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INTRODUCTION

In this paper, we shall investigate the uniform exponential stability and the
uniform stability at constantly acting disturbances of the zero solution of abstract
differential equations of the type

(0.1) %?:AU+B(t)U+N(z)U,

where A and B(t) are certain linear and N() a certain nonlinear operator. In most
cases the problem of stability of a solution U, of a generally nonlinear differential
equation in a Banach space can be transformed by simple methods to the problem
of stability of the zero solution of an equation of the type (0.1); that is why stability
properties of the zero solution of equations of the type (0.1) are of a great importance.

From recent works about related mathematical problems we mention especially
the paper of H. KIELHOFER [10], who treats the Lyapunov stability of the zero solu-
tion of a certain autonomous semilinear evolution equation in a Hilbert space and
J. BARTAK [ 2], who investigates the Lyapunov stability and the stability at constantly
acting disturbances of solutions to abstract differential equations of the second order
in a Hilbert space.

We list the assumed properties of the operators A, B(f) and N() in § 1. Some
auxiliary theorems are proved in this section, too. The uniform exponential stability
and the stability at constantly acting disturbances of the zero solution of the equation
(0.1) are studied in § 2 and § 3. It is proved that these properties of the zero solution
of the equation (0.1) are consequences of the uniform exponential stability of the so
called linearized equation '

(0.2) - Y 4u+BpU.

dt
In § 4, it is shown that the derived results can be applied to the Navier-Stokes equa-
tions, the wave equation and the Timoshenko type equation.
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1. FUNDAMENTAL ASSUMPTIONS AND SOME AUXILIARY THEOREMS

Let X be a Banach space with the norm |.[|,. The space of bounded linear opera-
tors from X into X will be denoted by #(X). If I = E; and M < X then %"(I; M)
(for n =0,1,...) will be the set of n times continuously differentiable mappings
from I into M and C"(I; M) (for n = 1,2, ...) will be the Banach space of all elements
f from %"(I; M) with a finite norm

1/ lncriney = ) sup 17°)o -
i=0 tel

Suppose that A is a linear operator from X into X with the domain of definition
9(A) such that A is the generator of a semigroup of operators e* of the class Coin X,
i.e. it holds

(i) lim [ 4x — (e — 1) x[t]o = O,
t-0+

(ii) e*® =T and e e B(X) forall t 2 0,
(iii) e+ = Aty A forall 1,1, 2 0,

(iv) x being an arbitrary element of X, the mapping t — e*x belongs to
%°(<0, +0); X).

Remark 1.1. The semigroup of the class C, is often called “the strongly continuous
semigroup” in literature (see e.g. [3]).
It may be proved that A4 is a closed operator, its desmain of definition %(A) is dense
in X, the limit lim (1/¢) log ||e*’| g, = 7 exists and for each ¢ > y there exists
t— oo

M, € E, such that the inequality
(1.1) le*lac) = M, . e

holds for all > 0 (see [3]).
Let us denote

Ixli = Ixllo + [l 4x]lo  (for x e 2(4))
and let X, be the space 2(4) with the norm |.]|
the operator A4 that X, is a Banach space.

Suppose that B(t) (for ¢t 2 0) is a linear operator from X into X with the domain of
definition 2(B) independent of ¢ and containing 2(A). Let e** B(s) x € X, for all
xeX,t=0,s = 0and let the following assumption be fulfilled:

(v) there exists a function k,(f) so that k, € L,((0, 7)) for all | > 0 and the inequality

(1.2) le®* Bls) x|y = ku(1) [x],

holds for all x € Z(A4), s =2 0and ¢t = 0.

1 It follows from the closedness of
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Let ||.|| and [||.]|o be norms defined on X and, respectively, on a subset (]| - [|o)
of X containing X, so that there exist positive constants ¢y, ¢, and ¢ such that

(1.3) [¥llo = edllxllo < callxl] = esfx]i  (for xeX,).

Further, suppose that the following condition is satisfied:
(vi) there exists a function k,(t) and p > 1 so that k, € L((0, [)) for all I > 0 and

(1.4) lle*x|| = ka(t) [|x[lo (forall =0 and xe 2(]-|o)) .
le** B(s) x| < ky(t) [|x|| (forall 20, s =0 and xeX,).

Remark 1.2. We shall investigate the uniform exponential stability and the uniform
stability at constantly acting disturbances with respect to the norm ||| ||| in § 2 and § 3.
The norm |||. |||, will be used to determine the magnitude of disturbances in § 3.

Let N(t) be a generally nonlinear operator from X into X with the domain of
definition 2(N) independent of ¢ and containing %(A). Suppose that e* N(s) x € X,
forallxeX,, >0, s = 0and let
(vii) there exist o > 0 and functions ks(t, R), k(R) defined respectively on

0, + ) x €0, +0), €0, +00) and such that k;(., R) € L,((0, I)) for all I > 0
and R = 0, ky(t, .) and k, are nondecreasing functions of R for all ¢ > 0 and
the inequalities

(15) [l NCs) x| = Ks(e R) [[x[[* 7= [INGs) x[lo = Ka(R) [Jx]I"*

hold for all s = 0,7 = 0 and x € X, such that ||x|| < R.

Further, we shall study differential equations of the type (0.1). By solutions of these
equations on an interval I < (0, +oo) we shall understand only functions from
€°(I; X,) n €*(I; X) which satisfy the given equation on I. In the case of solutions
on €0, + o0) we shall not mention this interval explicitly.

Lemma 1.1. Let © =2 0. Then U is a solution of the equation (0.2) on {1, + o)
if and only if U e €°((r, + ©); X,) n €¢'((z, + ©); X) and

t
(1.6) U(t) = e 2 U(7) + Je‘“"”’ B(o) U(c)do for t=rt.
Proof. If U is a solution of (0.2) on {t, +00) then U e %°({z, +); X;) N
N ¢ ({1, +0); X) and

etttme) d——g(") = e 4 U(o) + eAt=o) B(o) U(o)
g

forall t > t and o € {1, t). Thus,

t t t
(1.7 J.eA“‘” dU(o) do = J‘ et 94 U(o)do + fe‘““"’ B(c) U(o) do .

. do . N

29



All integrals in (1.7) converge in X as follows from the estimates

eAlt=0) dU(C’) I

t—a)
< Mgt
do

0

(o)
do |

e(t—o) |
= Mg 1U]lesceyiny »
0

He"““’)A U(”)Ho < M, max (1,e477) “U”cf’«r,o;xo >

le**= B(o) U(o) o < ky(t — 0) |U]|coce,syix) -

Using the integration by parts on the left hand side of the equation (1.7), we get (1.6).
Conversely, let U e €°(¢t, +0); X,) 0 €*(<r, +0); X) and let U satisfy (1.6).
It follows from the estimate

440 B(&) U)o < 402 B(o) U@ S kit — o) [U]csconsonn

that the integrals

t t
J 4 eae-o B(o) U(s) do , J Ae? B(¢) U(o) do

dt .

converge, hence we can interchange the order of integration, differentiation with
respect to t or application of the operator A4 in these integrals after substituting U
from (1.6) into (0.2). Then after an easy computation we can verify that U satisfies
the equation (0.2).

