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Czechoslovak Mathematical Journal, 30 (105) 1980, Praha 

ISOMETRIES OF LATTICE ORDERED GROUPS 

JÂN JAKUBIK, Kosice 

(Received June 30, 1978) 

Let G = (G; + , л , v ) be a lattice ordered group. A one-to-one mapping/ of G 
onto G is called an isometry of G if the following conditions are valid for each pair 
of elements X, 3; G G: 

0)| /(х)- /Ы| = |х-у|; 
(ii) / ( [ x л J, X V j;]) = [/(x) л f{y), / (x) V /{y)]. 

SwAMY [6] defined the notion of isometry of an abelian lattice ordered group G 
as a one-to-one mapping f of G onto G fulfilling (i) identically. It is easy to verify 
that for abelian lattice ordered groups the condition (ii) is a consequence of (i) 
(cf. Lemma L2 below). 

In this paper we shall investigate the relations between isometrics of a lattice 
ordered group G and direct product decompositions of G. 

I f / i s an isometry of G and/(0) = 0, then/wi l l be called a 0-isometry. Let g e G; 
the translation/^ is defined by/^(x) = x -]- g for each x e G. Every translation is an 
isometry of G. Each isometry can be uniquely represented as a composition of a 0-
isometry and a translation. Thus for finding all isometrics of G it suffices to determine 
all 0-isometries. 

It will be shown that for every 0-isometry / of G there exists a uniquely determined 
direct product decomposition G = A x ß of G such that 

/ (x ) = x(A) - x(ß) 

is valid for each xeG, where x(A) and x(ß) are components of x in the direct 
factors A and ß, respectively. 

For any lattice ordered group G we denote by G'^iG), GQ(G) and T(G) the set of 
all isometrics, the set of all 0-isometries and the set of all translations of G, respec
tively. Each of these sets is a group with respect to the composition of mappings. 
F o r / i , / 2 G G'^(G) we pu t /1 S /2 if / i (^) ^ fii^) is valid for each x G G, 

Let G and G' be lattice ordered groups. It will be proved that if there exists a one-
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to-one mapping cp of G^'(G) onto G'^iG') such that cp is SL group isomorphism and an 
order isomorphism, then G is isomorphic with G'. This sharpens a result of SVV̂AMY 

[7]. 
Let G be archimedean and let d{G) be the Dedekind completion of G. It will be 

shown that GQ(G) is isomorphic with a subgroup of Go(^(G)). If, moreover, G is 
strongly projectable, then GQ{G) is isomorphic with Gg^diG)). 

We shall use the standard terminology and denotations for lattice ordered groups 
(cf. FUCHS [2] and CONRAD [1]). 

1. THE SYSTEMS Ml AND M^ 

Let G = (G; +, л , v) be a lattice ordered group and let a, b, xe G. It is well-
known that 

\a — b\ = (a V b) — (^a A b) . 

Since (a V b) — a = b — (a A b), WQ have also 

\a — b\ = a ~ (a A b) + b — (a A b) = (a V b) — a + (a V b) — b . 

1.1. Lemma. Assume that G is abelian. The following conditions are equivalent: 

(a) |fl — b| = |fl — x| + \x — b\ ; 

(ß) xe[a A b, a w b'] . 

Proof. Suppose that (a) is valid. Denote a A x = p, bAx = q, pAq = u, 
p V q = z. Clearly и ^ a A b and z ^ x. Assume that и < a A b. Then we have 

\a - x\ -{- \x - b\ = [a - p) + {x ~ p) Л- {x - q) + {b - q)"^ 
^{a - p) + {z - p) + {z - q) + {b - q) = 

= {a - p) + {q - u) + {p - u) + {b - q) = {a - u) + {b - u) = 
= fl — (a л b) + Ь — (a л b) + 2((a A b) — u) > \a — b\ , 

which is a contradiction. Thus a A b = и and hence a A b -^ x. The relation x ^ 
^ a V b can be verified dually. Therefore (ß) holds. 

