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GARRET J. ETGEN, Houston and ROGER T . LEWIS, Birmingham 

(Received March 14, 1978) 

1. Let ^ be a Hilbert space, let J* = ^{Ж, Ж) be the 5*-algebra of bounded 
linear operators from Ж to Ж with the uniform operator topology, and let ^ be 
the subset of J* consisting of the self-adjoint operators. This paper is concerned 
with the second order, selfadjoint differential equation 

(1) [р(х)г]' + е(х)г=о 
on R"*" = [O, GO), where P, Q.K^ -^ 6^ are continuous and P(x) is positive definite 
for all xe R"̂ . Appropriate discussions of the concepts of integration and differen
tiation of ^-valued functions, as well as the existence and uniqueness of solutions 
Y: R^ -^ ^ of (1), can be found in a variety of texts. See, for example E. HILLE 
[7, Chapters 6 and 9]. In particular, it is well known that when suitable initial con
ditions are specified for (1), the resulting initial value problem has a unique solution 
which exists on R"̂ . 

We shall assume throughout this paper that Ж is a. Hilbert space over the reals R, 
with the inner product on Ж denoted by < , > and norm || || = < ? )^^^. It will be 
apparent, however, that the methods and results apply equally as well when Ж is 
a complex Hilbert space. We assume, also, that the J5*-algebra J* is topologized by 
the operator norm 

\\A\\ = sup ||Ла|| . 

The symbol / used for the identity element of J*. The symbol 0 is used indiscriminately 
for the zero element, with the proper interpretation of 0 being clear from the context. 
If Л e c^, the selfadjoint elements of ^ , then the notation A > 0 {A ^ O) is used 
to signify that A is positive (nonnegative) definite. If Л > 0, then A~^ e^ and 
A~^ > 0. 

Let Y = Y(x) be a solution of equation (l). Then it is easy to verify by differen
tiation that 

Y^[PY'] - \PY'Y ^=C (constant) 
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on Я^. The solution У is conjoined (prepared) if С = 0. The solution 7 is non-
singular at a, a e R"̂ , if 

(i) Y{a): Ж -> Ж is onto, and 

(ii) Y{a) has a bounded inverse. 

If either of these conditions fails to hold, then Yis singular at a. In particular, Yis said 
to have an algebraic singularity at a if Y(a)is not one-to-one. In the finite dimensional 
case, i.e., Ж = R„, Euclidean ?i-space, and J* = {Л | Л is an n x n matrix}, it is clear 
that the solution Yean have only algebraic singularities, and, moreover, Yis singular 
at a if and only if det [Y(a)] = 0. In the general ^*-algebra case conditions (i) and 
(ii) are equivalent to having Y~^(a)e J*. The solution Yis nontrivial if there is at 
least one point a e R^ such that Y(a) is nonsingular. In the finite dimensional case 
it is well known that a nontrivial conjoined solution of (l) can have at most a finite 
number of singular points on any compact subset of R^. This property does not 
hold in the general B*-algebra case. T. L. HAYDEN and H. С HOWARD [5] have 
shown that while the set of singularities of a nontrivial solution Y of (l) is a closed 
set, it is possible for the set of singularities to have a finite limit point. 

Our primary interest in this paper is in the oscillation of nontrivial conjoined 
solutions of equation (1) and, hereafter, the term "solution" shall be interpreted 
to mean "nontrivial conjoined solution". The solution Y = Y(x) of (1) is oscillatory 
if for each a e Я^ there is a point b, b ^ a, such that Y(b) is singular. The solution Y 
is nonoscillatory if it is not oscillatory. In the finite dimensional case, a solution Y 
is oscillatory if and only if det [Y] has an infinite number of zeros on R"*". Also, it is 
a consequence of Morse's generalization of the Sturm separation theorem that if (l) 
has an oscillatory solution, then all solutions are oscillatory. The following simple 
example shows that this property does not carry over to the general ß*-algebra case 

Example . Let Ж = I2, and let P(x) = I, Q(x) = 0 in (l), i.e., consider the equa
tion Y" = 0 on R"̂ . Every solution Y of the equation has the form Y(x) = Ax + B, 
A,BE^, and Y is conjoined if ^*JB = Б*Л. The solution Y satisfying Y(0) = /, 
Y'(0) = 0 is Y = / . Clearly Y is conjoined and nonsingular on R"*". On the other hand, 
the solution Z given by Z(x) = Ax + I, where A = diag [—1, —1/2, —1/3, . . . ] , 
is conjoined and has an algebraic singularity at each positive integer n. 

