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GENERALIZED LATTICE IDENTITIES IN LATTICE ORDERED GROUPS 

JÀN JAKUBIK, Kosice 

(Received May 22, 1978) 

In the paper [4], the notion of a radical class of lattice ordered groups has been 
introduced. A particular case of this notion, the concept of a torsion class of lattice 
ordered groups, had been investigated earlier by J. MARTINEZ [7]. Each variety of 
lattice ordered groups is a torsion class (HOLLAND [1]). Several important classes of 
lattice ordered groups (e.g., the class of all archimedean /-groups, the class of all 
complete /-groups, the class of all projectable /-groups, the class of all completely 
distributive /-groups) are radical classes without being torsion classes (cf. [8], [5], 

H, [6], И). 
In this note it will be shown that if P^and P2 are generalized lattice polynomials 

(which may contain infinitely many variables, cf. the definition below) and if j r ( P i , P2) 
is the class of all lattice ordered groups fulfilling the identity Pi = P2, then J r (P i , P2) 
is a radical class. (In fact, a slightly more general result concerning implications will 
be proved.) 

The method used here is a generalization of the method that has been applied to 
investigating complete distributivity of lattice ordered groups in [2]. 

Let us recall the notion of a radical class [4]. A nonempty class JT of lattice ordered 
groups is said to be a radical class if it fulfils the following conditions: 

(i) Jt is closed with respect to isomorphisms. 
(ii) If Я G J T and Я^ is a convex /-subgroup of Я, then Я^ e Jf. 

(iii) If G is a lattice ordered group and {Hi] is a system of convex /-subgroups 
of G such that each Я^ belongs to J T , then V ^ i belongs to J T as well. 

We shall use the following notation: the symbols x, Xj, Xj, ... denote variables, 
while fixed elements of lattices or lattice ordered groups will be denoted by a,b, c, ... 
. . . , flj, bj, Cfc,... . Instead of x̂  and â  we often write x(i) or a{i), respectively. 

An expression of the form 

(where S^ e {Д, V} for each /c e { l , . . . , n}, and / j , ..., /„ are nonempty sets of indices) 
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is called a generalized lattice polynomial with the variables x(ii, ..., i„). The gener
alized polynomial (l) will be denoted also by P x(ii, ..., i„) or by P x(i^, . . . , i„) 

If P x(ïi, . . . , i„) is a generalized lattice polynomial and if L is a lattice,then P can 
be viewed as a partial infinitary operation on L. Let us remark that general algebras 
with infinitary operations have been thoroughly studied by SLOMINSKI [9]. 

Let us have four generalized polynomials 

P i x(ii, . . . , i „ J (ïi e / i , ...,i„^ G / „ I ) , 

Ö1 x{ju '--Jm,) O'l e J i , . . . , ^ , e J^) , 

Put 

/ = (/1 X . . . X /„ J U (/; X . .. X / ; J U ( J i X .. . X J^ J U 

u ( j ; X . . . X j ; j . 

Let L be a lattice. L will be said to fulfil the implication 

(2) Л = P 2 = > Ô i = Ö2, 
if the following condition is valid: 

(*) Whenever ф is a mapping of the set / into L such that all elements 
Pi ^( i i , ..., z„J, P2 (p{iu ••., O ' 6 i ^O'l. - - . . м ) and Ö2 <p{ïu "-Jm^ exist in L, 
then we have 

Pi ФО'Ь •••. г«J = "̂2 Ж ' •••' О =̂  

We denote by .^ the class of all lattices fulfilling the implication (2). If L G c^, 
a,b e L, a -^ b, then the interval [a, b] of L belongs to ^ as well. 

The following result will be proved: 

Theorem 1. Let G be a lattice ordered group. There exists a convex l-subgroup 
H[G) of G such that (i) H(G) fulfils the implication (2); (ii) if Hj^ is a convex l-sub
group of G fulfilling the implication (2), then H^ ^ Я; (iii)/or each automorphism f 
of the lattice ordered group G we have f^H^G)) = H(G). 

First we prove two lemmas. The symbol G denotes always a lattice ordered group. 

Lemma 1. Let a, b, с E G, a S b S c. If [a, b] e i f and [b, c] e .^, then [a, c] 
belongs to if, too. 