Conversely, assume that (ß) is valid. Let p ^ w be as above. Then p v q = x, 
и = a A b hence 

\a - b\ = (a - u) -{- (b ~ u) = [a - p) + {p - u) + {b - q) + {q - u) = 
= {a - p) + {x - q) -h {b ~ q) + {x - p) = \a - x\ + \x - b\ . 

1.2. Lemma. Let G be abelian. Let f be a one-to-one mapping of the set G onto G 
fulfilling the condition (i)/or each x, y E G. Then (ii) /5 satisfied for each x, y e G. 
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Proof. From (i) it follows that the condition (a) from 1.1 is equivalent to the 
condition 

(aO |/(a) - f(b)\ = \f{a) - f{x)\ + |/(x) - f{b)\ . 

Hence according to 1.1, (ß) is equivalent to 

(ßO / ( x ) 6 [ / ( a ) A / ( b ) , / ( a ) v / ( b ) ] . 
Therefore 

/([a л b, a V b]) = [/(a) л /(b), /(a) v /(b)] 

is valid for each a, b e G. 
From 1.2 it follows that in the case of an abelian lattice ordered group, the defini

tion of isometry given above coincides with the definition of isometry given in Swamy's 
paper [6]. 

It can be easily verified by examples that (i) is not, in general implied by (ii). The 
question whether (ii) is a consequence of (i) for each lattice ordered group G remains 
open. 

In what follows, G is a lattice ordered group; the commutativity of G will not be 
assumed. 

In 1.3 — 1.7' we suppose that / i s an isometry of G. (Each of the lemmas 1.3 — 1.7' 
can be applied also for /~^ under the corresponding change of denstations.) We 
denote by M^ and M2 the sets of all intervals [r, s] of G such that /(r) ^ /(5) or 
/(r) ^ /(s), respectively. 

1.3. Lemma. Let a,b, ce G, a g b ^ c. If ie [1,2} and [a, c] e M ,̂ then both 
the intervals [a, b] and [fe, c] belong to Mf. 

This follows immediately from (ii). 
Since Ml n M2 contains only one-element intervals, we obtain from 1.3: 

1.3'. Corollary. Let a,b, ce M, a ^ b, a ^ c, [a, b] e M^, [a, c] e M2. Then 
a = b A с {and dually), 

1.4. Lemma. Let a,beG, a S b. There exist elements c, d e [a, b] such that 
[a, c], \_d, fe] e Ml, [0, (i], [c, fo] e M2, CAd = a, cvd — b. 

Proof. Put с = f~\f{a) V /(b)), J = f~\f{a) л /(fe)). Then (ii)(with/replaced 
by /~^) yields c, rf e [a, b] and hence [a, c], [J, b] e M^, [a, c/], [c, b] e M2. 
Thus according to 1.3, с A d = a, с v d = b. 

Suppose that x, y, u, v e G, x A у = u, x v у = v. 

1.5* Lemma. Let [м, x], [м, j ] e M^. Thenf{x) л / ( j ) = /(w) andf{x) v /(3;) = 
= /(i?) {hence [x, t;], [j;, i;] e M^). 
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Proof. We have f{u) ^ / (x ) , Дм) й f{y), whence Дм) ^ Дх) A f{y). On the 
other hand, from (ii) we infer Дх) л f(y) ^ f(u), thus Дм) = f(x) л Ду). 

Because of |x — }̂ | = v — и = \v — u\, the relation 

0) |/W-/WI = |/W-/(«)I 
is valid. From (ii) it follows 

f{v)e[f{x)Af{y),f{x)vf{y)-], 
hence 

l/W - /(Ĵ )l = (/(x) V f{y)) - (fix) л fiy)) = 
= /(x) V f{y) - f{u) = /(x) V f{y) - f{v) + f{v) - f{u). • 

From this and from (l) we get /(x) v f{y) — f{v) = 0. 
Analogously we obtain: 

1.5'. Lemma. Let [м, x], [м, у'] e M2. Then Дх) v Ду) = f{u), Дх) л Ду) = 
== /(Î;) (/lence [x, v], [y, v] E M2). 