To maintain the relationship with the finite dimensional case, we say that equation 
(1) is oscillatory if and only if every solution is oscillatory. 

Studies of the oscillatory behavior of solutions of second order equations of the 
form (1) have been made by several authors, including Hille [7, Chapter 9], Hayden 
and Howard [5], ETGEN and PAV/LOWSKI [2, 3], Etgen and LEWIS [ l ] , E. S. 
NoussAiR [9], and С M. WILLIAMS [15]. Equation (l) in the finite dimensional 
case is the familiar self-adjoint matrix diff'erential equation which has been investigated 
in great detail by a large number of authors. In this regard, we refer to the texts by P. 
HARTMAN [4], Hille [7], W. T. REID [10, 11] and С A. SWANSON [13]. Each of 
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these texts provides comprehensive bibliographies and references to the research 
literature. 

An examination of the literature concerning sufficient conditions for equation (l) 
to be oscillatory (in both the finite and the infinite dimensional cases) reveals that 
most oscillation criteria involve assumptions which are generalizations of the 
Leighton-Winter oscillation criterion [8, 16] for the scalar version of (1). That is, 
most oscillation criteria for (1) involve assumptions of the form "j^ P~^{x) dx = 
= \Q Q{X) dx = oo". The purpose of this paper is to present oscillation criteria 
for (1) in the case where j ^ Q(x) dx "converges". These rough statements will be 
made more precise in Section 3. 

2. The comparison theorem. The Hille-Wintner comparison theorem relates the 
oscillatory behavior of the solutions of the two scalar equations 

(2) ^ f +f{x)y = 0, 

(3) y^ + g(x)y = 0. 

It states: 

Theorem 1. Let f and g be continuous functions on R^ such that the integrals 
^'^ f(t)dt, j ^ ö̂ (̂ ) d̂  converge (possibly just conditionally), and 

ОйГ/{1)а1й rg(t)dt 

on [a, со) for some a e R"̂ . / / (2 ) is oscillatory, then (3) is oscillatory. Equivalently, 
i /(3) 1*5 disconjugate on [b, со) for some b ^ a, then (2) is disconjugate on [b, сю). 

Hille's version of this theorem [6, p. 245] contained the additional hypotheses 
/ (x ) ^ 0, g{x) ^ 0 on R^. The theorem quoted above removes the nonnegativity 
conditions on the coefficients, and was published by WINTNER [17] in 1957. Wintner, 
however, was apparently unaware of the following comparison theorem established 
by C. T. TAAM [14] in 1952. Taam's result compares the two equations 

(4) [p{x)yj +f{x)y=0, 

(5) [г(х)/У +g{x)y = 0, 

and states (in a slightly modified form): 

Theorem 2. Letf, g be continuous functions on Я^ such that the integrals j " ^ f(t) dt, 
J^ g{t) dt converge (possibly just conditionally), and 

f{t)dt\ 
Jx \Jx I 
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on [a, oo) for some a e R^. Let p, r be positive continuous functions on R^ such 
that r(x) ^ p{x), and r[x) ^ к [constant) on [6, oo) for some b e R^. If (4) is 
oscillatory, then (5) is oscillatory. Equivalently, if (5) is disconjugate on [c, oo) 
for some с e R^, then (4) is disconjugate on [c, oo). 

Note that if p = r = 1 on K"*", then the hypotheses involving p and r in Taam's 
theorem are satisfied, and (4), (5) reduce to (2), (3), respectively. Note also that 
Taam's theorem does not require J^ f(t) df ^ 0 on [a, oo) so that even in the case 
p = r = 1, Taam's theorem is stronger than Wintner's. 