Proof. Let [a, b], [b, c] e i f and suppose that [a,c~\ does not belong to if. 
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Hence there exists a mapping cp : I -^ [a, c'] such that P^ (p{i^,..., /„J, P^ (p{i[, • • -, /̂  ), 
01 <^0*i. .--.Ут,). Ô2 <^(Л, •••,JmJ exist in [a, c] and 

(3) Pi ç)(/i, ..., in,) = Pi (p{iu •••' Q^ 

(4) Öl ф(Л. ..-^Jmi) + Ô2 <^(Л. •••.JmJ • 
Denote 

( 3 ' ) и - Qi(p{ji,..-Jrm) A Ô 2 < / > ( j l . - - - 7 m J , 

(3") î̂  = Ol ^/'O'l, '-'Jmd V 62 «PO'I. - - - J Ü • 

From (4) we obtain that 

(5) и Ф V. 

Let (/>! be a mapping of the set / into [0, 6] defined by 

(Pi(i) = ф(г) л 6 for each iel. 

Analogously we define a mapping (p2 '• I -> [b, cj by putting 

(̂ 2(0 ~ ^(0 ^ ^ ^̂ ^ ê ^̂  / e / . 

Since G is infinitely distributive, we have 

Ь л Pi (p{ii, ..., ï„J = Pi(b л (^(/i, ..., /„J) = Pi ^ i ( / i , ..., / „ J , 

Ь V Pi (p(ii, ..., i„J - Pi(b V ^( /1 , ..., /„J) - Pi (p2{i^, ..., /„J ; 

analogous relations hold for P2, Ô1 and 62- Thus in view of (З) we obtain 

(3.1) Pi (pi{ii, ..., /„J = P2 (pi{i[, •••. О ' 

(3.2) ' Pi ^2(4. •••, in J = Pi (Pi{iu'-; I'm) • 

As both lattices \a, b\ and [b, c] fulfil the implication (2), we infer that 

(4.2) ß i (?)2(Л. . • . . J . J = 62 ^2(7^ . - . . J Ü 
hold. Denote 

u^ = и A b , v^ = V A b , U2 = и V b , V2 = V V b . 

From the definition of u, v, from (4.1) and in view of the infinite distributivity of G 
we obtain 

( 5 . 1 ) Wi = t;i . 
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Similarly, by using (4.2) we get 

(5 .2 ) ^2 = г̂ 2 • 

Since G is a distributive lattice, (5.1) and (5.2) yield и = v, which contradicts (5). 
Hence [a, c] fulfils the implication (2). 

Lemma 2. Let 0 ^ a e G, 0 й b e G, [0, a], [0, b] e ^ . Then [0, a -h Ь]Е^. 

Proof. Since the interval [a, л + b] is isomorphic with [0, b], the assertion follows 
from Lemma 1. 

P r o o f of T h e o r e m 1: 
We denote by H(G) the set of all elements g e G that fulfil the following condition: 

there are elements 0 ^ a^e G, 0 ^ «2 ^ ^ with —a^ й 9 й (^2 such that both 
[0, (З1] and [0, «2] belong to ^ . If g e H(G), then —ge H{G). Lemma 2 implies 
that H{G) is closed with respect to the operation + , hence it is a subgroup of the 
group G. Moreover, from the definition of H{CJ) and from Lemma 2 we infer that 
H{G) is a sublattice of G. From this and from the obvious fact that 6̂ 1 e G, 0 ^ ö'i ^ 
й g2^ ^{^) iniplies g^ e H(G) we obtain that H(G) is a convex /-subgroup of G. 

Let H^ be a convex /-subgroup of G and suppose that Я^ fulfils the implication (2). 
Let 0 ^ /zj e H^. Then the interval [0, / z j fulfils the implication (2) as well, hence 
h^ e H ( G ) . From this we easily obtain H^ с H{G). 