1.6. Lemma. Let [и,х']еМ^^, [м, y] e M2. Then f{u)Af{v)=f{y), f{u)v 
V f{v) = Дх) {thus [x, ü] G M2, [ j , г;] G M^). 

Proof. According to the assumption we have f{y) ^ f{u) ^ Дх). From (ii) it 
follows that f(v) G [/(j),/(x]. Hence [x, v] e M2, [y, v] e M^. From this and from 
1.3' (applied to / -^ ) we obtain Дм) л f{v) = f{y)J{u) v Д ;̂) = Дх). 

1.7. Lemma. Let [u, x] G M^. T/zen [j;, 1;] G M^. 

Proof. According to 1.4 there is с G [м, }̂ ] such that [м, CJGM^, [C, J ] G M2. 
Denote e = с v x. From 1.5 it follows that [c, e] G M^ and hence according to 1.6, 
[y, v'jeM^. 

Analogously we obtain (by using 1.5' instead of 1.5) 

1.7'. Lemma. Let [м, x] G M2. Then [y, v] e M2. 
Now let us suppose that/is a 0-isometry. 

1.8. Lemma. Let x e G. Then 
(a) X л Дх) ^ 0 =>f{x) = x; 
(b) X л ( - / ( х ) ) ^ 0 = > / ( х ) = - x ; 
(c) X v / ( x ) ^ 0 = ^ / ( x ) - x; 
(d) X V ( - / ( x ) ) g O = > / ( x ) = ~x. 
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Proof. From X A ( / (x))^ 0 we obtain x = |x| = |x - O] = |/(x) - / ( 0 ) | = 
= |/(x)| = / (x) . The relations (b) — (d) can be verified analogously. 

1.9. Lemma. Let 0 ^ x e G. Then 
(a) /(x) = X <f>f{-x) = ~x; 
(b) /(x) - ~xof{-x) = X. 

Proof. Suppose that/(x) = x. According to 1.4 there exist elements c, d e [ —x, x] 
such that [ — X, c], [J, x] G M^, [ —X, J] , [c, x] G M2. Since [0, x] G M^, we obtain 
from 1.3' that 0 v с = x, whence 0 G [(i, x]. Then according to (ii), 0 G [/(^),/(^)]-
Denote с л 0 = z. We have (c — z) л ( —z) = 0, x = x — 0 = с — z, hence 
X л ( - z ) == 0. Thus 2x л (~z) = 0. On the other hand, —z = 0 — z = : J — 
— ( —x), thus 2x = X — ( —x) = [x — d) + (d — ( —x)) = (x — J) + { — z) and 
X — ^ ^ 0, whence 0 ^ — z ^ 2x. Therefore z = 0 and this implies d = —x. 
Further we obtain/(-x) = f{d) й 0, hence/(-x) v ( -x) й 0. By 1.8,/(-x) = 
= — X. The other implications of the lemma can be proved analogously. 

2. THE DIRECT DECOMPOSITION CORRESPONDING TO / 

Let G be as above and let / be a 0-isometry of G. Denote A^ = [0 S ^ ^ G : 
:/(x) ^ 0}, J5, = {0 ^ X G G :/(x) й О}. 

2.1. Lemma. Lef 0 ^ x G G. There are elements p e A^, qeB^ such that the 
relations 

x = p + q = pvq, /(x) = p - q 

hold. Moreover, p = sup (A^ n [0, x]), q = sup (^B^ n [0, x]). 

Proof. Denote и = / (x) л 0, г; = f(x) v 0. Then /(x) = w + г;. According to 
(ii) there are elements p, q e [0, x] such that v = f(p), и = f{q). Flence by 1.6 we 
have p A q = 0 and p v q = x. Thus x = p + q. Since p e A^, q G B^, it follows 
from 1.8 that f(p) = p, f{q) = ~q, thus /(x) = p — q. Let p' e A^ n [0, x]. From 
1.3' we get p' A q = 0, whence p' =^ p' A x = p' A {p y q) = p A p. Therefore 
p = sup (A^ n [0, x]). The relation q = sup (В^ n [0, x]) can be verified similarly. 