Our comparison theorem is a generalization of Taam's result. The theorem in
volves the set of positive functional on the B*-algebra J*. A linear functional g 
on ^ is positive if g{Ä^Ä) ^ 0 for all Л e J*. Equivalently, g is positive if g{B) ^ 0 
for all Be ^ such that Б ^ 0. C. E. RICKART [12] has shown that each positive 
functional g on ^ IS bounded (i.e., continuous), with \g\ = g{l). Also each positive 
functional g satisfies a generalized Cauchy - Schwartz inequality 

(6) \g{A^Y ^ ^(^*^) ^(^*^) 

for all A,Be^. It follows from (6) that g is the zero functional if and only if g{l) = 
= 0. If ö' Ф 0, then g{l) > 0 and, in general, g[A) > 0 whenever Ae 6^, A > 0. 
It also follows from (6) that if f̂ Ф 0, then 

(7) 
1 

g{B*B)^-j-y{B)f 

for all Be äS. Finally, since a positive functional g is continuous, 

whenever Л : R"' is integrable, and 

9\_B'{x)-\ = {^[B(x)]}' 

whenever В :R^ -^ ^ is> diff"erentiable. 
Let ^ be the set of positive functionals on J*. The fact that ^ does contain elements 

in addition to the zero functional can be verified by associating with each nonzero 
vector ae Ж the functional g^ on ^ defined by 

(8) gJ^A) = <Ла, a> , Ae, 

It is easy to show that g^ is a positive functional with ||6f„|| = gj^l) = | | ap . There 
are also positive functionals which are not simply the "associates" of vectors in Ж. 
For example, in the finite dimensional case Ж = J^„, the linear functional "trace" 
is a positive functional. It can be verified, in general, that ^ is a positive cone in the 
space of continuous linear functionals on 0^. 
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Our comparison theorem will compare equation (1) with the scalar equation 

(9) {r{x) y')'+ h{x) y = 0 , 

where r, /i : R"*" -> R are continuous and r(x) > 0 for all x 6 R^. 

Theorem 3. Assume that there exists a number a G R"̂  such that on [a, oo) the 
following conditions are satisfied: 

(i) r ( x ) / - P ( x ) ^ 0 , 
(ii) there exists a positive constant к such that kl — P{x) ^ 0, 
(iii) there exists a g e"^, g ^ 0, such that the integral j ^ ö'[ß(0] ^̂  converges, 

possibly just conditionally, 

(iv) the integral j ^ h{t) dt converges, possibly just conditionally, and 

(v) J"^[Ô(0] àt ^ д{1) h{t) dt 

If equation (1) is nonoscillatory, then equation (9) is nonoscillatory, in fact dis-
conjugate on some interval [c, сю), с '^ a, Equivalently, if equation (9) is oscillatory, 
than equation (l) is oscillatory. 

Proof. Suppose (1) is nonoscillatory. Then there exists a solution У which is non-
singular on the interval [b, oo), for some b e R^. Let с = max {a, b}, and let S{x) = 
= P{x) Y'(x) Y~^(x) on [c, со). The conjoined property of У implies that for each 
x G [с, oo), S(x) is selfadjoint. An easy computation shows that 

(10) SXx) = - S{x) P- \x) S{x) - Q{x) , 

on [c, oo). Fix any x G [С, oo), and integrate S' from x to ^ to obtain the equation 

S{t) + I S{u) P~~\u) S{u) du = S(x) - I Q{u) du . 

Let g be the positive functional specified in hypothesis (iii), and "apply" g to this 
equation. From the linearity and continuity of g, we get 

(11) g[S{t)-] + CglSP-'S] du = g[S{xy] ~ Çg[Q\ du . 

It follows from hypothesis (iii) that the right-hand side of (11) has a finite limit L 
as ^ -> 00. Thus 

lim ig[S{t)] + Cg[SP~'S] du\ = L. 

