ const. s<-'-'+^'/* (for f è 0, s > e; j = 1, 2, 3, 4; ; = 0 ,1 , 2, 3 ) . 

The integral /^^^ /4 -0 /4 d£(s)/ i (j = 1, 2, 3, 4) converges for /^ e ^(L^'^-''>/'^), i.e. 
also the integral 

Г 
J Q 

^^Щ^ dE(s)A (for z = 1, 2, 3, 4; j = 0, 1, 2, 3) 

converges and hence all terms in (4.3.4) have sense. 
The operators B(t) and N(t) transform X into itself and it holds 

№/||o uc,\\f\\o (for r ^ O a n d / e Z ) , . 

\\A B{t)f\\o й c^Af Wo (for г è 0 and fe9{A)) , 

\\N{t)f\\o ^ Сб(К) | | / |о ' (for Ï ^ 0 and / 6 X such that ||/||o è R) , 

\\AN{t)f\\o й Ce{R) \\Af\\l (for г ^ 0 and fe^A) such that ||^/)jo ^ R) . 

Let Xi be the space ^{A) With the norm ||. || j = ||. ||o + \ \ A . ||O. Put Щ\. |||o) = X, 
IIMIIo = II • II o> III" III ~ II-111. Then it may be easily proved that the conditions (v)—(vii) 
from § 1 are satisfied. For example: 

|||e^'iV(5)/|i = ||e^'iV(s)/||o + \\A c^'N(s)f\\o й M,c'X\\N(s)fl + 

+ \\A N{s)f Wo) й M, e«' c,{R) | |/ | |? = M, e" Ce{R) | | | / Г 

and so the inequahty (1.5) in the condition (vii) holds. 
Now it is seen that we can apply Theorem 2.1 and Theorem 3.1 and, considering 

the relations between the equations (4.3.2) and (0.1), we conclude that the following 
theorem holds: 

Theorem 4.3.1. Let the zero solution of the linear equation 

u'"' + dll^^u" + ßLu = 0 ((x>0, ß>0, a^ - 4ß > 0) 
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be uniformly exponentially stable with respect to the norm 

lihWiir = il«(OII« + \\L'"uit)\u + \\n"u{t)\\„ + \\ü"u{t)\\„ + | |LM(0|U + 

+ \\ü'' u"(OIU + \\ü" и"0)11н + 1I«"'(0IIH + \\L"' «"'(011я • 
Then the zero solution of the equation (4.3.2) is uniformly exponentially stable and 
uniformly stable at constantly acting disturbances with respect to the norm |||«|||'. 
The magnitude of disturbances is supposed to be determined by the norm 

iiî coiiio = \ш\\н + w m ^ + \\ü''v{t% + \\L'''v{t)\u + ih'Wiu + 
+ \\L''^ vXt)U + W v'{t)\\^ + \\v"{t)\\„ + \\ü'- v"{t)\\„ + \\v"'{t)\\„ . 

Remark 4.3.1. The exponential stability of a linear Timoshenko type equation 

u"" + au"' + {b,Ü^^ + b2l) и' + {c,Ü^^ + C2I) и' + {d,L + ^2 '̂̂ " + d^l) = О 

(where a, b^, 62» ^u ^2^ ^i? 2̂? ̂ 3 are real constants) is investigated in detail in the 
paper [1]. 
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