Lemma 1.2. Let t = 0 and let U be a solution of the equation (0.1) on the interval
{t, + o). Then U satisfies the relation

(1.8) U(t) = e*“ 2 U(7) + J pu B(o) U(o) do +

T

+ J.te“(“‘” N(o) U(s)do (for t = 7).

T

Proof. The equality (1.8) can be derived from the equation (0.1) in the same way
as the equality (1.6) from the equation (0.2). It is only the last integral on the right
hand side of (1.8) which is added here. The convergence of this integral in X follows
from the estimates

e N(&) U)o = colle= N(o) U@ 5

= bt = U1 5 (%)l (- 0. 2 U ) Jueli e s

2

1+ta
<o (EE) ks (’ - 0’? ”U”cow,»;x,)) 1Ullcocceeyiy -

C2 2
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Lemma 1.3. Let 7 = 0 and xy € X,. Then there exists a unique solution U of the
equation (0.2) on {t, + ) satisfying the initial condition U(t) = x,. This solution
depends continuously on the initial value x, in the sense that

(1,9) lu@)|, =M, {max (1, %) +

. j ‘max (1, ¢#%) k(1 — o) exp [ j ke - 9>d9] do} Jols -

T T

Proof. According to Lemma 1.1, we may deal with the integro-differential equation

t
(1.10) U(r) = e 9x, + J‘e’“’_") B(o) U(s) do

T

instead of the equation (0.2). Denoting

t
60)() = [[e#- o) Ule) 6o, 6°0) ) = U0)
and regarding the linearity of the operator G, we may transform the equation (1.10).
into the form

(L11) U = 3 6V () + ¢HIO) (),

where V(o) = ¢*"9x, and n is an arbitrary natural number. If 7> 0 then

16(U)corce,esmyixsy = nax | thl(t - 0) [U(o)]}, do =

T

T+ T
= (f ki(t + T — o) d")- 1Ullcoqce,es 73531+

T

and it means that

16 acsccomsynesy < j

t+T T
k(t+ T— 0)do =J k,(a)da.

T 0

Choosing T > 0 sufficiently small, we may achieve that ||G|lgcoqe.cr 5551y = b < 1.

Then the series
+ o0

(1.12) Y GHV) (1) (with V(o) = e*“™7x,)

k=0

converges in the norm of the space C°(<z, T + T); X,). Similarly, we can prove also
the convergence of the series (1.12) in the norm of the space C'((t, 7 + T); X).
Hence the sum of the series (1.12) (we shall denote it S(t, 7) xo) belongs to
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C'{t, T+ TY; X;) n C'({r, t + TY; X). It follows from (1.11) that S(t, 1) Xo
satisfies the equation (1.10), i.e. S(¢, 7) x, is also the solution of (0.2) on {7, T + T).
It may be easily shown that

S(ty, 1) = S(ty, 1) % S(t,7) (for t <1, <t < v+ T).

Using this equality, we can extend the definition of the operator S(¢ t) for all t = 7
in the following way: Every number ¢t = 7 can be expressed in the form t = 7 +
+ mT + t', where m is a natural number and " € <0, T). Then we define

S(t,t) =S(t,t+ mT)«S(t + mT, t+ (m — 1) T)*...xS(t + T, 7).

The function U(f) = S(, ) x, is the solution of the equation (0.2) on <t, +0) and
U(t) = x,.
Returning now to (1.10), we can obtain the estimate

t
0O, = My max (1,69 ol + [ k(e = o) [0 do
and applying the so called generalized Bellman inequality (see e.g. [4], p.78), we get
(1.9). The uniqueness of the solution U is a consequence of the inequality (1.9).

§2. THE UNIFORM EXPONENTIAL STABILITY

Definition 2.1. The zero solution of the equation (0.1) is uniformly exponentially
stable with respect to the norm ||.|| if there exist positive numbers 8, K, and K,
so that the implication

e U@ < 6 = [JU] = K[lUE) e

is valid for each t = 0, for every solution U of (0.1) on the interval <7, 7t + L)
(where Le (0, 4+ o0) depends on U) and for all t € (t, T + L).

Throughout Sections 2 and 3 we shall deal with the stability with respect to the
norm |||.|| only, without repeating it any more.

We do not study the existence of solutions of the equation (0.1) in this work.
Nevertheless, it is known that some solutions of (0.1) with initial values sufficiently
small exist in many special cases of the equation (0.1), including important equations
of mathematical physics. Otherwise, of course, the investigation of the uniform
exponential stability of the zero solution of (0.1) would have no sense.

The main result of this section is the following theorem:

Theorem 2.1. Let the zero solution of the equation (0.2) be uniformly exponentially
stable. Then the zero solution of the equation (0.1) has the same property.
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Proof. In virtue of the linearity of the equation (0.2), the uniform exponential
stability of the zero solution of this equation means the existence of positive con-
stants K{.and K, such that the inequality

22 IVl = K||V&)|| e ¥

holds for every solution V of the equation (0.2) and all 7 2 0, ¢ = 7.

Suppose that A is an arbitrary number from the interval (0, K,). It may be easily
verified that U solves (0.1) if and only if the function U(t) = e* U(t) solves the equa-
tion ’

(2.3) Sjiﬂ = AU + B(1) U + AU + ¢* N(t) (e~ *T).
‘ t

Similarly, Vis a solution of (0.2) if and only if V(1) = e* V(1) is a solution of the
equation '

(2.4) QdK — AV + BU)V + 7.
t
It follows from (2.2) that if Vis a solution of (2.4) and t = 0, ¢ = 7 then

(2.5) V@) = KIMV(T)!” (K=

Further, let T be any nonnegative number and U a solution of the equation (2.3)
on {1, 7 + L). We shall prove that, if

— 0
2.6 U < —e’
(26) LCTRPS
and ¢ is sufficiently small, then
(2.7) O < 2K, )| U()||  (for telz, = + L)).
Let us suppose that this is not true, i.e. that there exists z, > 7 such that
(2.8) TG = 2K, ([T »
(29) NTOI < )l (for te <z, to)) -

By Lemma 1.3 there exists a solution ¥ of (2.4) on (z, + o) such that V(z) = U(x).
Firstly, suppose that t, € (t, T + 2r), where r = (1/(K, — 2)) log K, (i.e. 274" =
= K,). We shall use the following lemma:

Lemma 2.1. Let T > 0 and let U, V be solutions of the equations (2.3), (2.4),
respectively, on (T, T + L) so that U(T) = V(T). Then

(210) [|0() = Pl = z(t - T) J' ks(t = o, e[| O(@)[) e O()[|* ** do
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for te (T, T+ L), where Z is a certain real positive nondecreasing function on
the interval <0, + ).

