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Czechoslovak Mathematical Journal, 30 (105) 1980, Praha 

THE EULER-FERMAT THEOREM FOR THE SEMIGROUP 
OF CIRCULANT BOOLEAN MATRICES 

STEFAN SCHWARZ, Bratislava 
(Received June 29, 1978) 

Let S be a finite semigroup and a e S. The sequence 

(1) a, a ^ a ^ . . . 

has only a finite number of different elements. Denote by к = /c(a) the smallest 
natural number к for which a^ = a^ for some 1 > k. Denote further by /c + J, 
d = d{a) ^ 1 the least exponent for which a^ = a^'^^ holds. Then the sequence (l) 
is of the form 

(2) a , f l ^ . . . , a ' ^ - l | a ^ . . , , a ^ + ' ' - ^ | a ^ . . . . 

It is well known that (a^ ..., a^^''"^} is a cyclic group of order d. 
To any a e 5 we have associated two integers k(a), d{a) and we have a^^^^ = 

Denote К = max {k{a) \ a e S} and D = l.c.m. {d{a) \aES}. Then К = K{S) 
and D = D{S) are characteristics of the semigroup S and for any a G S we have 

(3) a^ = a*^+^ . 

Hereby К and D are the least integers having this property (if we insist on the natural 
requirement that К and D should be independent of a). 

The identity (3) may be called the E u l e r - F e r m a t T h e o r e m for the semi­
g r o u p S. 

To explain this name suppose that jp is a prime and Sp is the multiplicative semi­
group of residue classes (mod p). Then for any a e 5^ we have a = a^. Here К = 1 
and D = p — 1. 

There is a rather limited number of important semigroups (playing a role in various 
parts of mathematics) for which the exact values of К == K(^S) and D = D[S) are 
known. We mention two of them. 

1. Let n = P1^ ... PI"" be the factorization of the integer n > 1 into the product 
of primes and S^ the multiplicative semigroup of residue classes (mod n). 
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Denote v(n) = max (a^, a2 , . . . , a^). Let Я(п) be the Carmichael function, i.e. 

A(n) = l.c.m. [Я(]710, . . .Д(Р: ' - ) ] ' 

2a-2 jp̂ j. p = 2 and a > 2 , 
where 

A(P1 = 
p"" ^(p — 1) otherwise 

We then have: K(S„) = v{n) and D(S„) = Я(п). Hence we have: a'̂ "̂  = a (̂") + ̂ ("> 
for any a e S„ and none of the exponents can be replaced by a smaller number. (This 
is the best possible generalization of Euler's Theorem from the elementary theory 
of numbers.) 

2. By an n X n Boolean matrix [n > 1) we mean an n x n matrix over the 
semiring (O, 1} under the operations a Л- Ъ = sup (a, b), a . b = min (a, b). 

Denote by B„ the multiplicative semigroup of all Boolean matrices. Clearly 
card Б„ = |Б„ | = X"^ and B„ is isomorphic to the multiplicative semigroup of all 
binary relations on a finite set X with \X\ = n. 

In this case it is known that К(В„) = (n — ly + 1. 0(3^) is a function of n which 
can be computed in the following way. Let n = n^ + П2 + . . . + n̂  be a partition 
of n. Then D(B„) = max {l.c.m. [n^, /12? --м '̂ s]}? where (n^, П2,..., n^) runs through 
all possible partitions of n. Otherwise expressed: 

D(ß„) is the largest order of an element in the group of all permutations of n 
elements. 

E.g., if n = 5, we have К{В^) = 17, D(B^) = 6 and for any AeB^ we have 
A^'^ = A^^. Hereby none of the exponents can be replaced by a smaller number. 

In this paper we shall deal with the multiplicative semigroup of all circulant 
Boolean matrices of order n. 

A circulant is a Boolean matrix of the form 

/ ^ 0 ? ^ 1 ? • • • 5 ^ И - 1 ^ 

ш^, a2, . . . , äQ 

where â  e {0, 1}. Denote by 

0 1 0 .. . 0. 
0 0 1 0 

P = 
I 0 0 0 ... 1 
Ч 0 0 ... 0̂  
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and let E be the unit matrix of order n. Then any circulant can be written in the 
form 

(4) A = aoE + a^P + «2^^ + . . . 4- a„_iP"~^ , a ;e{0 , 1} . 

We have P^ — E and for convenience we also define P^ = E. 
The set of all circulants of order n is (under multiplication) a semigroup C„ with 

|C„| = 2" (including the zero circulant Z). Note that C„ contains the cyclic group 

If v4 = (a,y) and iJ = (b^y) are Boolean matrices, we denote by A r\ В the matrix 
D — (dij) with dij = min (а,^, Ь^ )̂. We shall write A ^ В if and only if Л n Б = Л. 
Clearly, if j Ф / (mod n), we have P-̂  n P^ = Z, which implies that any element e C„ 
has a unique representation in the form (4). 

