Czechoslovak Mathematical Journal

D. Hardy; Francis J. Pastijn The maximal regular ideal of the semigroup of binary relations

Czechoslovak Mathematical Journal, Vol. 31 (1981), No. 2, 194-198

Persistent URL: http://dml.cz/dmlcz/101736

Terms of use:

© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

THE MAXIMAL REGULAR IDEAL OF THE SEMIGROUP OF BINARY RELATIONS

D. Hardy¹, Ft. Collins, and F. Pastun*, Gent (Received March 19, 1979)

If a semigroup contains a right [left, two-sided] ideal which is also a regular subsemigroup, then there is a maximal right [left, two-sided] such ideal which we shall call the maximal regular right [left, two-sided] ideal of the semigroup. This is the case for example when the semigroup under consideration contains a kernel, or more in particular, a zero. This leads to the question of characterizing the elements of the maximal regular right [left, two-sided] ideal of the semigroup of all binary relations B_X on the set X.

For any $x \in X$ and any $\varrho \in B_x$, let

$$x\varrho = \{ y \in X \mid x \varrho y \}, \quad \varrho x = \{ y \in X \mid y \varrho x \}.$$

For any $A \subseteq X$ and any $\varrho \in B_X$, let

$$A\varrho = \bigcup_{x \in A} x\varrho$$
, $\varrho A = \bigcup_{x \in A} \varrho x$;

let $V(\varrho) = \{A\varrho \mid A \subseteq X\}$, $V(\varrho)' = \{\varrho A \mid A \subseteq X\}$. Clearly $V(\varrho)$ and $V(\varrho)'$ form complete lattices under the usual set-inclusion. It is well-known that $V(\varrho)$ and $V(\varrho)'$ are anti-isomorphic [10], and that the binary relation ϱ is a regular element of B_X if and only if $V(\varrho)$ (or $V(\varrho)'$) is a completely distributive lattice [9]. Another characterization of the regular elements of the semigroup B_X may be found in [7].

Let $R_X[L_X, M_X]$ denote the maximal regular right [left, two-sided] ideal of B_X . Clearly $M_X \subseteq L_X \cap R_X$. We shall show that $L_X = R_X = M_X$, and we shall characterize the elements of B_X which belong to M_X .

It can be readily verified that M_X is non-trivial. An easy computation shows that M_X contains all elements ϱ for which $V(\varrho)$ is a complete chain. In particular, M_X contains

¹⁾ The first author's research was done while he was a visiting professor at the University of Nebraska.

^{*)} The second author's research was done while he was a visiting professor at the University of Nebraska, supported by a Fulbright-Hays Award.

the elements ϱ for which $V(\varrho)$ is a two-element chain; such elements ϱ are called the rectangular binary relations, and it can be shown that they form the least non-trivial ideal of B_X ([6], [8]).

Theorem 1. The following statements are equivalent.

- (i) $\alpha \in R_X$,
- (ii) $V(\alpha)$ is a completely distributive lattice which does not contain a sublattice

of the form
$$\langle \cdot \rangle$$
 , (1)

- (iii) $V(\alpha)$ is isomorphic to a lattice L which is a subdirect product of a complete chain C with itself such that
 - (a) $(x, x) \in L$ for all $x \in C$,
 - (b) if $(x, y) \in L$ and $x \neq y$, then either x covers y or y covers x in C and $(y, x) \in L$.
- Proof. (i) \Rightarrow (ii). Let $\alpha \in R_X$, and let us suppose that $V(\alpha)$ contains a sublattice of the form (1). Then there exist subsets A_1 , A_2 , A_3 of X, and elements 1, 2, 3 of X such that $1 \in A_1 \alpha \setminus A_2 \alpha$, $2 \in A_2 \alpha \setminus A_1 \alpha$, $A_2 \alpha \subset A_3 \alpha$ and $3 \in A_3 \alpha \setminus (A_1 \cup A_2) \alpha$. Let $\gamma = \{(1, 1), (1, 3), (2, 2), (3, 2), (3, 3)\}$. Then $A_1 \alpha \gamma = \{1, 3\}$, $A_2 \alpha \gamma = \{2\}$ and $A_3 \alpha \gamma = \{3\}$ and $A_3 \alpha \gamma = \{3\}$ and $A_3 \alpha \gamma = \{4\}$ and $A_4 \alpha \gamma = \{4\}$ and
- = $\{2,3\}$, and so $V(\alpha\gamma)$ is of the form . Thus $\alpha\gamma$ is a non-regular element of

 B_X which contradicts $\alpha \in R_X$. Thus $V(\alpha)$ cannot contain a sublattice of the form (1).