The proof of this lemma will be given after completing the proof of Theorem 2.1.
An explicit form of the function Z will be derived as well.

Making use of the estimate (2.10) (where we put U = U, ¥ = V, T = 1), we obtain

Tl < IVl + 2Lt = 9 [ koo = o T & D)= do
< K [P e~ +

+20) [ alto = 0, 2K TR e QRO do 5

S KOG + Z(2r) e * 2K, [|UG)|)* = ['+2rk3(1 + 2r — 0,0e” " ?)do.

Thus, we have
T = 2K, [|UG)]] = K, [|TE)]| +

T+ 2r
+ R T@|) e 2(2r) 'f ky(z + 2r — o, 6) do
and using (2.6), we get

2r
(2.11) 1 < 26%Z(2r) f ks(o, 6) do .
o

Secondly, let t, = © + 2r. Then ¢, can be expressed in the form t, =t + rn + I,

where n is a natural number and ! € {r, 2r). Let ¥, be a solution of the linear equation
(2.4) on (t + rn, + o) such that V(t + rn) = U(x + rn) (the existence of such
a solution ¥, is ensured by Lemma 1.3). Then

1)) RN S KOG + ) @S Gor 12 5+ m)
(see (2.5)). Now, writing U = U, V= Vand T =t + rn in (2.10), we get the ine-
quality
1Tl = 7o)l +
# 20—t =m) [ klto = o, U@ e YT 0o

t+rn

and in virtue of (2.12), we have

TGl < K

U(t + rn)||| e~ K0z

to
220) | Kalto ~ 0,8) e || U(o)]|*+* do .

t+rn
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Since r £ I and K,e* %" = { one has
(2.13) TGl = 1T(= + ra)]| +

to
+ 220 [ kifto = 0.0) | U)]|1** do .

t+rn

Similarly, it can be proved that

(2.14) 10G + m)ll = UG + (G — )| +
200 [ kto - o, 8) e~ T(o)|| ** do

T+r(j—1)

forj =1,2,..., n. Thus, using (2.13) and (2.14), we get

MO = TN + EKIOE)]) =
.Z(2r) [i J‘HU ky(t + rj — 0,8) e ** do + Jm

=1 Jetr(i-1) t+rn

ky(to — 0, 0) e~ % do‘] <

< 0@ + @K JITE) = 2(2r) [ j k(o 9) da] 3 et

Hence it is T

26,0 = T = 1) + (5O 2620 [ e 0o 55
and finally we have ’

(2.15) (2K, — 1) £ 2K,é" Z(Zr)J.zrk3(a, ) daﬁ.

Now we can choose 6 > 0 so small that neither (2.11) nor (2.15) hold, which
contradicts the assumption of the existence of o, > 7 satisfying (2.8) and (2.9).
Hence the inequality (2.7) must hold.

If U is an arbitrary solution of (0.1) on <t, t + L) such that [|U(z)|| < /2K,
then the function U(f) = e* U(t) is a solution of the equation (2.3) on {1, T + L)
and [|U(7)|| < 6e*[2Ky, i.e. in virtue of (2.7) it is

VOl < 2K, [Ju@)] =72

It means that the zero solution of the equation (0.1) is uniformly exponentially
stable.

Proof of Lemma 2.1. Functions U and ¥ satisfy the relation

216) O — () = I ' At B() + 11 [0(c) — V()] do +

T

t
+ J‘ eA(t‘-d) eld N(a.) (e—laﬁ) do .
T

35



In view of (1.4) and (1.5), we get the estimate
190 700l = [ sate =) (1422 100 = Ple)f o +
'y
o e A LTI
Now we choose a natural number n so that u/(2" — 1) < p (p is the number from

the assumption (vi)) and set 2"/(2" — 1) = p* 2" = ¢'. Using the Holder inequality,
we have : '

100 - 7l = (1-+2)[ [ 15~ 0o ] [ [ 1060~ P ac] " ¢

o J‘;e““" ks(t = o, "o 0@ ** do

and regarding the inequality (a + b)" < 27~1(g% + b7, we obtain

I9) - 7ol = 2 (1 n L)[ j - o) df,]“'“"_

[ 100~ P a0 20 [ et - 0. ) oty ae "

Since (3 — T) £ (t = T) for $e<T, 1), itis

106) — P@) = 2 (1 ¥ L) [ j k(e - o) d] .

€y T

. j:nw(a) — )| do - 271 [ j e i - e 0] |nr7<a>m“ﬂd«]"'.

T

Applying the generalized Bellman inequality, we can derive that

T

19(9) - P(@)]" < 201 U

se'“"ks(’ — o, ¢ ||0(0)[) H]U(U)mlm do']q' +

“f s [ [[7te = e l100) 0@ d] .

T T

q t q’/p’ q’
(e o]
€1 T ¢y
¢ I’
. (J. K5 (t — o) do') (s — T)] ds
T
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and using the integration by parts on the right hand side of this inequality, -we get

106) - Pl 5 2 [

T

+ exp {2“'_1 <1 + f—':—3>q [Jr K5 (t — o) da]q":p'(.? - T)} .

The last inequality was derived for all 9 € (T, 1). If we set § = 1, we get (2.10) where

. \4 t q’/p’
Z(t — T) = 2@~V exp {2"'"1 (1 + iig) [I K5 (t — o) da] (t — T)/q'}. .

€1 T

e kst = o, e |[U()[]) [|O()]|"* da]q +

§3. THE UNIFORM STABILITY AT CONSTANTLY ACTING DISTURBANCES

Definition 3.1. The zero solution of the equation (0.1) is uniformly stable at con-
stantly acting disturbances if to an arbitrarily chosen n > 0 there exist 6, > 0 and
d, > 0 so that if {H(t) is any operator from X to %(|.]|o) (depending generally
on t) and U is any solution of the equation

(.1) %J = AU + B()U + N() U + H(1)U

on an interval (r,t + L) (where Le (0, + o)) such that llu(@)|| < d, and
[[H(x) U(t)||lo < 6 forallte <z, t + L)whichsatisfy ||U(1)|| < n} then the inequality
[[U@)|| < n holds for all € {z.7 + L).

Remark 3.1. The number L in Definition 3.1 depends on the solution U. The
uniform stability at constantly acting disturbances is sometimes defined in such
a way that the inequality [|H(r) U(1)||o < 6, is required to be fulfilled for all t e
€ {t, T + L) and not only for such ¢ € {z, t + L) which satisfy ||U(1)|| < n. However,
then the stability at constantly acting disturbances is a weaker property than that
defined in Definition 3.1.