The following is the Euler-Fermat Theorem for the semigroup C„. 

Theorem 1. For any AE C„we have 

(5) A"-' = Л ^ " - ^ 

This result is the best possible, i.e. none of the exponents can be replaced by 
a smaller number. 

Proof, a) If Л = Z, (5) is trivially true. If A = P' {O S j й n - l) ,(5)is true, 
since 
(6) pj(2n-l) _ pj(n-l)pjn _ pj(n-l) 

b) Suppose next that Л is of the form 

A = E + P'' + P'^ + ... + pj^ , 1 uji <J2 < "• <jkun - 1 . 

In this case we have A = EA S A . A = A^. Now A -^ A^ implies A -^ A^ -^ 
^ A^ ^ ... S ^""^ ^ ^". Since il ^ 1, the first row of A (hence any row of A) 
contains at least two non-zero elements. The matrix A^ is either A or it contains at 
least three non-zero elements in each of the rows. Repeating this argument we obtain: 
There is an integer h S n — 1 such that A^ = A^'^^. The more A"~^ = A" = 
= A""-^ = ... = Л ^ " - \ which implies Л""^ = A^^'K 

c) Suppose finally that A is of the form A = P^B, where 

В = E + P'' + ... + P'"^, 1 Sji <J2 <•"• un - 1 . 

Then with respect to (6) 

j^ln-l _ ( p i ^ ) 2 n - l _ pj(2n~l)ß2n-l _ pj(n~l)ßn'-l __ (pJßY"^ = A"~^ 

This proves (5) in all cases. 
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d) Consider the element В = E + P e C„. Then for any w ^ n - 1 we have 
Б" = Б"~^ = £ + P + . . . + P"-2 ^ pn-i ^ J ĵ̂ gj-e J is the n X П matrix with 
all elements equal to 1. On the other hand B"~^ = E + P + .• + P"~^ + J-
Hence ß""^ Ф ß" for any и ^ n ~ 1. 

e) Consider next the element В = P.WQ have P"~ ̂  = P^"" \ but for all v satisfying 
/ i - l < i ; < 2 n - l w e have P"~^ ф P ^ This completes the proof of Theorem 1. 

The identity (5) holds for all Ä e C„. Modified results can be obtained if we specify 
'4he position" of Ä in C„. 

To prove the corresponding results we need some informations concerning the 
structure of the semigroup C„. 

In [1] we have proved: If tiis a divisor of n, n = dt, then 

jßiä) = E + P^ + P^^ + ... + P^'-^^^ 

is an idempotent e C„ and any idempotent e C„ different from Z can be obtained 
in this manner. (Note that in this notation £̂ "̂  = E and E^^^ = J.) 

Denote by K^ the set of all Ле €„ such that A^ = E^^^ for some integer 5 ^ 0 
(depending on A). Then C„ — Z = (J K^ is a union of disjoint subsemigroups of C„. 

d\n 

We call K^ the maximal subsemigroup of C„ belonging to the idempotent E^^\ (It 
is largest subsemigroup of C„ containing E^^^ and no other idempotents.) 

The maximal group containing E^^^ as its unit element is the group G^ = {E^^\ 
P . E^^\ ..., P^'^E^^^}, a cyclic group of order d. Clearly Ĝ  cz K^. In particular 
K^ = G„ = {E, P, P ^ ..., P""^}, while G^ is the one point group G^ = { j} . 

Note also that the set of all idempotents G C„ different from Z becomes a modular 
lattice if we define 

£(dO ^ 0d2) ^ £([d„d.]) ^^^ ^(dO ^ руг) ^ Em,ä2)) ^ 

where [dj, (̂ 2] and (di, J2) denote the least common multiple and the greatest com­
mon divisor of d^ and <̂2 respectively. 

Example . Let n — 45. The semigroup C45 contains 6 idempotents different 
from Z. In the schematic figure 1 each square denotes a maximal subsemigroup of C45. 
The circle contained in K^ is the maximal group Ĝ  with unit element E^^. 
We have C45 — Z = X45 u K^^ и Kg и K5 KJ K^ \j K^. Consider, e.g., d = 15. 
We have £<''> = £ + P^ ' + P^^ and G15 = {E^^ )̂ p£(i5) pi4jg;(i5)| ^^^ -̂  

the set of all Ye C45 for which 7* = £ + P^^ + P^^ for some integer 5 ^ 1. In 
[2] (p. 509) an explicit formula for the number |iC |̂ has been given, namely \Ка\ = 
= dj]jfi{j){2*^-^ — 1), where t = njd and fi{j) is the Möbius function. From this 

j\t 

formula we obtain \К^^\ = 60. 