Since SP''^S ^ 0 on [c, oo), we have g[SP ^S] ^ 0 on [c, oo), and so the function 
p^g[SP~^S']du is increasing on [x, oo). Suppose J^ ^[SP~^5] dw = oo. Then 
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з[5(г)] -> — 00 as ( -> 00. However, from hypothesis (ii), we have that P *(x) — 
- {\]k)l ^ 0 on [c, oo), and therefore 

ö[S(0] + {'g\SP-'S] au è g{S{i)] + i Гз[52] du . 

Also, from (7), g{S^'\ ^ (l/^W) (^[S])^, and so it follows that 

(12) 9VS{t)-\ + ['^[SP-'S] au è g\S)i)\ + ^ j ' (^M)^ d« . 

Now, since ö'L'̂ W] -^ — oo as ^ -> oo, we have 

1 r̂  
(о'И)^ dw -> 00 as f -> 00 , 

and a straight forward argument shows that 

limsup^[5(0] + - 4 - : f ' № F c i t . = 00 

Thus, from inequality (12), ^[5^(0] + A Ô'('S'P ^S)dM is not bounded above on 
[x, oo), contradicting the fact that this expression has the finite limit L. (Note that 

ö[S(0] + ^ j k s ] ) ^ d „ 

might not have limit oo as Г -> oo as suggested in Taam's proof. See also Wintner's 
argument [17, p. 258.) Hence the integral f̂  g{SP~^S) du converges and lim ^[5^(0] 

t-*oo 

exists. Now, by using hypothesis (ii), we have 
M лг r»t poo 

3[S^]dM = 0[SP-1PS] dM й к g[SP-^S}du йк glSP'^S'jdu < oo 
J X J X J X J X 

for all t G [x, oo). We can conclude, therefore, that lim ö [̂'S'(0] = О, and from (U) 
t-*oo 

we have 

(13) 
5[S(x)] = rglSP-'Slidu + Гд[0]аи 

J X J X 

for all X e [c, oo). 
Define the function m on [c, oo) by 

m{x) = g[Six)-] - {g[Q] - g{l) h] du 
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and so we have 

Finally, since 

Equation (12) and hypothesis (v) imply that ^['S(x)] > 0 and \m[x)\ ^ 6̂ [*̂ (̂ )] 
on [c, oo). Now, by differentiating m, and using the linearity and continuity of g, 
we get 

mXx) = -g[S{x) P- \x) S{x)] - g{l) h{x) 

or 
mXx) + g[S{x) p-\x) S(x)] = ~g{l) h{x) . 

From hypothesis (i), 

r(x) 

r(x) 

9(4 

and since (âf[iS(x:)])̂  ^ ni^{x), we obtain the inequality 

mXx) + --^m\x) й -g{l)h{x) 
g{I) r{x) 

which, by Taam's result [14, Theorem 1] (also see Wintner [16]), implies that the 
second order equation 

lg{l)r{x)y-\' + g{l)h{x)y = Q, 

is disconjugate on [c, oo). Obviously this equation is equivalent to (9), and so the 
theorem is established. 

In equation (l) let P{x) = / on R"̂ , and in equation (9) let r(x) = 1 on R^. Then 
equations (l) and (9) become 

(14) Y" + Q{x) У = 0 , 

(15) f + h{x) J = 0 , 

respectively. It is easy to see that with P = I and r = 1, hypotheses (i) and (ii) of 
Theorem 3 are satisfied. Thus the following generalization of the Hille-Wintner 
comparison theorem. Theorem 1, is an immediate consequence of Theorem 3. 

Theorem 4. Assume that there exists a number a e R'^ such that on [a, oo) the 
following conditions are satisfied: ' 
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(i) there exists a ge^, g ^ 0, such that the integral J^ ^[Ô(r)] dt converges, 
possibly just conditionally, 

(ii) the integral j ^ h(t)dt converges, possibly just conditionally, and 

(iii) Гбг[е(0]с1^еК^)|Гк0^^1 

/ / equation (14) is nono s dilatory, then equation (15) is nonoscillatory, in fact dis-
conjugate on [c, oo) for some с ^ a. Equivalently, if equation (15) is oscillatory, 
then equation (14) is oscillatory. 