The fact that H(G) is a convex /-subgroup of G implies that if {«J с H{G) and if 
sup {üi} = h holds in H ( G ) , then h is, at the same time, the least upper bound of the 
set { a j in G (and dually). Hence if P x(ii, ..., /„) is a generalized lattice polynomial 
and the elements a(ii, ..., i„), a e H(G) fulfil in H(G) the relation 

P a ( i i , ..., i„) = fl, 

then this relation holds also with respect to G. 
Assume that H(G) does not fulfil the implication (2). Then there exists a mapping 

(p : I -> H(G) such that (under the same notation as in Lemma 1) the relations (3), 
(4) and (5) hold in H{G). In view of the above remark, these relations are valid in G 
as well. Put Vi = V — u. Then 0 < ^̂  e H[G) and thus the interval [O, v^/^ fulfils 
the implication (2). As the intervals [w, v] and [0, y j are isomorphic, [u, f] satisfies 
the implication (2) as well. Consider the mapping ф of I into [w, v] defined by 

i^(i) = {(p{i) V u) A V . 
Then we obtain from (3) 

(6) Р1Ф{ги-".1п,) = Р2Ф{1и'-:^-

Moreover, from (3') and (3") we infer 

^ = Ol'A(ji.---.7mJ V 62«A(;1, . . . , ; ;J. 
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Since M < t;, we must have 

(7) Ô i^ (7 i , . . . , Jm . )+ QiHh^-'-.rj-

According to (6) and (7), the interval [w, î ] does not fulfil the implication (2), which 
is a contradiction. Hence H(G) fulfils the implication (2). 

L e t / be an automorphism of the lattice ordered group G. Denote H^ = f{H(^G)). 
Then Hi fulfils the implication (2), hence H^ ç H{G). Similarly, H{G) e H^. The 
proof is complete. 

An /-subgroup Л of G is said to be closed in G if, whenever {a j <^ A, g e G and 
\/ai = g holds in G, then g e A. If this is valid, then the corresponding dual condition 
also holds for Л. It is easy to verify that an /-subgroup Б of G is closed in Gif, whenever 
{b J is a set of positive elements of G g eG and V^i = Q holds in G, then g e B. 

Theorem 2. For each lattice ordered group G, H{G) is a closed l-subgroup of G. 

Proof. Let {h}k^K ^ Щ^\ ^ u h for each keK, g e G. Ltt g = ybj, be valid 
in G. Assume that g does not belong to H[G). Thus the interval [0, ^ ] does not fulfil 
the implication (2). Hence there is a mapping cp of / into [0, g~\ such that (under the 
same notation as in Lemma 1) the relations (3), (4) and (5) are valid in [0, g^ (since 
[0, g] is a closed sublattice of G, these relations hold also in G). We may assume that 
(p(i)e\u, v] is valid for each iel (namely, the elements (pQ) can be replaced by 
{(p{i) V u) A vin the same way as we did in the proof of Theorem l). For each ke К 
we denote щ = и A bj,, Vj, = v A b^. In view of the infinite distributivity of G we 
have 

From this and from и < v it follows that there exists ke К with 

( 8 ) Uk< Vk. 

Let this к be fixed. Since w ,̂ v,^ e tî{G), the interval [w;,, Î ; J fulfils the implication (2). 

Consider the mapping xjj : / -> [w ,̂ f J defined by 

\l/{i) — (p(i) A bk for each iel. 

From (3), (3') and (3'') we obtain 

PiiA(/i, . . . , i „ J = P 2 i A ( i l , . . . , i ; j , 

Ч = Ôl^AO'l, ••.,7m,) V и2Ф{А,"-Лп2)' 

Thus according to (8), the interval [щ, v^] does not fulfil the implication (2), which is 
a contradiction. 
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An interval [a, b] of G is said to be nontrivial if a < Ь. For each X ç G, the 
polar X^ is defined by 

X^ = {geG :\g\ л |x| = 0 for each x e X} . 

(Cf. SiK [10].) Each polar is a closed convex /-subgroup of G. 

Theorem 3. For each lattice ordered group G there exists a convex l-subgroup 
H'{G) of G such that: 

(i) each nontrivial interval of H'{G) fails to fulfil the implication (2); 

(ii) if HI is a convex l-subgroup of G such that each nontrivial interval of H^ 
fails to fulfil the implication (2), then H^ ^ ^X^)? 

(iii) H ' ( G ) is a closed l-subgroup of G; 

(iv) / ( H ' ( G ) ) = H'(G) for each automorphism f of the lattice ordered group G. 

Proof. Put 
HXG) = {H{G)y, 

Then H'{G) is a convex closed /-subgroup of G. Let [a, b] be a nontrivial interval 
of H'{G). Assume that [a, b] fulfils the implication (2). Then 0 < b - ae H'{G) 
and [0, b — a^ fulfils the implication (2). Thus b — ae H{G) which is a contradiction, 
since H{G)nH\G) = {0}. 