Theorem 3.1. Let the zero solution of the linear equation (0.2) be uniformly expo-
nentially stable. Then the zero solution of the equation (0.1) is uniformly stable
at constantly acting disturbances.

Proof. 1. First we shall prove that the zero solution of the linear equation (0.2)
is uniformly stable at constantly acting disturbances. Let # > 0 be given. Put
8, = 32K, (K, and K, are the numbers from the definition of the uniform exponen-
tial stability of the zero solution of (0.2)). Suppose that 7 is an arbitrary nonnegative
number and U is a solution of the equation

(32) Eg =AU + B(t)U + H(1) U

37



on (7,7 + L) such that ||U(z)|| < &,. H(t) is an operator from X, into D(|-|[o)
If the inequality ||U()[| < 8, does not hold for all €<z, = + L) then there exists
Te(t,t + L) such that ||U(T)|| = 6, and [JU(t)|| < &, for all te <z, T). Let ¥ be
such a solution of (0.2) on (7, + o) that ¥(T) = U(T). Then it may be derived in
a similar way as in the case of the inequality (2.10) that

631U VOl =226 - 1) [ kel = o)1) Vel do
where Z is the same function as in (2.10). Suppose that [|A(c) U(c)[|o < &, (where 5,

will be specified later) for all ¢ > 7 satisfying [|U(o)|| < #. Let t 2 Tbe such a num-
ber that [|U(o)||| < n for all o € T, t). Then by (3.3) we have

t
(4 WOl 5 WOl + 26~ 105 [ k(e = o)ae =
1 T
t—T
< K VD) 00D + 2 2t - T) 5, f k(o) do.
‘1 0
It can be shown that there exist t, > 0 and C > 0 so that
to
(3.5) K™% + 2 7(1) C I kyo)do < 1,
¢y [
(3.6) K™ + 22 7(s) CJ ky(o)do < 2K, for s€<0, o).
¢ 0
Put
(3.7) 8, = C§, (= Cn2K,).

In virtue of (3.4)—(3.6) we have [|U(o)|| < 7 for all 6 e (T, T + t,> n <7, t + L).
But if T+ to < t + Lthen by (3.5) it is [|[U(T + to)|| < 6, as well and hence we
can derive in the same way that the inequality [|U(o)|| < # holds also for all ¢ €
e{T + to, T+ 2ty) N T + t4, T + L) and consequently for all ¢ € {T, 7 + L).

II. We shall now prove the uniform stability at constantly acting disturbances of
the zero solution of the equation (0.1). Put A(t) U = H(t) U + N(t) U. Let ' be an
arbitrary positive number. There exist 7 € (0, #°) and 5, > 0 so that

(3.8) ky(m)n'** + 83 < Cnf2K,

(where C is the number from (3.5)). Put 6; = 1/2K.

If U is a solution of the equation (3.1) on <t,7 + L) and ||U(z)|| < 3, ||H(?)
U(1)[o < 0% for all t = 7 satisfying [|U(z)|| < #’ then by the inequality n < ' it is
[lH() U(2)|[|o < 5 for all te <z, T + L) satisfying [|U()]| < #- But this implies that
I1B@ U@)|lo < ka(n) n'** + 8, for ter, v + L) satisfying [|U(¢)]] < n- By (3.8)
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we have |||H(¢) U(t)]|o < Cn/2K, and hence, considering (3.5), also || H(z) U(?)]]o <
< &, for those t, too. Using the results of part I of this proof we obtain the estimate
llU@)|| < n for all te <z, + L), i.e. also ||U(t)]| < n’ forall te{r, 1 + L).

§ 4. APPLICATIONS
4.1. THE NAVIER-STOKES EQUATIONS

The flow of a viscous incompressible fluid in a domain @ is described by the
Navier-Stokes equations

(4.1.1) iTU +(U,V)U=F— 1grad p + VAU
t Y

and the equation of continuity
(4.1.2) divU=0,

where U is the velocity of the flow, p is the pressure, F is the body force, ¢ is the
density of the fluid and v is the kinematic coefficient of viscosity.

Suppose that Q is a bounded domain in E; with a lipschitzian boundary Q2. We
shall denote by &(Q) the space of infinitely differentiable vector-functions U defined
in Q and such that div U = 0 in @, and by 2(Q) the space of all functions from
&(2) which have a compact support in Q. J(2) or J,(Q) will be the closure of &(Q)
in L,(2) or in W3(Q), respectively, while °J(Q) or °J,(2) will be the closure of 2(2)
in L(Q) or in Wj(Q), respectively. Let us denote A = vP, x A, where P, is the
orthogonal projection of L,(2) onto °J(Q) and A is the Laplace operator. The opera-
tor A will be considered on 2(4) = °J,(?) N W3(Q). Put X = °J(Q) and following
§1, let X, be the Banach space 9(4) with the norm ||.||; = [.]o + |4.]o (Where
- lo is the norm in °J(R)). The norm in °J,() will be denoted |- |o;,. It is shown in
[6] and [7] that the operator A is the generator of a semigroup of operators e’ of
the class C, in X and, in addition to other properties, e#'x € X, for x € °J,(Q) and
there exists a nondecreasing function % on (0, + oo) so that

.

(4.13) le®xl < (1) [}xflos, [

forall I > 0, te(0, ) and x € °J,(Q)
Suppose that U, € C*(€0, + ); J(2)) n C°(€0, +0); J,(R)) is a solution of the
system of equations (4.1.1) and (4.1.2), satisfying the boundary condition

(4.1.5) Uo(t)]oe = ¥(2) (for t 2 0).

The stability of the solution U, depends on the behvaiour of differences U(r) — Uy(t)
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for every solution Ue%'(<r, 7 + L); J(Q)) n %<z, 7 + L); J,(Q)) (where t = 0,
Le (0, +o0)) of the system (4.1.1) and (4.1.2), satisfying (4.1.5). Substltutmg V(1) =
= U(t) — U,(1) we see that V solves the system of equations

(4.0.6) %V+(uo,v)v+ (V,V) Uy + (V,V)V = — Lgrad o/ + vAV, divV =0
t 0

and satisfies the boundary condition
(4.1.7) : V(1)|oo = 0 (for te<z, v+ L)).

It follows from (4.1.7) that V(t)e X, and oV(t)/ote X for te(zr,v + L), i.e. Ve
e %' ({1, v + L); X) n ¥°(<r, T + L); X;). Also it is seen that the stability of the
solution U, of (4.1.1), (4.1.2) and (4.1.5) is equivalent to the stability of the zero solu-
tion of (4.1.6), (4.1.7).