Analogously we obtain (by using 1.9): 

2.1/. Lemma. Let 0 ^ x G G. There are elements p e A^, ^ ^ B^ such that the 
relations 

x = p + q = pAq, f(x) = p ~ q 

are valid. Moreover, p =•- inf (( —y4j_) n [x, 0]), q = inf (( —Б )̂ n [x, 0]). 
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Let X ç G. We denote 

X^ = {geG:\g\ л |jc| = 0 for each xeX} . 

The set X^ is called a polar ofG. Each polar of G is a closed convex /-subgroup of G. 
(Cf. SiK [8].) Further we put 

X^"- = {yeX^ :y ^ 0} . 

Then X^'^ is a convex sublattice of the lattice (G; л , v ) and a subsemigroup of the 
group (G; + ) . 

It is well-known that a polar X^ is a direct factor of G if and only it the following 
condition is fulfilled: 

(*) For each 0 ^xeG, there exists sup(Z^^ n [0, x]) in the lattice (G; ^ ) . 
If (*) holds, then also the dual condition is fulfilled and 

G = X^ X X^^ 

(we write here, in fact, X^ instead of (X^; + , л , v ) , and similarly for X^^). If this 
is the case and O ^ y e G , O ^ Z G G , then the components y{X^), z(X^) of у and z 
in X^ are given by 

y(X') = sup (X'"- n [0, j ] ) , z{X') = Ы{Х'- n [z, 0 ] ) , 

where X^~ = - Z ^ + . 

2.2. Lemma. A \ ^ = B^ and В^"- = A^, 

Proof. From L3' we infer that B^ ç J^^ is valid. Let x e Л̂ "̂  and let j?, q be as 
in 2Л. Since -p e Л^, we have x л ]? = 0 and hence /7 = 0. Therefore x = ^ e Б ;̂, 
^1+ Ç Б^ and thus Л "̂" = B^. Similarly we obtain Б?+ = Л^. 

Denote Л^ = Б, Б^ = Л, A = (Л; + . л , v ) , ß = (Б; + , л , v ) . 

2.3. Lemma. G = Л x ß. 
This follows from 2.1 and 2.2. 
For XÇ:G with x ^ 0 or x ^ 0 let /7, ^ have the same meaning as in 2.1 and 2.Г, 

respectively. Then 2.3 implies х(Л) = j?, x(ß) = q. Hence 2.1, 2.Г and 2.3 yield 

2.4. Lemma. Let x e G swc/i Гйа̂  ei7/zer x ^ 0 or x ^ 0. Thenf{x) ~ x(A) — x(ß). 

2.5. Theorem. Let G = (G; + , л , v ) be a lattice ordered group and let f be 
a O'isometry of G. Then there are direct factors A, В of G such that G = A x В 
and f{x) = x(A) — x(ß) holds for each x e G. 

Proof. Let Д, ß be as in 2.3; hence G = A x B. Let x e G. Denote x л 0 = w, 
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X V о = V. According to 1.4 there exists r e [w, 0] such that [w, ^̂J e 
Put z = X V r. From 1.7 and 1.7' it follows that [x, z] e M j , [z, u] e ^ i - ll^nce 

/ (x ) = (/(x) - / (z)) .- ( /( . ) - / (z)) + / ( . ) = 

= | / ( x ) - / ( z ) | - | / ( . ) - / ( z ) | + / ( . ) . 

We have 

| / (x) - / ( z ) | = |x - z| = |u - r| = | /(u) - / ( r ) | = / ( „ ) - ^ / ( ' • ) , 

|/(t;) - / ( z ) | = |г - z| = |0 - r| = 1/(0) - f{r)\ = | - / ( r ) | ^ ~~/(r) , 

thus / (x ) = / ( M ) + /(t^). From 2.4 we obtain 

/ (u ) = u{A) - u{B), f{v) = ю{А) - v{B). 
Hence 

f{x) = u{A) - u{B) + v{A) - v{B) = u{A) + v(A) - u{B) - Щ . 