138 



Note also that \Ki\ = (2*' - 1) - 3(2^' - 1) - 5(2' - 1) + 15(2^ - 1), so 
that by far the most elements e C45 are contained in K^. It can be easily shown that 

l^il lim 
n = 00 Z 

= 1 . 

Isé. 

Ç(m 

^IS^ 

Fig. 1. 

The aim of this section is the proof of Theorem 3, which is the Euler-Fermat 
Theorem for the semigroup K^. It turns out that if we specify that A e K^, then the 
exponents in (5) can be replaced by smaller numbers. 

Theorem 2 may be considered as a supplement to the results obtained in [1] and [2]. 

Theorem 2. For any A e K^, d ф n, we have A'^^^~^ e G^ and the number njd — 1 
cannot be replaced by a smaller one. 

Remark . If d = n, we have K^ = G^ and the statement formally holds if we 
define A^ = E, 
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Proof. Write t = njd. In [2] we have proved that any element e K^ can be written 
in the form 

A = P\E + P"̂ '̂  + P"̂ '̂  + .. . + P"*^^), 

where 1 ^ м̂  < t(2 < .-• < ŵ  ^ ^ — 1 and 0 ^ / ^ n — 1. Note that not all 
possible choices ofu^,U2,..., ŵ  are giving elements G K^ (some of them are elements 
e К J where J is a divisor of j ) . 

a) Denote В = E + P"̂ ** + .. . + P"''^ and note that if BEK^, we also have 
P^BeKa. We have again В ^ B^ which implies В й B^ й B^ S - й B^. By 
assumption В belongs to the idempotent E^^^ and E^^^ contains in each row exactly t 
non-zero elements. Analogously as in the proof of Theorem 1 we conclude that 
there is an integer h ^ t ~ 1 such that B^ = B^^^. Hence B^ is an idempotent e C„ 
and therefore B^ = E^^^ e G^. 

b) Suppose next 1 ^ I ^ n — 1 and A = P^B. Then with the same h as sub a) we 
have A^ = P'^ = P^^E^'^\ which is an element e G .̂ 

c) To see that t — 1 cannot be replaced by a smaller number consider the element 
Y= E + P'^e C„. We have YeK^, 

r - 2 - (£ + Р'у-^ = £ + P ' + .. . + P^^'-'> Ф £̂ >̂ . 

If Y'~^ were an element e G ,̂ we would have y ' - ^ ^ w = у'~^. Now r - ^ ^ w = 
= (E + P + . . . + P'^'~^^){E + P ' + . . . + P^('-^>) - £<̂ >. Since r - 2 Ф E '̂̂ ), we 
have a contradiction. Hence 7 ' "^ is not an element e G .̂ This proves Theorem 2. 

Theorem 3. For any A e K^, d Ф n, we have 
j^nid-i _ ^n/d-i+d 

None of the exponents can be replaced by a smaller integer. 

Remark . For AeK^ = G„ we have E = Л". The statement of the Theorem is 
true if we define A^ = £ . 

Proof, a) Put again t = njd. Let AeK^ and consider the sequence A, A^, A^, . . . . 
Since A^~^ is in the group Gj, recalling (2), we immediately see that A\ A*'^^,... 
are contained in the group Gj. Since Ĝ  is of order d we have A*~^ = A^~^'^^. 

b) The exponent on the left hand side cannot be replaced by f — 2 since 
{E + Р^У"^ is not contained in G a while all powers {E + РУ with / ^ r -- 1 are 
elements of the group G .̂ (As a matter of fact for / ^ Г - 1 (E + P^ = E^^\) 

c) The exponent on the right hand side cannot be replaced by a smaller one, i.e. 
A^~^ = Л'"^^", 1 ^ M < d, does not hold for all AeK^. It is sufficient to put 
A = PE^^\ We have Л'"^-'" = P^-i+«£W ф p ^ - i ^ w =, A'~K This proves 
Theorem 3. 
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Example (continued). For the semigroup C45 we obtain by Theorem 3 the 
following identities: 

E = A^^ for Л 6X45, A^ = A^^ for AeKs, 
A^ = A'' for AeK,,, A'^ = A'' for AeK^, 
A^ = A'^ for AeKg, A^^ = A^' for AeK^. 

The best result holding for all Л e C45 is (in accordance with Theorem 1) A^^ = A^^. 
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