(ii) \Rightarrow (iii). Let us suppose that $V(\alpha)$ is a completely distributive lattice which does not contain a sublattice of the form (1). Let C be the set which consists of all elements of $V(\alpha)$ which are comparable to every other element of $V(\alpha)$. Let T be a maximal chain in $V(\alpha)$. Clearly C is a subchain of T.

Let A and B be any pair of incomparable elements of $V(\alpha)$ and suppose that D < A. $V(\alpha)$ contains a sublattice which consists of the elements $A \vee B$, $A \wedge B$, $A \wedge B$, $A \wedge B$, $B \vee D$ and $D \vee (A \wedge B) = A \wedge (B \vee D)$. We know that $A \vee B$, $A \wedge B$, $A \wedge B$, are four distinct elements of $V(\alpha)$. Since $V(\alpha)$ cannot contain a sublattice of the form (1), we have either $B \vee D = A \vee B$ or $B \vee D = B$. If $B \vee D = A \vee B$, then $A = D \vee (A \wedge B) = A \wedge (B \vee D)$ and in this case $V(\alpha)$ would contain a sublattice of the form (1) consisting of the six distinct elements $A, B, A \vee B, A \wedge B, D, B \wedge D$; this is impossible, and thus $B \vee D = B$; in other words $D \subseteq A \wedge B$. In a dual way we can show that if A and B are incomparable in $V(\alpha)$ and D > A, then $D \supseteq A \vee B$.

Let A and B be any pair of incomparable elements of $V(\alpha)$, and let D be any element of $V(\alpha)$. If D were not comparable to A nor B, then the foregoing reasoning shows that $A \vee B = A \vee D = B \vee D$ and $A \wedge B = A \wedge D = B \wedge D$: this is

obviously impossible since the distributive lattice $V(\alpha)$ cannot contain a sublattice

of the form \bullet . Thus D is comparable to A or B. From the above reasoning

it now follows that D is comparable to A, B, $A \wedge B$ and $A \vee B$. We conclude that $A \wedge B$, $A \vee B \in C$, where $[A \wedge B, A \vee B]$ consists of the four elements A, B, $A \wedge A \wedge B$, $A \vee B$, and that $A \vee B$ covers $A \wedge B$ in C. Furthermore, either A or B belongs to C.

It is easy to see that C is a closed sublattice of $V(\alpha)$. Hence C is a complete chain. For any $A \in T \setminus C$ let A' be the unique element of $V(\alpha)$ which is not comparable to A. Let L be the subdirect product of C with itself which consists of the elements

$$(D, D),$$
 $D \in C$,
 $(A \lor A', A \land A'), A \in T \backslash C$,
 $(A \land A', A \lor A'), A \in T \backslash C$.

Obviously the mapping

$$V(\alpha) \to L$$
, $D \to (D, D)$, $D \in C$,
 $A \to (A \lor A', A \land A')$, $A \in T \smallsetminus C$,
 $A' \to (A \land A', A \lor A')$, $A' \in V(\alpha) \smallsetminus T$

is an isomorphism. Thus (iii) is satisfied.

(iii) \Rightarrow (i). Let R denote the set of the elements $\alpha \in B_X$ which satisfy condition (iii). From (i) \Rightarrow (iii) it follows that $R_X \subseteq R$. Let α be any element of R. Then $V(\alpha)$ is isomorphic to a lattice L which is a subdirect product of a complete chain C with itself where the conditions (a) and (b) are satisfied. Since L is a closed sublattice of the direct product of C with itself it follows that $V(\alpha)$ and L are completely distributive ([1], V. 5 and [5]). It follows from Zaretskii's characterization of the regular elements that R consists of elements which are regular in B_X .

Let α be any element of R and let β be any element of B_X . From the fact that $V(\alpha\beta)$ is a complete lattice and the fact that $V(\alpha) \to V(\alpha\beta)$, $Y\alpha \to Y\alpha\beta$ is an order-preserving mapping it easily follows that $V(\alpha\beta)$ can be constructed in the way described by (iii). Thus $\alpha\beta \in R$, and so R is a right ideal of B_X .