Applying the projection P, to the system (4.1.6) and denoting

B(t)V = —P,[(Uy(1), V)V + (V, V) Uy(1)], NV = —P,[(V.V)V],

we get the equation (0.1). The term P, grad p’ is equal to zero, because grad p’ is
orthogonal to each element of °J(Q) in L,(Q) (see e.g. [11]). It may be easily verified
that a function Ve %'({r,t + L); X) n ¢°((zr, 7 + L); X,) satisfies (4.1.6) and
(4.1.7) if and only if it is a solution of the equation (0.1) on the interval {t, t + L).

The operators B(t) and N are defined on °J;(Q). Using the embedding theorem (see
e.g. [11], p. 33), the Holder inequality and the inequality |x[los,) < const. ||,
which is for example a consequence of Theorem 3 in [11], p. 102, we can derive that
there exists ¢, > 1 such that

(4.1.8) , IB(t) X0y, < caf

o [Nxos, = eaf x|

for all + = 0 and x € X,. Thus, it follows from (4.1.3) and (4.1.8) that if we put
ky(t) = cq %(1)[t** and « = 1 then the conditions (v) and (vii) from § 1 are fulfilled.
Further, put ||| = |-$io [I-llo = 1-ons 2(1-llo) = hi@). ko) = c. A0}
and let p be an arbitrary number from the interval (1,4/3), Then also the inequality
(1.3) and the condition (vi) from § 1 are fulfilled.

Hence we can use Theorem 2.1 and Theorem 3.1 and conclude that if the zero
solution of the linear equation (0.2) is uniformly exponentially stable then the zero
solution of the equation (0.1) has the same property and also it is uniformly stable
at constantly acting disturbances. On the other hand, the uniform exponential
stability of the zero solution of the equation (0.1) is equivalent to the same property
of the solution U, of (4.1.1), (4.1.2), (4.1.5) and it may be easily proved that the uni-
form stability at constantly acting disturbances of the zero solution of the equation
(0.1) implies that the solution U, of (4.1.1), (4.1.2), (4.1.5) has this property as well.

.
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Besides, taking into account the relation between the equation (0.2) and the system

(4.1.9) OTY + (V,V) Uy +(Uy, V)V = — lgrad p"+vAY, div¥V =0
dJt .

0
(4.1.10) V(()|o =0

we can write:

Theorem 4.1.1. Let the zero solution of the system (4.1.9), (4.1.10) be uniformly
exponentially stable. Then the solution Uy of the system of equations (4.1.1) and
(4.1.2) with the boundary condition (4.1.5) is uniformly exponentially stable and
uniformly stable at constantly acting disturbances.

Remark 4.1.1. If the assumptions of Theorem 4.1.1 are modified in such a way
that we require the zero solution of (4.1.9) to be uniformly exponentially stable
regardless of the boundary condition (4.1.10) (i.e. not only solutions of (4.1.9)
satisfying the boundary condition (4.1.10), but all solutions of (4.1.9) are exponential-
ly decreasing to zero as t — +o0) then it may be proved that the solution U, of the
system (4.1.1) and (4.1.2) is uniformly exponentially stable and uniformly stable at
constantly acting disturbances (i.e. roughly speaking we have information about the
behaviour of differences U(t) — Uy(t) as t = + oo in the case of all solutions U and
not only in the case of those solutions U which satisfy the boundary condition
(4.1.5)). The proof of this result is quite analogous to the proofs of Theorems 2.1 and
3.1. The only differences are: a) We work with the systems of equations (4.1.1),
(4.1.2) and (4.1.9) instead of the equations (0.1) and (0.2). b) Given a solution U
of the system (4.1.1), (4.1.2) on (r, + ), we cannot usec Lemma 1.3 in order to
establish the existence of a solution V of (4.1.9) on <z, + o) such that ¥(t) = U(1),
V(1)|oo = U(1)|s0 (for = 7). Nonetheless, using Lemma 3 in [7], p. 47, we can prove
that to a given solution U of (4.1.1), (4.1.2) on {r, + ) there exists a solution
We @' (<1, + 0); X) n €°(<t, +0); X,) of the system

w
%—-{-(W,V)UO—%(UO,V)W: —lgradp+vAW+(U,V)U,
ot . Q

divW=0

such that W(t) = 0, W|,, =0 and then V = U + W is the solution of (4.1.9) that
we are looking for. ¢) The diﬂ'erencelNU — V (see Lemma 2.1) is an element of
EWKT, +0); X) 0 6°((T, +); X;) and satisfies the equation

ﬁ‘ld;‘i) — AU = V) + B (U — V) + AT = V) + N D),
t
hence it satisfies the relation (2.16) and also the inequality (2.10).
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Remark 4.1.2. The same results as in Theorem 4.1.1 and Remark 4.1.1 could be
proved also if we put X = C®(Q), |||l = |-|4a» l-llo = |+|1+am, Where h e (0, 1)
and C*(Q) is the Banach space of continuous vector functions f = [fy, f5, f3]
defined on @, with the norm |.|o, ). (The norm |.|;44y (I =0, 1,2) is defined as
follows:

! 3
|F]i+ iy =k§0 ' Y max [.EI(DMfi(x)z]l/z +

m|=k xeQ

[0 ix0) = D 12T

+ Y max
[m|=1 x1,xe0 le — leh

-)

4.2. THE WAVE EQUATION

Let u, be a solution of the problem given by the wave equation
(4.2.1) Uy — Uy = F(t,x, u, u,u,) (t€<0, +), x <0, n))

and by one of boundary conditions

(4.2.2) u(t,0) = u(t,n) =0 (for t 2 0),
(4.2.3) u(t,0) + o u(r,0) = u(t, 1) = 0 (for ¢t = 0)
and

(4.2.4) u(1,0) + oo u(t, 0) = u(t, n) + o u(t,m) =0 (for t 2 0).

In the following the symbol x means the space variable and is not used for elements
of some Banach spaces as in the previous sections.

We shall sometimes denote u, = u, u, = u,, u3 = u,. The function F is supposed
to satisfy the following conditions:

(o£,) F together with its partial derivatives
?_Ij 0_1_7_ d*F 0*F 0’F
ox " ou; Ou;0x Ou;du;  Ou,du;ox

(,j=1,2,3)

is continuous and bounded for ¢t 20, xe<0,n), [uy,uy uz]e (—R,R) X
x (=R, R) x {(—R, R) (R being an arbitrary positive number),
(#,) F(t,0,0,0,u,) = F(t,7,0,0,u,) = 0or F(t, n,0,0,u,) =0fort 2 0,u, €E,
in the case of the boundary conditions (4.2.2) or (4.2.3), respectively.

