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INTRODUCTION

Let H be a Hilbert space with an inner product (+, +) and with the corresponding
norm |+ |. We shall consider two closed convex sets K, K, in H and two (in general
nonlinear) operators 4,, A, : H — H. We shall study the connection between solu-
tions uy, u, of the following two variational inequalities:

(I, uek,

(I1,) (Ayu, v — u) 2 (fpv — u) forall vekK,

(n = 1,2), where f,, f, € H are given. More precisely, we shall estimate the value
luy — us| in terms of |f, — f.|, the “distance between the sets K,, K,” and the
“distance between the operators A, A,” (see Section 2, Theorem 2.1). Further,
we can consider a sequence {K,} of closed convex sets, a sequence {4,} of operators
and a sequence {f,} of right-hand sides converging in a certain sense to a closed
convex set K,, to an operator 4, and to f, € H, respectively. Convergence of the
sequence of solutions of the corresponding variational inequalities (I,), (II,) to
a solution of the variational inequality (I,), (II,) (without an estimate of the rate of
convergence) has been proved under various assumptions in a number of papers
(see for example U. Mosco [3], [4]). As a consequence of the above mentioned
Theorem 2.1, we obtain under certain special assumptions an estimate for the rate
of convergence of solutions in terms of the rate of convergence of K,, 4,, f, (see
Remark 2.6). Concrete examples are given in Section 3.

1. NOTATION, GENERAL REMARKS

If K is a closed convex set in the Hilbert space H, then we shall denote by Py the
projection onto K, i.e., Pxu for an arbitrary u € H is the unique element of K
satisfying the condition

Ju = Pya] = inf s = o]

(see [1]).
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Remark 1.1. It is well-known (and easy to see) that Pxu is the unique element
of K satisfying the condition

(u — Pgu,v — Peu) <0 forall vek
(see [1]).
Remark 1.2. The projection onto a closed convex set is a Lipschitzian mapping:
(1.1) [Py — Po| < [lu — o] forall w,veH.

Remark 1.3. Let y be an arbitrary positive number. Then u € H is a solution of
the variational inequality

M uek,

(1) (Au,v — u) = (f,v—u) forall vekK

if and only if

(1.2) u = Py(u — y(Au — f))

(see [1]). Indeed, it follows from Remark 1.1 that (1.2) is equivalent to (I) and
(Ir) (u—y(Au — f) —u,v —u) 20 forall vek,

which is equivalent to (II).

Lemma 1.1. (see [1]). Let A : H — H be an operator satisfying the assumptions
(1.3) (Au — Av,u — v) =2 M|u — v|* forall u,veH,
(1.9) [Au — Av| < L|u — v|| forall u,veH

where M < Lare positive constants. Let f e H and y € (0, 2M[L?). Then the opera-
tor T defined by
Tu = Pg(u — y(Au — f))

is a contraction. Namely, we have
[Tu = To| < L|u =] forall u,veH,
where L = /(1 — 2yM + y*I*) e (0, 1).

Remark 1.4. It follows from Lemma 1.1, Remark 1.3 and from the well-known
Banach contraction principle that under the assumptions (1.3), (1.4) the problem
(I), (IT) has precisely one solution and this solution can be obtained by the usual
iterative method as a fixed point of the operator T.

For the sake of completeness, we present

Proof of Lemma 1.1. Using (1.1), (1.3), (1.4) we (;btain
[Tu — To|* = |Px(u — y(Au — f)) — Pg(v — y(4v — f))|* £
< Ju = 9(4u = f) = v + 940 - f)|* =
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=(u—v,u—0v)—2y(Au — Av,u — v) + y*(Av — Au, Av — Au) <
< (1 —29M + y?12) |u — of*.
Itis 1 — 2yM + y*I? €<0, 1) for y € (0, 2M[I?).

2. PERTURBATION OF THE VARIATIONAL INEQUALITY.
RATE OF CONVERGENCE OF THE APPROXIMATIVE SOLUTION

In this section, we shall establish an estimate of the norm of the difference of
solutions uy, u, of the problems (1), (II;), i = 1, 2. To this end, let us first define
the expressions which characterize the “distance” between two closed convex sets
and between two operators.