Let H^ be as in (ii), 0 ^ h^eH^. Further let 0 ^ /г e H{G). Denote h A h^ = с 
If с > 0, then [0, c] Ç H(G), hence [0, c] fulfils (2); at the same time, [0, с'\Я:Н^, 
hence [0, c] fails to fulfil (2), which is a contradiction. Therefore с = 0 and this 
yields h^EH\G). 

L e t / b e an automorphism of the lattice ordered group G. According to Theorem 1 
we have f{H{G)) = H(G), whence /((H(G))^) = (H(G))^ 

Remark 1. From (i) it follows that the /-subgroup H'(G) is uniquely determined. 
Moreover, H'{G) can be defined as the set of all elements g e G that fulfil the following 
condition: 

(a) Each nontrivial subinterval of the interval [0, |^|] fails ю satisfy the implica
tion (2). 

In fact, if g e H'(G), then (a) is valid according to (i). Let g e G and suppose that g 
fulfils (a). Then clearly |^| A \h\ = 0 for each h e H{G), hence g e {H{G)y = H'(G). 

We denote by J T ^ the class of all lattice ordered groups G such that the lattice 
(G; ^ ) fulfils the implication (2). Further, let ^^2 be the class of all lattice ordered 
groups Gl having the property that for each g e G^ the condition (a) is valid. Both 
the classes Jfi and Jf2 fulfil the conditions (i) and (ii) from the definition of a radical 
class (cf. Introduction); in view of Theorem 1 and Theorem 3, the condition (iii) 
of this definition also holds. Hence we obtain the following 
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Corollary 1. J T I and Ж2 are radical classes. 

Theorem 4. For each lattice ordered group G, H{G) is a polar of G {i.e., {Н{С)У^ = 
= Я(С)). 

Proof. Clearly H{G) ç {H(G)y\ Let 0 < ge{H{G)f^ and assume that g does 
not belong to H{G). Then the interval [0, g^ does not fulfil the implication (2). 
Hence there exists a mapping (p : / -^ [0, ^] such that (under the same notation as 
in the proof of Lemma 1) the relation (5) is valid. Let [w^, v{\ be a nontrivial sub-
interval of [w, i^]. Consider the mapping i/̂  : / -> [w^, i^J defined by 

\l/{i) = {(p{i) A v^) V u^ for each iel. 

Now by an analogous reasoning as in the proof of Theorem 2 we obtain that the 
interval [w^, v^^ does not satisfy the implication (2). Hence each nontrivial subinterval 
of [u, г;] fails to satisfy the implication (2); because [0, t; — w] is isomorphic with 
{u,v], the same holds for the interval [0, v — u~\. Thus according to Remark 1, 
V — и belongs to H'{G). On the other hand, v — и e H{G); since i; — w > 0, we 
have a contradiction. Therefore g e H{G) and hence (H(G))^^ ^ ^ ( ^ ) -

Since each polar of a complete lattice ordered group is a direct factor, we obtain 

Corollary 2. For each complete lattice ordered group G we have G = H{G) X 
X H\G). 

It can be shown by examples that the assertion of Corollary 2 need not hold for 
noncomplete lattice ordered groups. 

Remark 2. If Pj x(ii, ..., i„J = Xj, P2 x(i[, ..., i^J = x^, then Theorems 1, 2 
and 3 turn out to be assertions concerning lattice ordered groups that fulfil the identity 

Remark 3. Let K^ and K2 be sets of indices and let P\\ P\'{k^ e K^), 
ôî% 02^(^2 ^ ^2) be generalized lattice polynomials. The above methods and results 
remain valid (under more complicated notation) also for the implication (2') that 
we obtain from (2) by replacing the left hand side of (2) by the conjunction of all 
relations P\^ = P\^{ki e ^ i ) and the right hand side of (2) by the conjunction of all 
relations Q\' = Qf{k2 e X^). 

Remark 4. The above investigations remain valid also in the case when we define 
the notion of a generalized polynomial by the expression 

(where I^,l2iii), . . . , / „ ( Ï I , l'a? •••' ^n-i) are nonempty sets of indices) instead of the 
expression (l). 
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