Further, we shall study the equation (4.2.1) with boundary conditions (4.2.2) and

(4.2.5) u(t,0) = u(t,n) =0 (for t 2 0)
(4.2.6) ut,0) = ut,n) =0 (for t 2 0)
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instead of (4.2.3) or (4.2.4), respectively, without loss of generality, because it may
be easily proved that if (x) is a sufficiently smooth function defined on <0, #) and
satisfying the condition

(4.2.7) x'(0) = a
(4.2.8) X(0) =00, X(n)=0a,

then a function u satisfies the equation (4.2.1) and the boundary conditions (4.2.3)
or (4.2.4) if and only if the function v = u . e* satisfies the equation

(429) vy — v =" — X v+ 2(v, + *F(t, x, e v, e M0, —)x'e v + e *p,)
and the boundary conditions (4.2.5) or (4.2.6), respectively. However, the equation
(4.2.9) may be considered as an equation of the type (4.2.1).

Provided u, € C*(<0, + 0); C°(<0, m))) n C*(€0, + 0); C*(K0, 7)) NC°(0, 0);
C*({0, n))), the problem of the uniform exponential stability (or the stability at

constantly acting disturbances) of the solution u, can be easily transformed to the
same problem concerning the zero solution of the equation

(4.2.10) Uy — Uge = a(t, x) u + b(t, x) u, + c(t, x) u, +

3
+i Zld‘f(t’ X, Uy Uy Uyg) . U U,
J=

where

OF
a(t’ x) = _é; (t’ x’ uO(t’ x)’ uOt(t’ x)9 qu(ta x)) )

F
b1, x) = % (1. %, (1, %), ttos{1, X), tios(t, %)) »

t

(t, x) = %F— (1, %, wot, X), ttod(ts %), tion(t, X))

X

11 a2p
dift,x, u,u,u,) = J‘ j ———(t, x, uo(t, x) + «Pu,

0Jo aui auj
uolt, x) + aPuy, ug(t, x) + «fu,) p dadp

(for i,j = 1,2, 3). It is a consequence of (&, ) that the functions a, b, ¢ and d,; are
continuous in all variables, continuously differentiable with respect to x and bounded
for 1€<0, + ), xe<0,n), [u,u,u]e(—R,R) x {(—R,R> x {(—R,R). The
equation (4.2.10) will be of course examined with the same boundary conditions
as the equation (4.2.1). It follows from the properties of the function F that ¢(t, 0) =
= c(t,m) = d35(1,0,0,0,u,) = d33(t, 7, 0,0, u,) = 0or c(t, m) = ds3(t, 7, 0,0, u,) =
= 0 if we deal with the boundary conditions (4.2.2) or (4.2.5), respectively.
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Using the notation u, = u, u, = u,, u3 ~ u,, we can rewirte the equation (4.2.10)
in the form of the following system of equations:

(4.2.11) Uiy = Up >

Upe = Upee + auy + buy + ctly + ) dyjou
ij=1

pouj .

Let X be the space of all elements [ = [fy, f,] e C'(0, 7)) x C°(K0, n)) such
that f,(0) = fi(n) = f2(0) = f5(r) =0 or fi(0) = f,(n) = f5(n) =0 or f{(0)=
= fi(n) = 0 if the boundary conditions (4.2.2) or (4.2.5) or (4.2.6), respectively, are
considered. X is a Banach space with the norm
(4.2.12) [/]o = max |f1(x)] + max |fi(x)| + max |f,(x)] .

xe{0,n) xe0,n) xe{0,n)

Put Co
2(4) = X o {[/1, /2] !fl C*(<0, 7)), f, € C1(<0, my), fi(0) = fi(m) = A}

or

2(A) = X 0 {[f1. /21| /1 € C3({0. ), > € C'(<0, ), £3(0) = f(n)_ol‘

or

2(4) = X o {[/1. /21| f1 € C¥(K0, m)), f> € C'(K0, ), £5(0) = f3(x) = 0}

in the case of the boundary conditions (4.2.2) or (4.2.5) or (4.2.6), respectively, and
Af = [f5, 1] - (for f€ 2(A)).

It may be proved that the operator A4 is the generator of a semigroup of operators e#
of the class C, in X such that

@213 (f)() = %[fl(x F )+ Lx— 1)+ j £io) der,

filx + 1) = filx = 1) + fox + 1) + fo(x — r)]

for fe X. The symbols f,; and f, in (4.2.13) mean the functions f; and f, with an
extended domain of definition so that

— /1 and f are odd, 27-periodic functions on E, in the case of the boundary con-
ditions (4.2.2),

— f1 and f, are even, 4n-periodic functions such that f;(x) = —f,(2n — x) for #ll
x € E, in the case of the boundary conditions (4.2.5),

— f1 and f, are even, 2n-periodic functions on E, in the case of the boundary con-
ditions (4.2.6). Ll 0
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Denote by X the space 2(A) with the norm [[.[|; = [|.[o + [4.]o. as in Section 1.
Put Z([[|-llo) = X [[-llo = [- o and [|. | = {-[i- Further, put

B(1) f(x) = [0, a(t, x) fi(x) + b(t, x) fo(x) + c(t, x) f{(x)],

N(1) f(x) = [O’UZI dif(t, %, [15 f2. 11) - (%) - [i(x)]

(we denote f3(x) = f{(x)). Now, using the notation U = [u, u,] = [u, u,], we can
write the system (4.2.11) in the form (0.1). The operators B(r) and N(f) map X into
itself and it may be verified that e*'B(s) f and e*'N(s) f belong to X, if feX,.
Further, if f = [f,,f,]eX,;and t Z 0, s = 0, it is

le*Bls) /]l = [l 4 e*B(s) /o + e*B(s) /o =

A[r+t(a(s, 0) f1(0) + b(s, 0) f2(0) + (5, 9) f{(0)) do,

1

"2
a(s,x + 1) fy(x + 1) + b(s, x + 1) fo(x + 1) + (s, x + 1) f1(x + 1) +

+als,x — 1) f(x — 1) + b(s, x — 1) fo(x — 1) + (s, x — 1) f1(x — t)]

+
0

+ % ”[ xi‘(a(s, 0) f1(o) + b(s, 0) f2(0) + (s, o) fi(0)) do,
a(s, x + 1) fi(x + 1) + b(s, x + 1) fo(x + 1) + (s, x + 1) fi(x + 1) +

+a(s, x — 1) f1(x = 1) + b(s, x — 1) fo(x — 1) + (s, x — 1) f1(x — t)]

= 3|[a(s, x + ) f1(x + 1) + b(s, x + 1) fo(x + 1) + (s, x + ) fi(x + 1) +
+a(s,x — ) fi(x — 1) + b(s,x — 1) fo(x — 1) + (s, x — 1) fi(x — 1),
afs,x + 1) fi(x + 1) + a(s,x + 1) fi(x + 1) + b(s.x + 1) f5(x + 1) +