Let K,, K, be closed convex nonempty sets in H. For each r > 0 such that
{xeK; |x| =r} +0(i=1,2), we define

S(r; Ky, K;) = sup inf fu — o,
veK1 ueK3
floll=r
o(r; Ky, K,) = max (S(r; K, K,), S(r; K, K,)) .
For each r > 0, we set
o(r; Ky, K,) = sup |[Pg,u — Pyul| .
ueH

llull =~

(If no misunderstanding can occur we shall not specify the convex sets writing briefly
o(r; Ky, K,) = o(r) et.c..)

Remark 2.1. The expression o(r) is the so-called local gap (or opening) of the sets
K, K, (see [4]). Given a sequence of convex sets {K,},>; we can define the conver-
gence K, - K by means of the conditions

(CK) limo(r; K, K,) =0 Vr>0
n—+o

or

(CK) Irg 20 Vr>ry limo(r; K, K,) = 0

which are equivalent (see Remark 2.2 and Lemma 2.1). The condition (CK’) ensures
that K, tend to K in the following sense:

(M1) to each u € K there exist u, € K,, n = 1,2, ..., such that u, > u *);

(M2) if u, €K, where I, is an increasing sequence of indices and u, — u, then
ueK*).

The conditions (M1), (M2) were used by U. Mosco [3] in the proof of convergence
of the corresponding solutions (without estimates for the rate of convergence).

*) By — and — we denote the strong convergence and the weak convergence in H, respectively.
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Remark 2.2. We shall establish an estimate of ”u1 ~ u2” in terms of the expres-
sion ¢. However, it is usually difficult to calculate this expression directly, while it
is often possible to evaluate the expression o (cf. also Section 3). The following lemma
describes the relation (in general nonlinear) between the expressions ¢, ¢ and hence
between the conditions (CK), (CK’):

Lemma 2.1. Let K,, K, be closed convex nonempty sets in H, and let us denote
d; = dist (0, K;) (i = 1,2), d = max (dy, d,).*) Then
(E) a(r) < o(r) £ J((8r + 4d) o(r + d) + o*(r + d))
for each r > d.
Proof. (1) If v e K, then Pg v = v and therefore
inf Ju = o] = [P = o] = [Pro = Prc]
Thus we have

S(r; Ky, K;) = sup inf |lu — v =

veK1 ueKz
= sup |[Px,v — Py,v|| < sup |Pg,v — Py,v| = ofr)
ol &r NES ,

for an arbitrary r > d; analogously for S(r; K,, K,) and the first inequality of (E)
is proved.

(ii) Secondly, let u € H be an arbitrary point, |
= Pg,u, u, = Pg,u. We have

(2.1) lud = 1Px O] + [Px(v) = PxO) s d + 7, i=1.2

u“ < r and let us denote u; =

in virtue of Remark 1.2. This together with the definition of ¢ implies that
(2.2) dist (u,, K,) < o(r + d).

It follows from Remark 1.1 that the set K, lies in the half-space H; = {w; (u — uj,
w — u,) < 0} and (2.2) yields that

u— u,

Ju —u
where we write o instead of o(r + d) (see Fig. 2.1). It follows from the definition of &
that B(uy, 6) n K, + 0, where B(z, k) denotes the closed ball with the center z and
with the radius k. Thus u, € B(u, R + o), where R = |[u — u,|. Hence we have
o(r) < sup {|w — uy|; we B(u, R + o) n H,} =% q. Easy calculation by methods
of the plane geometry yields ¢ = \/(4Ro + o7). We have R = |ju — u,| < [u] +
+ |us|] £ 2r + d and this implies (E).

u,eH, = H +

*) By 0 we denote the origin in H.
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Remark 2.3. It is easy to see from the proof of Lemma 2.1 that the following
more precise estimate holds for each r > 0 :
(E) o(r) = V(Br + 4dy) o(r + dy) + o*(r + dy)).
Particularly, if one of the sets K; contains the origin, then g(r) is estimated in terms
of o(r) instead of o(r + d).

Remark 2.4. Let us discuss the case of a sequence {K,}:%,. It is easy to see that
if (CK')is valid, then dist (K;, §) < Dfori = 1,2, ... and for some D. Thus, for each
r > 0 we have o(r, K, K,) < 2(r + D) < oo and hence there exists C(r) such that

or; K, K,) £ C(r) {o(r + D; K, K,)}*, a=4%.