The definition of и and v yields |w| л |t;| = 0 and hence \u{B)\ л \v{^)\ == 0, which 
implies w(ß) + v{B) = v{B) + u{B). Thus 

f(x) = u{A) + v{A) - {u{B) + v(B)) . 

Clearly X = и + V, Therefore f{x) = x{A) - x(ß), which completes the proof. 

Remark. / / A, В are as in 2.5, then 

Ä = {x e G :f{x) = x} , В = {x e G :f{x) = —x} ; 

hence A and В are uniquely determined by the 0-isometry f. 
From 2.5 it follows that whenever / e GQ(G), then / is an automorphism of the 

group (G; + ) and that / ^ = e, where e is the identical mapping on G- If he G'^{G) 
then the mapping/ defined by/(x) = h(x) — h(0) for each x e G is a 0-isometry of G. 
Hence we have 

2.5.1. Corollary. (Cf. [6], Theorem 1.) For each isometry h of G there exists just 
one involutory isometric group automorphism f of G such that /z(x) = f{x) + /z(0) 
for every x e G. 

Remark. In Theorem 1, [6] the assertion 2.5.1 has been proved for the case of an 
abelian lattice ordered group G (the commutativity of G has been essentially used in 
the proof; namely, the representation of G as a subdirect product of linearly ordered 
groups has been applied). 

Let /г , /be as in 2.5.1 and let ß be as in 2.5. Suppose that h fails to be a translation. 
Then В Ф {0} and for each 0 < Ь G Б we have h{b) (ß) = - Ь + /z(0) (ß) < h(0) (ß), 
whence h(6) ^ h(b). Thus we have 

148 • 



2.5.2. Corollary. (Cf. [6], Theorem 2.) An isometry of G is order preserving iff 
it is a translation. 

In view of Theorem 2.5, we can express this also by saying that (under the denota
tions as above), /г is order preserving iff Б = {O}. Analogously we can verify that h 
is order reversing iff A = {0}, i.e., В = G. Thus we obtain 

2.5.3. Corollary. (Cf. [6], Theorem 3.) An isometry h of G is order reversing iff 
h(x) = /z(0) — X for each x e G. 

3. THE GROUP OF ALL ISOMETRIES OF G 

As above, let G = (G; + , л , v ) be a lattice ordered group. Let card G > 1. 
We denote by BQ = BQ{G) the system of all direct factors of G [BQ being partially 
ordered by inclusion). Then BQ is a Boolean algebra. 

Let A and ß ' be complementary direct factors of G, i.e., G = A x B', Then Д' is 
uniquely determined by ß ' . Put h{x) = x(A) — x(ß') for each x e G. We can easily 
verify that /i is a 0-isometry of G. This together with 2.5 implies: 

(**) / / we put (under the same denotations as in 2.5) (p(f) = ß, then cp is a one-
to-one mapping of the set Go(G) onto the set BQ{G). 

This result can be slightly sharpened as follows. We denote by S(BQ) the Stone 
space of BQ. There is an order preserving injection ij/ of BQ onto the system S^ of all 
clopen subsets of S{BQ). For each X e S^ let fx be the characteristic function of X 
(i.e., fx{t) = 1 for each teX and fx{t) = 0 for each r e S ( B o ) \ X ) . Further let 
F = (F; + ) , where (i) F is the set of all functions/;^ with X running over S^, and (ii) 
the operation + on F i s performed as addition modulo 2. Hence Fis a group. Consider 
the mapping фу^: Gl(G) -> F defined by iAi(/).= ^(ф(/)) for e a c h / e GQ(G), where cp 
is as in (**). Then 2.3, 2.5 and (**) imply 

3.1. Proposition. Ф1 is an isomorphism of the group GQ(G) onto F. 
We can ask to what extent the lattice ordered group G is determined by the set G 

and by the group Go(G). Some negative results in this direction are implied by the 
following examples concerning lattice ordered groups G = (G; + , ^ ) and G^ = 

3.2. Suppose that GQ{G) = GQ{GI) and that the operations + and + ^ coincide 
on G. Then it can happen that the partial order ^ coincides neither with ^ ^ i^^r 
with the dual of ^ 1 . 

