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A NECESSARY CONDITION FOR TWIN BOUNDARY 
LAYER BEHAVIOR 
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(Received February 2, 1978) 

1. Introduction. In this note we give a simple condition that a constant к must 
satisfy if it is to be the hmit as г -> 0"̂  within (a, b) of a solution у = y(t, e) of 

(1.1) ef = p{t, y) / ^ + q{t, y)y , a <t <b, 

(1.2) y{a,e) = A, y{b, г) = В , A^B; A, В ^ к . 

More specifically, if the problem (l.l), (1.2) has a solution у = y(t, s) which exhibits 
boundary layer behavior at both t = a and t = b and which satisfies lim y{t, s) = k, 

e->0 + 
a < t < b, then к satisfies a certain equation involving only A, В and the functions p 
and q. A similar necessary condition has recently been given by the author and S. V. 
PARTER [2] for the related quasilinear problem 

(QL) ef=f{t,y)y, a<t<b, 

y{a, s) = A, y{b, e) = В . 

However the presence of the quadratic term in (l.l) requires us to modify the tech­
nique used in [2]. 

2. A'Priori Estimates. It follows directly from the form of (l.l) that any solution 
j ; = y{t,8) of (1.1), (1.2) is strictly increasing (if A < B) and strictly decreasing 
(if A > B); indeed, (B ~ A) y(t, s) > 0, a -^ t S b. Similarly any solution y{t, e) 
lies between min {A, B} and max [A, B} for a -^ t S b. This can be proved either 
by means of the maximum principle (cf. [l]) or by means of Nagumo's estimates 
[3], [4]. Finally suppose that any solution y{t, г) of (l.l), (1.2) is such that 
lim y{t, s) = k, a < t < b, for a constant к strictly between A and B. Then VISHIK 

and LiusTERNiK [6] (cf. also [5; Chap. 2]) have given the following estimates for 

*) Partially supported by the National Science Foundation under Grant No. MOS 76-05979. 
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/ ( a , e) and / ( b , e): for A < В, / ( a , г) = exp[e~^ ^^ p{a,s)ds] and / ( b , e) 
- [s~ ^ jf p(b, s) ds], while for A > B, 

y [a, г) = — exp г ~ Ч p{a, s) ds and y(b , e) = - exp e ^ p(b, s) ds . 

Note that in both cases У{т, e) = 0(exp [Ce"^]), т = a or b, for a positive constant 
С which is equal to the length of the initial boundary layer jump [6], [5; Chap. 2]. 

3. A Necessary Condition. Suppose for definiteness that Л < Б in the following 
theorem. 

Theorem. Let the functions p and q be of class Ĉ ^̂  on [a, b] x R^ and let (1.1), 
(1.2) have a solution у = y{t, e) which satisfies lim y{t, s) = k, a < t < b,for a con-

stant к in (Л, Б). Then к is a solution of 

(*) P{b, s)ds - p{a, s) ds = t]{b, B) - ri{a, A) + r{t, k) dt, 

where ц = Y\{t, y) = ^ p(t, s) ds and 

r{U y) = q{t, y) - q{U y) , 
for 

4{t, y) = T (»?('' y)) • 
dt 

Proof. Since A < B, y'{t, e) > 0, a ^ t ^ b, and consequently ( l . l ) is equivalent 
to sfjy = p{t, y) У + q{t, y), i.e., 

e~- ( ln / )=- - - (^7( r ,y ) ) + r{t,y), 
at dt 

smce 
d {f]{t, y)) = p{t, y) У + q{t, y) . 
at 

Integrating both sides of this equation from t = ato t = b and using (1.2) we obtain 

г In {y{b, s)) - 8 In {y{a, e)) = ^{b, B) - ц{а. A) + r{t, y{t, e)) dt, 

I.e., 
f*B f*A f»b 

(~ ) p{b, s)ds- p{a, s) ds = ri'b, B) - r,{a. A) + r{t, y{t, e)) dt 
Jk J к J« 
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by virtue of the estimates of Vishik and Liusternik given in Section 2. Finally since 
lim y{t, s) = k, a < t < b, it follows from the Dominated Convergence Theorem 

that Hm |д r(t, y{t, e)) dt = JJ r{t, k) dt. The estimate (*) now results from letting 

6 ~> 0"̂  in ( - ) . 
IÎ A > В then a similar argument shows that к is also a solution of (*), i.e., 

p{b, s)ds - \ p{a, s) ds = rj{b, B) - rj{a, A) + r(r, k) dt. 
Jk Jk Ja 

4. Two Examples. Consider first 

(El) sf = yy'^ - yy', 0 < r < 1 , j;(0, e) = Л , у{\, г) = В, Ä^ В, 

Suppose that (El) has a solution y(^t, e) satisfying lim y(t, e) = k, a < t < b, for к 

between A and B. Here p(^t, y) = у and q{t, y) = —y and so r][t, y) = \y^ and 
K '̂ y) " — y. A short computation shows that (*) reduces to ^ = 0. 

Consider next 

(E2) zW = Y^W^ - w , 0 < f < 1 , w(0, e) = Л , w(l, e) = Б . 

Our theory does not apply directly to (E2); however, the change of dependent variable 
J = w — r converts it into 

(E3) гу" = {y •\-t)y'^ Л-1{у ^•t)y', 0 < ^ < 1 , };(0, г) = Л , 

j ( l , 8) = ß - 1 

which is of the form (l . l) , (1.2). Suppose now that for Л < Б — 1 (ЕЗ) has a solution 
y(t, e) such that Hm y{t, e) = k, 0 < ^ < 1, for a constant к in [A, В — 1). Since 

p(r, }̂ ) = у + t and ^(^, j ) = 2(j + r) we set 

^(^ 3̂ ) = \y^ + ŷ 
and 

r{t, y) = ^(f, 3̂ ) - ~ {rit, y)) = j ; + r . 
of 

It follows directly that (*) reduces to /c = - J ; moreover, one can show that for 
A < - \ < В — \ (E3) has a solution у = };(г, e) for which lim y{t, e) = —\, 

0 < f < 1. In terms of (E2) this means that for A < —^ and В > \ there is a solution 
w = w(r, e) which satisfies lim w(t, e) = Г — i , 0 < Г < 1. 
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5. Concluding Remark. For the quasilinear problem (QL) (with A Ф B) the analog 
of (*) is Ja/(^, k) dt = 0, where Hm y{t, s) = k, a < t < b. This follows by noting 

that 
rb 

f{t, к) dt = lim f{t, y{t, e)) dt = hm {e In \/{b, e)\ - г In \/{a, e)|} = 0 
, ^-'^-' Ja ^-"O"-

since y'{T,ß) = 0{s~^), т = a от b (cf. [6]), and as a result, hm e In | / (r , e)| = 

= lim ejln г| = 0. 
£-»•0 + 

A complete discussion can be found in [2]. 
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