=

s~ ——

54 g

\

_

Fig. 2.2a.

Fig. 2.2b. 0,= a,(r; K, K,).
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A simple example illustrated by Fig. 2.2a, b shows that this estimate is not true with
a > 3.

Now, let us consider operators A4,, A, : H — H. The following assumptions will
be used:

(M) (Au — A, u —v) 2 M|u — v|* for all u,veH, n=1,2, where M > 0
(monotonicity);
(B) B(r) = sup |A,u| is a finite number for each r > 0 (boundedness);
n=1,2
llull =r
(L) |Awu — Aw|| £ Lju — v| for all u,veH, n = 1,2, where L> 0 (Lipschitz
property).
For each » > 0, let us denote
a(r) = a(r; Ay, A,) =”sh1;<> |4 — Azu| .

Remark 2.5. If {4,} is a sequence of operators, then the following convergence
condition can be considered:

(ca) lima(r; A, A,) =0 foreach r>0.

n—* o
This condition is stronger than the assumptions about the convergence of operators
studied by U. Mosco [3]. '

Theorem 2.1. Let K,, K, be closed convex sets in H and let A;, A, : H - H be
operators satisfying the conditions (M), (B), (L). Let us suppose that fi,f, € H.
Let us denote by u,, n = 1,2 the unique solutions of (I,), (IL,).*) Let us choose
7 €(0, 2M|I?). Then

(2.3 [un| U, n=1,2;
2.4)  [uy — ug] < 1__1-L [o(U + 7 BU) + 7F) + 1|[f1 — 2] + 7 a(U)],

where
L'= (1 —2yM + y*I*) €0, 1),

U=X‘4.[F+B(d)]+d,

F = max (| f]. | /2]

), d = max(dist (K, 0)).
n=1,2
Proof. Choose v, € K, such that |v,| < d, n = 1, 2. The conditions (M), (1)), (B)
imply that
M“un - UnHZ é (Anun - A,,U,,, u, — Un) é (fn —.A,,U,,, u, — U,,) =

< [F + Bd)] [jus — v

*) The existence and unicity of the solution of (I), (II) is well-known under more general
assumptions (for example, see [2]). In our special case it follows directly from Remark 1.4.
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which yields (2.3). With respect to Remark 1.3, we have

(2.5) Jluy = us]| = | Px,(ur + 9(f1 = Aguy)) = Pij(uz + Af2 — Azu))| =
< [ Pr(us + 9(fy = Aguy)) = Pi(uy + 9(fy — Au))| +
+ ||PK2(“1 + 7(f1 - A1“1)) - sz(uz + y(fy — A1“2))” +
+ "PKZ(MZ +0(f1 = Aguy)) = Py(uz + 3(f2 — Aus))| -

Using (B) and (2.3) we obtain

(2.6) lu, + 9(f — A,)| SU + 9F + yBU), n=1,2
and therefore
(2-7) “Pm(“l + Y(fl - Alul)) - sz(ul + V(f1 - Al“l))” =

< o(U + yF + y B(U)).
Further, Lemma 1.1 implies that :
(2.8) | Pry(us + Wf1 — Aguy) — P,(uy + 9(fy — Ayus))|| < Lluy — uy .
Remark 1.2 implies that

(29) [Pxi(uz + ¥(fy = Agus)) = P,(uy + 2(f2 — Asur))|| <
< W|f: = 12| + a(U)).
Putting (2.7)—(2.9) into (2.5) we obtain (2.4).
Remark 2.6. Let us consider closed convex sets K, K, in H (n =1,2, ) satisfying

the condition (CK). Further, let 4, 4, : H > H (n = 1, 2, ...) be operators satisfying
the assumptions (M), (L) (with some positive M, L independent of n), (CA) and

(B) B(r) = sup || 4,u| is a finite number for each r > 0.

llull r
n=1,2,...

Suppose that f, f, € H, f,, — f. Denote by u and u, the unique solutions of the prob-
lems (I), (II) and (I,), (11,), respectively.