If α and β are \mathscr{D} -related elements of B_X , then $V(\alpha) \cong V(\beta)$ ([4], [10]). Thus R is a union of \mathscr{D} -classes of B_X , and we can now conclude that R is also a regular subsemigroup of B_X . Consequently $R = R_X$.

Theorem 2.
$$R_X = L_X = M_X$$
.

Proof. Let α be any element of B_X . By the dual of Theorem 1 we have that $\alpha \in L_X$ if and only if $V(\alpha)'$ does not contain a sublattice of the form (1). Since $V(\alpha)$ and

 $V(\alpha)'$ are isomorphic, we have by Theorem 1 that $\alpha \in L_X$ if and only if $\alpha \in R_X$. Thus $L_X = R_X$ is a two-sided ideal, and so $L_X = R_X \subseteq M_X$. Since obviously $M_X \subseteq L_X \cap R_X$ the equality holds.

Theorem 3. The automorphism group of M_X is isomorphic to the symmetric group Sym X.

Proof. The semigroup M_X contains the relations of the form $\{(x, x)\}$, $x \in X$: M_X is a r-semigroup. Furthermore, for every $\mu \in \operatorname{Sym} X$ and every $\alpha \in M_X$ we must have $\mu^{-1}\alpha\mu \in M_X$. It then follows from [2], Corollary 7, that the automorphism group of M_X is isomorphic to $\operatorname{Sym} X$.

Theorem 4. M_X is a subdirectly irreducible regular semigroup. The equality is the greatest idempotent-separating congruence on M_X .

Proof. From [2], Proposition 2, it follows that a congruence π on M_X is trivial if and only if the π -class containing the empty relation is trivial. Therefore there exists a least non-trivial congruence on M_X if and only if there exists a least non-trivial ideal of M_X , and if this is the case, then the least non-trivial congruence on M_X is precisely the Rees congruence which is associated with this least non-trivial ideal. Since M_X is an ideal and a regular subsemigroup of B_X , every ideal of M_X must also be an ideal of B_X . The ideal of B_X which consists of the rectangular binary relations is contained in M_X , and we know that this ideal is the least non-trivial ideal of B_X . Thus the rectangular binary relations constitute the least non-trivial ideal of M_X . We conclude that M_X is subdirectly irreducible ([3], I. 3.7).

Remarks.

- 1. If |X| = 2, then the identity mapping Δ_X belongs to M_X since $V(\Delta_X)$ satisfies (ii) of Theorem 1. Thus we know without any computation that $M_X = B_X$ is regular in this case (B_X contains 16 elements, 11 of which are idempotents).
- 2. M_X is contained in the intersection of all maximal regular subsemigroups of B_X . If |X| > 2, then M_X is properly contained in this intersection since the identity mapping Δ_X belongs to every maximal regular subsemigroup of B_X .

References

- [1] Birkhoff, G.: Lattice Theory, Providence (1967).
- [2] McAlister, D. B.: Homomorphisms of semigroups of binary relations, Semigroup Forum 3 (1971), 185—188.
- [3] Petrich, M.: Lectures in Semigroups, London (1977).
- [4] Plemmons, R. J., and M. T. West: On the semigroup of binary relations, Pac. J. Math. 35 (1970), 743—753.
- [5] Raney, G. N.: A subdirect union representation for completely distributive complete lattices, Proc. Amer. Math. Soc. 4 (1953), 518—522.

- [6] Schein, B. M.: Semigroups of binary relations, Mini-Conference on Semigroup Theory, Szeged (1972), 17—24.
- [7] Schein, B. M.: Regular elements of the semigroup of all binary relations, Semigroup Forum 13 (1976), 95—102.
- [8] Zaretskii, K. A.: Abstract characterization of the semigroup of all binary relations, Proc. Leningrad Pedagogical Inst. 183 (1958), 251—263 (in Russian).
- [9] Zaretskii, K. A.: Regular elements of the semigroup of all binary relations, Usp. Mat. Nauk 17 (1962), 177—179 (in Russian).
- [10] Zaretskii, K. A.: The semigroup of binary relations, Mat. Sbornik 61 (1963), 291—305 (in Russian).

Authors' addresses: D. Hardy, Department of Mathematics, Colorado State University, Ft. Collins, CO. 80523; F. Pastijn, Dienst Hogere Meetkunde, Rijksuniversiteit Gent, Krijgslaan 271 B-9000 Gent, Belgium.