Example. Let R be the additive group of all reals with the usual linear order and 
let G be the set of all pairs (x, y) with x, y e R. We define the operation + in G 
coordinatewise. For (x^, y^), (^2, y2) e G we put (x^, y^) й {^2^ У2) if either x^ < X2, 
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or Xi = X2 and j i ^ y2. Further we put (x^, y^) Si (xz^yi) if either y^ < y2, 
or Ĵ i = У2 and Xi S X2. Then G = (G; + , ^ ) and G^ = (G; + , ^1) are linearly 
ordered groups. Since each linearly ordered group is directly indecomposable, we 
infer from 2.5 that i f / i s a 0-isometry of G, then e i ther / is the identity on G or / ( r ) = 
= - r for each t e G; the same holds for G^. Thus Go(G) = G'^{G^). The linear 
order S coincides neither with Si nor with the dual of ^ 1 . 

3.3. Suppose that Go(G) = GQ{G^) and that the partial orders S and S1 are equal. 
Then the operation + need not coincide with + 1 . 

Example. Let R be the set of all reals and let + and S have the usual meaning. 
Put (p{t) = t^ for each 0 S teR and (p{t) = -t^ for each 0 ^ t e R. For each 
pair X, J e i^ we set X + 1 }̂  = (p((p~^{x) + (p~^{y)). Then G = (jR; + , ^ ) and G^ = 
= {R; + 1 , й) are linearly ordered groups. We have Go(G) = ( J O ( ^ I ) and the opera
tion + does not coincide with + 1 . 

Let G = (G; + , Л, v ) and G' = (G'; + , л , v ) be lattice ordered groups with 
G n & = 0. Let Ф be a one-to-one mapping of the set G'^^G) onto G'^(G'). Both 
these sets are taken as partially ordered (cf. Introduction). Consider the following 
conditions for cp: 

(a) Ф is a group isomorphism. 
(b) (p is an order isomorphism. 
(c) (p carries translations onto translations. 
The following theorem is the main result of the paper [7]: 
(S) Let G and G' be abelian lattice ordered groups, (i) / / there exists a mapping cp 

of G'^iG) onto G^{G') fulfilling the conditions (a), (b) and (c), then G is isomorphic 
with G'. ( i i ) / / G and G' are divisible and if there exists a mapping cp of G^((3) onto 
G'^{G') fulfilling (a) and (b), then G and G' are isomorphic. 

We shall show that the assertion (ii) remains valid without assuming that G and G' 
are abelian and divisible. 

3.4. Lemma. Let G and G' be lattice ordered groups. Suppose that cp is a one-
to-one mapping of the set G'^i^G) onto G'^iG') fulfilling the conditions (a) and (b). 
Then cp fulfils the condition (c) as well. 

Proof. Let e and e' be the neutral elements of G^(G) and G'^(G'), respectively. 
For each с e G we denote by fc the translation of G defined byfc{t) = t + с for each 
te G. Let 0 < ce G. Then fc > e. The isometry ç>(/c) can be written as a com
position of a 0-isometry and a translation, hence there are / e GQ(G') and c' e G* 
such that cp(fc) (f) = f{f) + c' is valid for each f e G'. Since cp fulfils (a) and (b), 
we have <?>(/c) > e\ hence 

(a) f{t') + c'^t' 

holds for each f e G'. 
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Assume t h a t / Ф е', Then (under analogous denotation as in 2.5, taking G' instead 
of G) we have В ф {О}, hence the lattice (B\ g ) has no greatest element. Thus there 
is 0 < Ь G Б with с'{В) ^ Ъ. Since f{h) = - Ь , we obtain - b + c' ^ Ь by putting 
t' = Ъ into (a), hence c'(ß) ^ 2b(ß) = 2Ь, which is a contradiction. Therefore 
(^(/c) is a translation whenever с > 0. 