Theorem 2.1 ensures that u, — u and it gives an estimate of the rate of this con-
vergence. If we set ¢,(r) = o(r; K, K,), a,(r) = a(r; 4, 4,), then

1 ~ ~
— [eU + 7 BU) + 9F) +9|f = ] + 7 a/U)]
where y € (0, 2M[L?) is arbitrary,

L'=1-2M + y*I2,

F= sup |f,], d= sup dist(K,,0),
n=1,2,.. n=1,2,...

Ju — | =

U=—]:2[F“+E(d)]+d.
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Further,
lun| = U

Let us remark that the convergence of solutions without an estimate of its rate is
proved in [3] in a more general situation.

3. EXAMPLES

In this section, we shall explain two easy applications of Theorem 2.1. For the
sake of simplicity, we shall choose the simplest fixed operator 4 (= 4, = A4,) in
Example 3.1 and give the estimate of the difference between the solutions in terms of
the distance between the sets K,, K, only. On the other hand, a simple fixed set K
(= K, = K,) will be considered in Example 3.2, where the estimate of the difference
between the solutions in terms of the distance between the operators A4;, 4, will
be given. It will be clear that both examples can be generalized and combined.

In the whole section, Q is a given domain in R" with a lipschitzian boundary.

Example 3.1. Denote H = W;(®) (the well-known Sobolev space). Let ¢,, ¢,,
V1, ¥, € H be given functions satisfying the conditions

(3'1) l//l - (pl g 6 ’
(3'2) l’¢2 - q)l" Se, ”'//2 - 'pl“ Se,
(33) (P"§0§|//,,, n=12,

where ¢, 6 are constants such that

(3.4) 0<s§3.

(We write v < u for the functions v, u € H if and only v(x) < u(x) for almost all
x € Q etc..) The assumption (3.3) is not necessary and it is considered for the sake
of simplicity only. This assumption ensure that d = 0 in Theorem 2.1 and that (E)
holds for all r > 0in Lemma 2.1. Therefore the estimate of “ul - u2” will be simpler
in this case.

Let us consider convex closed sets

(3.5) K,={ueH; 9, <usy,}

(n = 1,2) and an operator A : H —» H defined by

N A
(3.6) (Au,v):f [Z "”—aﬁ+uv]dx forall u,veH.
Q

i=10x; 0X;
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We shall show that if u, is the solution of the problem (1), (IL,) (n = 1, 2) with K,
from (3.5), A, = A, = A from (3.6) and with some f; = f, = fe H, then

Iuo = = 26171 FOUL + Hon + D)+

=Gl TR i
It is clear the assumptions (M), (B), (L) are fulfilled with
(3.7) M=L=1, B{)=r
and we can choose
(3.9) y=1, L=0
in Theorem 2.1. The assumption (3.3) implies
(9) =0, U=ls].

Now, we want to estimate o(r; Ky, K,). Denote & = (¥, + ¢,). Let u€ K, be an
arbitrary function such that |[u]| < r. Set

w=klu—&+&=ku+ (1 -k)¢
for each k e <0, 1). It follows from (3.1), (3.5) that

u,‘gku+(1——k)}(2(pl+5)g¢1+1¥5,

;q§m+41-@gwl—agwl—355a

If we set k = 1 — 2¢[8, we obtain
¢y +tesSuy =@ —¢
and this together with (3.2), (3.5) implies u, € K,. Further,
2
sup [u—w = sup (1=K [u—c| <=+ ¢
uek, ueK1 5

lfull =7 flull =7

and hence

S0 Ky Ka) S 2 (r + 2]

On the other hand, let u € K,, |[u|| < r. It follows from (3.1), (3.2), (3.4) that
w2z ku + (1 — k)20, +6) 2

gk(p2+(1—k)§-(2(p2—28+5)g(p2+%66,
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ug < ku + (1 — k) 42y, — 6) £
1 —k

Sk, + (1 — k) 32y, + 26— 8) < Y, —
It we set k = 1 — 4¢/6, we obtain
P+t eSu =Y, —¢
and this together with (3.2), (3.5) implies u, € K,. Hence we have
sup fu —wf = sup (1 —k)fu~¢] < <%0+ Jel)

Iull<r H"II<r

which yields
4
S(r; Kp, K,) < f(r + ¢l

On the whole, we have

(3.10) o(r; Ky, Kz) < ?(f + ¢l -
Using (E) from Lemma 2.1, (3.9) and (3.10), we obtain
D S EN (GGaC EE=Ca b ]

Putting (3.7), (3.8), (3.9), (3.11) into (2.4), we obtain the estimate announced above.