Fb(s,x + O S3(x + 1)+ s, x + O fi(x + 1)+ (s, x + ) fi(x + 1) —

—as,x — 1) fix — 1) —a(s,x — 1) fi(x — 1) = b(s,x — 1) fy(x — 1) —

—b(s, x = 1) f3(x — 1) = e (s, x — 1) filx — 1) — (s, x — 1) fi(x — )]0 +

* ”U(( 0)£1(6) + b5, ) 12(0) + (5, ) Si(#)) do
a(s,x + 1) fi(x + 1) + b(s, x + 1) [o(x + 1) + (s, x + 1) fi(x + 1) +

+als x — 0 fi(x — 1) + b(s x — 1) falx — 1) + (s ¥ — 1) filx — t)}

[

= 3 max |a(s, x + 1) fy(x + 2) + bs, x + 1) folx + 1) + (s, x + ) fi(x + 1) +
>

xe{0,n
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+a(s, x — 1) fy(x — 1) + b(s, x — )fo(x = 1) + s, x = ) fi(x = 1)] +

+%max |a(s x + 1) fi(x + 1) + a(s, x + O fi(x + 1) + bls, x + 1) folx + 1) +
xe(0

+ b(s,x + 1) filx + 1) + s, x + 0filx + 1) +elsx + ) fi(x + 1) +
+as,x — ) fi(x — 1) + a(s, x — ) fi(x = 1) + bs,x — ) folx — 1) +
+ (s, x — 1) f3(x — 1) + cifs, x — ) fi(x = 1) + (s, x = ) filx — 1)] +

+ 4 max |a (s, + 1) fi(x + 1) + a(s, x + DfI(x + 1) + bls,x + ) fo(x + 1) +

xe{0

+ b(s, X+ 0f3(x + 1) + e s, x + O filx + 1) + (s, x + 1) fi(x + 1) -
—afs,x — 1) fi(x — 1) — a(s, x—t)f{(x_t)“b(s’x_t)fz(x—t)—
— b(s, x — 1) fa(x — 1) — (s, x — ) filx — 1) = (s, x = ) filx — 1)] +

'[ (als 0)12(0) + b{s> ) (o) + el 9)i(c) dof +

+ %4 max

xe0,m)

+ 3 max |a(s, x + 1) fy(x + 1) + b(s, x + ) [a(x + 1) + (s, x + 1) fi(x + 1) —
xe{0,n)

—a(s,x — 1) fi(x — 1) — b(s, x — ) folx — 1) — (s, x — 1) f{(x — 1)| +

+ 3 max |a(s,x + ) fi(x + 1) + b(s, x + 1) fox + 1) +e(s, x + 1) fi(x + 1) +
xeC0

+a(s,x — 1) fi(x — 1) + b(s, x — ) fo(x = ) + e(s,x = ) filx — )] S 5.t ]

(where cs is a positive constant). Similarly, it may be derived that there exists a non-
decreasing positive function ¢4(R) so that the indequality
le*N(s) £l = eo(R) ]S Ilz

holds for all t = 0, s = 0 and f € X, such that ||f]; <

Now, we see that the conditions (v), (vi) and (vii) of Sectlon 1 are fulfilled with an
arbitrary p > 1 in (vi) and o = 1 in (vii).

Using Theorems 2.1 and 3.1, we see that the uniform exponential stability with
respect to the norm

(4.2.14) flue, Ol = MTu(, ), ude, | =

= max |u(t, x)| + 2 max |u,(t x)| + max lu (t, %) +
xe{0,n) xe{0

+ max |u,x(t x)| + max Iun(t x)|
xe{0,n xe{0,

of the zero solution of the equation

(4.2.15) U — Uy = alt, X) U + b(t, x) u, + (t, x) u,
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is a sufficient condition for the uniform exponential stability and the uniform stability
at constantly acting disturbances with respect to the norm [|.|| of the zero solution
of the equation (0.1) (hence also for the same properties, but with respect to the norm
I]lI', of the zero solution of the equation (4.2.10)). Considering the relation between
the zero solution of the equation (4.2.10) and the solution u, of the equation (4.2.1),
we may conclude:

Theorem 4.2.1. Let the zero solution of the linear equation (4.2.15) (with one of
the boundary conditions (4.2.2), (4.2.5) and (4.2.6)) be uniformly exponentially
stable with respect to the norm |||.||". Then the solution u, of the equation (4.2.1)
(with the same boundary conditions as in the case of the equation (4.2.15)) is uni-
formly exponentially stable and uniformly stable at constantly acting disturbances
with respect to the norm ||.|||".

Remark 4.2.1. The same results as in Theorem 4.2.1 could be proved also with
respect to the norm

1/2

-

- { J' :[uz(t, %) + 12(t, %) + 13t %) + ud(t, %) + w21, %)] dx}

instead of [|.||". Then the magnitude of disturbances could be determined by the
norm

e e = {[ 1wt ) + w20 0}

(see [12]). We investigate in detail the uniform exponential stability with respect to
the norm ||.[|" of the zero solution of several rather more special cases of the linear
equation (4.2.15) and then apply the results obtained to the corresponding special
cases of the equation (4.2.1) also in [12].

4.3. THE TIMOSHENKO TYPE EQUATION

Suppose that H is a Hilbert space with the norm ||.||; and Lis a selfadjoint, strictly
positive linear operator in H with the domain of definition @(L) (the strict positivity
4

of the operator L means that ¢ = inf Sp (L) > 0).Letu, € n Ci(K0, +o0); G(L1 1)
be a solution of the equation

(4.3.1) u™(t) + aL'? u"(t) + BLu(t) =

/
= F(t, u, LM, IM?u, DPu, o', TV L2000 1247 0y
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where «, f are real constants and F is a function with values in H. The operators L'
(for v =10, 4, 1, %) may be defined as follows:

+ o0 '
Lu = j. s dE(s)u , -
e

where E(x) is the spectral resolution of identity corresponding to the operator L.

Provided F is sufficiently smooth, the problem of the uniform exponential stability

or the uniform stability at constantly acting disturbances of the solution u, may be

transformed to the same problem concerning the zero solution of the equation

of the type

(4.3.2) "+ al'?u” + BLu = a,(1) u + ay(t) L'*u + a (1) L2y + ay(t) BMu +
+ by()u’ + bo(t) L% + by(6) 2w’ + cy() u” + (1) K" +
+d(t)u” + G(t, u, LM*u, LMy, P, o, LM, 120w, M7, u”),

where a,(t), a(t), -, ¢,(t), d(t) are bounded linear operators in H such that

al) Ja,(t)u, + ax(t) IMuy + o+ d(f) uglly < Csii :2;”1,1'/4141_“’1

(for t = 0 and [uy, uy, uy, ugJ € (L) x (L'?) x 9(L*) x H),

bl) if [uy, uy us, us) € (L) x D) x D(L?) x (L), then
a,(t) uy + ax(t) L%y + o+ d(t) uy € DL,

cl) L4 a, (1) uy + ay(t) *uy + .o+ d() ug]|g < csi; J.gf:HLjMuiHH
(for t =0 and [uy, uy, us, u,] e@(L) X @(]_?/4) x @(LI/Z) % 9(1.”4)).