3. Hille-Wintner type oscillation criteria. As remarked in the introductory section 
most oscillation criteria for equation (l) involve assumptions of the form 
"J?^~4^) ^^ = \o 6 W d^ = 00". To be more specific Etgen and Pawlowski [2,3] 
used the set of positive functional on ^ to obtain oscillation criteria for (1), and 
showed that most of the known criteria in both the finite and infinite dimensional 
cases could be obtained by making suitable choices of positive functional. For 
example, in [3] it is shown that if there exists г, g E^ such that 

Jo 9{Р{Щ Jo 

then equation (l) is oscillatory. This is a generalization of the Leighton-Wintner 
oscillation criteria, and it is demonstrated that this result includes the oscillation 
criteria established by such authors as ALLEGRETTO and ERBE, Hayden and Howard, 
KREITH, and Noussair and Swanson. For specific references see the papers cited 
above. 

We now illustrate how the comparison theorems of the previous section can be 
used to obtain oscillation and nonoscillation criteria of the Hille-Wintner type. 
In particular, we shall use Theorem 4 to develop sufficient conditions for the oscilla
tion of equation (14) and necessary conditions for the nonoscillation of (14). 

Theorem 5. / / there exists a g e^, ö̂  Ф 0, such that j ^ ^[6(0] ^̂  converges, 
possibly just conditionally, and if the scalar equation 

(16) y" + ±.glQ(^,)-^y^O 

is oscillatory, then equation (14) is oscillatory. 

Proof. It is easy to see that if 
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then the hypotheses of Theorem 4 are satisfied. Thus the oscillation of (16) implies 
the oscillation of (14). 

Some specific oscillation criteria for (14) can now be obtained by using specific 
oscillation criteria for (16) together with specific choices of the positive functional g. 
For example, according to Wintner [17], if J^ ^[ß(t)] dt converges, possibly just 
conditionally, and if 

^|"3[e(0]d'>)'/^ 

for some y > i, then (16) is oscillatory. Let Ж = Ä„, and let Ŝ  „ denote the collection 
of strictly increasing sequences of к integers chosen from the set {1, 2,. . . , и}. For 
any n X n matrix Ä, and any a(/c) = {i\, 1*2,..., ik} e Sk^„, let ^Л denote the sum of 

the entries of the к x к submatrix of Ä obtained by deleting all rows and columns 
of Ä except for the ï'i, i2, •••? ik rows and columns. If there exists (т(к) E S^^ such 
that J^ [^ ß(t)] dt converges, possibly just conditionally, and if 

irn:Qit)iiàt>yix, y > i , 

then equation (14) is oscillatory. In the special case к = 1 this criterion becomes: 
equation (14) is oscillatory if J^ qn{t) dt converges, possibly just conditionally, and 

I ^ii{t) > yjx, 

for some diagonal element quof Q and some у > i. These criteria are obtained from 
Theorem 5 by noting that if a{k) e Sj,^„, then 

Y^A = <Aoc, a> = g^A) , (see (8)) , 
a 

where a is the vector in R„ having ones in the ï'i, /2» •••? î  positions and zeros else
where. In the same manner additional oscillation criteria can be obtained for equation 
(14) simply by combining oscillation criteria for equation (16) with specific positive 
functional. 

Our final theorem gives a necessary condition for the nonoscillation of equation 
(14). Like Theorem 5, it is an immediate consequence of Theorem 4. 

Theorem 6. / / equation (14) is nonoscillatory, and if g e^, g ф О, has the 
property J^ o'[Ô(0] ^^ converges, possibly just conditionally, then the scalar 
equation (16) is nonoscillatory. 

We conclude this paper with a simple application of Theorem 6. Let Ж ~ JR„, and 
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suppose that equation (14) is nonoscillatory. Then for each diagonal element qaof Q 
such that J^ qii{t) dt converges, possibly just conditionally, the scalar equation 

У + qii{x) у = 0 
is nonoscillatory. 
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