Example 3.2. Let us denote by H = V%’;(Q) the subspace of W3(2) of functions
with zero traces on the boundary of Q and introduce the inner product on H by

(u,v) = Ou dv —-dx forall u,veH.
oi= 10x x

Let g,, g, be two continuous functions defined on <0, o) which have the first
derivative on (0, oo), and satisfy the following conditions:

(3.12) M < g, (t) < B forall 1e{0,®), n=12,
(3.13) Ms< di(g,,(z) ) =gt) +gi()t <L, te(0, @), n=12,
t

(3.14) [9:(t) — g2(1)] £ & forall 1e(0, ),
where M, B, L are positive constants. We shall consider operators A,, 4,; H - H

defined by

(3.15) (Ayu,v) = j g,,(]grad ul) % 21 gﬂ dx

l i
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and a closed convex set
(3.16) K={ueH;uz0}.

We shall show that if u, is the solution of the problem (I,), (IL,) (n = 1, 2) with 4,
from (3.15), K, = K, = K from (3.16) and with some f}, f, € H, then

y €
Juy =z = (I = Lol + 1 max (] [£2]))

1 — (1 = 2yM + y’I?)

for an arbitrary y € (0, 2M[L?).
First, we shall show that A4, 4, satisfy the assumptions of Theorem 2.1. If r =
=[ry o)y s =[50 sN] € R" are arbitrary, then we can write (omitting the

index of g for a moment) Z(g () ri = g([s]) ;) (ri = s:) = F(1)\ F(0), where
F(t) = Zg(]s + 1(r = s)|) (s + t(r —s)) (r — ;). There exist Te(0,1) and 6 =

—s+rr—s)suchthat
F(1) = F(0) = g((o]) | — s + ﬂ,,iz = 50,3~ )1

If g'(|0]) 2 0, then F(1) — F(0) = g(|0]) |r — s|*; if, conversely, g'(|6]) < 0, we use

the Cauchy inequality which yields

2 g'(l"l)
o]

F(1) = F(0) = 9(]0]) [ — 5| |r = s [0 ;

hence we have in both cases

Z[g(lrl)r —g(s]) s (ri = s) 2 MY(r; — )
This implies that
(Au — Ao, u —v) 2 M”u — u”l ,

i.e. the condition (M) is fulfilled.
To obtain the condition (B), we conclude from the relations

[ 4,u =”§|L|11§)1[(A,.u, v)| =”i}[1}§>1 fgu |grad “|)lz1 2: ;j
s sun > 22 < B up fu] o]
lelist Joli=t Ox; 0x; ol =1
that (B) is fulfilled with
(3.17) B(r) =
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Now, if r, 5, t € RY, then we have (supposing g,(|r|) — g.(|s|) = 0)
S Lol = ol sl =
= X AT0r) = oD vt + 0l = 5 1) <

< LolrD) = aullsD el ] + gulls) Ir = s[ 1] =
< LoalrD rl = gullsD Is[T ] = Lir = s|[1]

analogously as above we obtain

lIA

| 4w = Al = Lju = of ,

i.e. the condition (L) is fulfilled. Further, it is easy to see that

N
(3.18) a(r; Ay, 43) = sup | [ 3 | gu(leradu)) 2 = gy(leradul) |2 ax| <
I EE 0x; 0x; ] 0x;
h N -
< e sup f Y a—ugv—v—dx=r..s.
]M%%; i=10x; 0x;

Obviously, we have ¢(r) = 0 for all r because K; = K,. The assumptions (M), (B),
(L) are fulfilled with the constants M, Lfrom (3.12), (3.13) and putting (3.17), (3.18),
into (2.4) we obtain the estimate mentioned above.

Remark 3.1. Evidently, we could consider sequences of sets K,, of operators 4,
and right hand sides f, (n = 1,2, ...) converging to K, A4, f and we could give an
estimate of the rate of convergence in Examples 3.1, 3.2 (cf. Remark 2.6).
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