If 0 > c e G, then /^ = {f^^~^, hence (^(Л) is a translation as well. For each 
de G we have J = w + f with и = d A 0, v = d v 0. Since ç>(/d) = ^{fufv) = 
ф(/«) <5̂ (/t;) we infer that (p{fd) is a translation. 

3.4.1. Corollary. Let G,G' and ç be as in 3.4. Then the partial mapping cpjiG) 
is an isomorphism of the partially ordered group T(G') onto T(G'). 

Since T(G) is isomorphic with G and T(G') is isomorphic with G\ we obtain 

3.5. Proposition. Let G and G' be lattice ordered groups. If there exists a mapping 
cp of G'^iG) onto G'^iG') fulfilling the conditions (a) and (b), then G is isomorphic 
with G', 

Let G = (G; + , л , v ) be an /-subgroup of a lattice ordered group G' = (^G ; 
+ , Л, v ) . For f'eG^(G') we denote by fß the corresponding partial mapping 
of the set G into G\ Consider the following conditions: 

(ai) / G e Gt{G) for each / ' e Gt{G^). 

(bi) For every / G G^{G) there exis ts / ' G Gt{G') such t h a t / = f^. 

The Dedekind completion of an archimedean lattice ordered group G will be 
denoted by d(Gy, under the natural embedding, G is an /-subgroup of d(G). A lattice 
ordered group is called strongly projectable if each its polar is a direct factor. 

3.6. Proposition. Let G be an archimedean lattice ordered group and let G' = 
= J(G). Then the condition (Ь^) is valid. 

Proof. Let / G GO(G). Let Â, В be as in 2.5. From G = Д x ß it follows that 
d(G) = d{Â) X d{B) (cf. [3]). Put / ' (z) = z(d{Ä)) - z{d{B)) for each z G d{G). 
T h e n / ' G Go(G') and/<^ = / ; hence (Ь^) holds. 

From 3.6 we easily obtain the following corollary: 

ЗЛ. Corollary. Let G be an archimedean lattice ordered group. Then GQ(G) is 
isomorphic with a subgroup of Go(<i(G)). 

The notion of generalized Dedekind completion D(G) of a lattice ordered group G 
(where G need not be archimedean) has been introduced in [4]. If G is archimedean, 
then D ( G ) = d{G). In [5] it was proved that to each direct product decomposition 
G = Д X ß of G the corresponding completion is the direct product decomposition 
JD(G) = D(A) X D[B). This implies that the condition (b^) holds whenever G is a lat
tice ordered group and G' =^ D(G). 
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3.8. Proposition. Let G be a lattice ordered group. Suppose that G is archimedean 
and strongly projectable. Let G' = d{G), Then the condition (a^) holds. 

Proof. Let / ' e G%{G'). According to 2.5 there is a direct product decomposition 
G' = A X B' of G' such that f'{z) = z{A) - z(ß') is valid for each zeG'. Put 
A = Ä' n G, В = B' n G, v^here A' and B' are the underlying sets of A or ß', 
respectively. Then A = B^ and В = A^ hold in G. Denote A = (Л; +, ^ ) , ß = 
= (Б; +, s)- Since G is strongly projectable, we have G = A x ß. It can be easily 
verified that x{Ä) = x{A) and x(ß) = x(ß') for each x e G. This yields /^ e GS(G) 
and hence (a^) holds. 

3.9. Corollary. Let G be a lattice ordered group. Suppose that G is archimedean 
and strongly projectable. Then the groups G*(G) and G'^^diG)) are isomorphic. 

It can be shown by examples that the assertion of 3.8 need not hold if the strong 
projectability of G is not assumed. 
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