G(t, u, LM*u, M2y, ..., IV*u”, u") is a nonlinear operator in H such that

32) HG([, uy, L”‘*u,, Ll/lul’ L3/4U1, u,, L1/4u2, LI/ZMZ, us, L1/4u3, u4)HH <
4 4-i
< c(RLY XL ual?
i=1 j=0
(for ¢ =0 and [uy, up us us}€ 2D x D(IM?) x 9(L''*) x H such that

3T I = R

i=1j=
b2) if [uy. s, Uss u, € 2(L) x (%) x 2(LM?) x P(IM*) then
G(t, uy, L*uy, LMuy, .. DMy, ug) e 9L,

4 5-i
c2) LGt ugy L 4wy, K2y, Bluy, o K, u0)|y < oo R) [-21 ZOHLJ/‘*uiHH]Z
i=1 j=
(for t = 0 and [uy, uy, u3, us] € (L) x 2(L"*) x 2(IM*) x P(LM*) such that

i 5{: L ully < R).

i=1j=0
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Put X = 9(L*/*) x 2(I*) x 2(I''*) x H and define

”f”O =.:21 _glul‘”“fi”" (for f = [fx,fz’f3’f4] GX)-

Since L' (for v = 0, 1, ¥ and #) are closed operators in H (see e.g. [18]), X is a Banach
space with the norm ||,

Let us define

Af = [fa, [, far =L}y — BLf ] (for fe D(L) x D(LP'*) x 2(1}?) x 9(1*) =
= 9(4)),

B(t) f =[0,0,0,a,(t) fy + ay(t) L*f, + as() L2f, + ... + ;1) IV + d(1) f.],
N(t)f = [0,0,0, G(t,fl, L”4f,, L”Zfl, Ce L1/4f3,f4)] (for feX).

Then denoting U = [u, u’, u”, u”], we can rewrite the equation (4.3.2) in the form
(0.1):

%‘_’ — AU + B()U + N(j) U .
t

It may be proved that if
(4.3.3) a>0, >0, o> —45=0

then the operator A is the generator of a semigroup of operators e’ of the class C,
such that

(434) oty = [é J it 5) AEGs) £ .z _[ a"’a(’ 9 4E(s) .,

e i=1

L[ an s, 5 [ an 1]

[4

for f = [f1, f2, f3. fal € X, where m(., s) (i = 1,2, 3, 4) are solutions of an ordinary

differential equation

*m{t, s)
ot 4

(4.3.5) otm (‘ )

F s

on <0, + o), fulfilling initial conditions

+ Bsmft,s) =0

om0, s) _

436
(436) —

8ij-1 (for i=1,2,3,4; j=0123; se(o, +)).

We can find that

%2 cos (s'/*241) + i cos (s'/*2,1),
A3 — A} 2 =22

1 2

ml(t, s) =
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l; . 1/4 A2 .
my(t, s) = ————2———ssin At) + —— "L 1/4) ¢
2t 9) st (2% — lf) (s'/%241) S1/4,12(ﬁ —22) sin (s/42,1)
1 1
)= g 60 ¢ g ),
1 e 1 .
my(t, s) = —————— sin (s'/%2;t) + ————— sin (sV/41,1),
4( ) 53/4},1(22 _ lf) ( 1 ) 33/412(,1f _ lg) m (S 2 )

where A; = /(« — /(o* — 4p))[2, A, = /(« + /(¢* — 4p))/2. Thus, it is

im, .
’a—m—'@ < const. sUTHD4 (for 120, s> 0; i =1,2,3,4; j=0,1,2,3).

ov

The integral [, s“~*dE(s)f; (i = 1,2, 3, 4) converges for f,~é@(lf4‘i)/“), ie.
also the integral

+o Af .
f It 8) 4p(s) 1, (for i = 1,2,3,4; j = 0,1,2,3)

J
. o

converges and hence all terms in (4.3.4) have sense.
The operators B(f) and N(¢) transform X into itself and it holds

1BOflo = es|fllo (for 1 2 0 and feX),

4B fllo < cs|Aflo (for t 2 0 and fe 2(4)),

IN®)flo <= cs(R)|f]5 (for t = 0 and feX such that ||f]o < R),
[AN@)fllo < ¢o(R) |Af[5 (for t = 0 and fe P(A) such that [Af]o < R).

Let X, be the space 2(A) with the norm . [[; = |.[o + [4-]o- Put 2([-lo) = X,
ll<llo = I-lo> Il = |||l Thenit may be easily proved that the conditions (v)—(vii)
from § 1 are satisfied. For example: '

lle*N(s) 71l = le*N(s) fllo + 4 e*N(s) f]o = M, e*([N(s) /[0 +
+ [ AN($) o) £ M, e co(R) [f]7 = M, e eo(R) || f]I

and so the inequality (1.5) in the condition (vii) holds.
Now it is seen that we can apply Theorem 2.1 and Theorem 3.1 and, considering
the relations between the equations (4.3.2) and (0.1), we conclude that the following

theorem holds:

Theorem 4.3.1. Let the zero solution of the linear equation

uu// + dLllzu” + ﬁLu =0 (a > 0, ﬁ > 0, az - 4ﬂ > O)
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be uniformly exponentially stable with respect to the norm
lu@Il" = Ju@ll + 1L u@]a + [L72 u@ln + 12 u@]a + |Lu(@]a +
+ @l + (2w @Oa + |2 0 (@O n + [ (@) + [0 (@) +
+ [ w @l + |22 0@ + [ Ol + 2w (0)]a -

Then the zero solution of the equation (4.3.2) is uniformly exponentially stable and
uniformly stable at constantly acting disturbances with respect to the norm .
The magnitude of disturbances is supposed to be determined by the norm

lle@llo = lo@u + 12 o)l + |72 oDl + |27 Dl + [0 ()] +

+ [ @ + (22 Ol + [ Ol + 27 0" Ola + [o"(@)]a -

Remark 4.3.1. The exponential stability of a linear Timoshenko type equation
u"” + au” + (b LM? + byl)u” + (¢, L'* + ¢ ) v’ + (d, L+ d,I* + d31) =0

(where a, by, by, ¢4, ¢, dy, d5, d are real constants) is investigated in detail in the
paper [1].
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