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MULTIVALUED MAPPINGS AND FILIPPOV'S OPERATION 

JiRi JARNIK, Praha 

(Received October 3, 1979) 

1. INTRODUCTION 

When studying differential equations with discontinuous right hand sides, Filippov 
[1] introduced a concept of solution in terms of a certain differential relation. Namely, 
if/ : Я*" -^ R"* is measurable, he defined a mapping # / by 

(1) ^f{x) = f) n conv7(ß(x, Ô)\N) 
ô>0 N^R*',mniN) = 0 

for X e R". Here m„(N) stands for the w-dimensional Lebesgue measure of the set N, 
conv denotes the closed convex hull of a set in R^ and B[x, ô) с R^ is the open ball 
with a center x G R^ and radius ö. If / satisfies a certain boundedness condition, 
then #7 ' : R"* -^ X", where Jf" is the family of all nonempty compact convex subsets 
of R". Thus any differential equation 

x = / ( x ) 

is associated with a differential relation 

xe^f{x) 

and we can define that x is a solution of the former if it is a solution of the latter in 
the usual sense. 

A natural question to be asked is the following: Given a map F : R" -^ Jf^, is it 
possible to find a measurable function f : R" -> R" such that F = # / ? The aim 
of this paper is to show that this is indeed possible under some rather natural as
sumptions. Our result will cover even the nonautonomous case. 

It is not difficult to show that J^ /has the following properties: 

(2) J^/ is upper semicontinuous; 

(3) f{x) e ^ f{x) for almost all x; 

(4) J^/ is minimal in the following sense: if H : R"^ -^ X" satisfies (2), (3) (with the 
obvious change of notation) then ^ f(x) cz H{x) for all x e R"*. 
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On the other hand, (4) implies that these conditions determine the mapping # / 
uniquely. Thus, (2)-(4) provide a descriptive definition of # / . (Cf. [2], Chap. 18.) 

The definition (l) can be modified to cover a more general case. Let F : ̂ " -> Ж"" 
and define 

(5) S^ F(x) = П n ^5i^ и F{y) • 
d > 0 Ncz[R'',mn(N) = 0 yeB(x,ô)\N 

It is not difficult to show that 

(6) ^ F{x) cz F{x) 
for all X provided F is upper semicontinuous. On the other hand, the converse in
clusion F(x) cz ̂  F{x) need not generally hold for all x. Indeed, let e.g. F{x) = {0} 
for X Ф 0, F(0) = [0, 1]. Then evidently ^ F{x) = {0} for all xeIR, (Nevertheless, 
it can be shown that the inclusion F(x) a ^ F{x) holds for almost all x.) 

The formula (5) gives us the possibility of iterating the operation ^ from (l). 
By (2) and (6) we have ^^ f{x) с ^ j(x) for all x. Further, it can be proved that 
^^f satisfies conditions (2), (3) with J^J^/ instead of # / . Thus the minimality 
condition (4) implies the converse inclusion and hence 

(7) ^^ f{x) = ^f{x) for all X . 

Actually, FiHppov dealt with functions f : R x R"^ -> R'* assuming that / is 
measurable (as a function of n + 1 variables). Nonetheless, the generalization of the 
above considerations to the nonautonomous case is straightforward: we put 
.^/(f, x) = ^ft{x), where /,(•) = f{t, •). The descriptive definition by (2)-(4) 
can be used again, with the following obvious modifications: 

(2') for every t, #7^ is upper semicontinuous; 
(3') for every t, f[t, x) e ^ ft{x) for almost all x; 
(4') if Я : ̂ ""̂ ^ -> Jf " satisfies (2'), (3') then J^/,(x) с H{t, x) for all {t, x). 

The proof is found in Kurzweil [2]. Moreover, it is proved there that for/measurable, 
the mapping # / is Scorza-Dragonian, i. e. it fulfils the condition 

(8) for every s > 0 there is a measurable set Ä^ с R, rni{R\ Ä^) < г, such that the 
restriction # / onto A^ x Я"* is upper semicontinuous (with respect to the couple 

Let us notice that (8) implies (2') but not vice versa. 
For a detailed study of condition (8), see [3]. A more recent result extending the 

above to classes of sets different from Jf" is found in Vrkoc [4, 5]. 
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2. MAIN RESULT 

Theorem. Let F : Q^^^ = [0, 1] x [0, 1]^ -^ Jf", where p, n are positive integers, 
satisfy the following assumptions: 

(9) for every г > 0 there exists a measurable set A^ a [0, 1] such that m([0, 1] \ 
\A^ < 8 and i^|^^x[o,ip i^ upper semicontinuous; 

(10) F{t, x) cz [ - 1 , 1]" for {t, x) EQ'^^; 

(11) F{t, x) = #• F{t, x) for {t, x) E Q^^P 

{cf. (5); J2r F{t, x) = S^ F,(x), where F, = F{t, •)). 

Then there exists a set T cz [0, 1], mi([0, 1] \ Г) = 0, and a measurable function 
f:Qi+P^ [-l^lY such that 

(12) F{t, x) = ^ f{t, x) 

for {t,x)ETx [ 0 , 1 ? . 

Remark . The assumption (9) accords with the property (8) of J^/, mentioned 
in Introduction. The identity (12) together with (7) impHes necessity of the assumption 
(11). On the other hand, the assumption (10) is technical and may be weakened. 

3. AUXILIARY RESULTS 

Definition. Let MQ a M a R'' Ы measurable sets. We say that MQ is metrically 
dense in M if it satisfies the following condition: 
(13) If F с ^'' is open and m,{M n F) > 0, then 

m,(Mo n F) > 0 . 

For M cz R% ^ER^ denote 

(14) M((^, -) = {xE W-"^; ((̂ , X)EM} , 

Lemma 1. Let r be a positive integer, A с [0, 1]'' a measurable set, т^(Л) > 0. 
Let Ci < к < I. 

Then there exist measurable sets D, E such that DnE = 0, DuE = A and 

(15) 0 < m,{D) < к m,{A) , 0 < m,{E) ; 

(16) both D, E are metrically dense in A . 

Moreover, if r > 1 and t E R then 

(17) 0 < m,_i(i)(r, •)) < % m,.,{A{t, •)) , 0 < m,.,{E{t, •)) 
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provided m,.^i{A(t, •)) > 0, and 

(18) both D[t, •), E(t, •) are metrically dense in A{t, •) . 

Remark . Lemma 1 actually claims that every measurable set in R"" can be split 
into two disjoint parts, each of them metrically dense and one of an "arbitrarily 
small" measure, and that this remains valid for the cuts of the set in R'"'^. 

Proof. First we shall prove the lemma provided r = 1, A = [0, 1], 0 < x < 1. 
We shall use the well-known Cantor's sets of positive measure (for construction, 
see e.g. [6, Chap. 8, Ex. 4]), and construct the set D from the lemma as a union of 
countably many sets of this type. 

Let C| be Cantor's set on [0, 1] with mi(Ci) = -]x; its complement in [0, 1] has 
a measure mi([0, 1] \ Cj) = \ — \x and consists of countably many disjoint inter
vals, say e/j2? Ï = 1,2, ... . On each interval J12 we construct Cantor's set C,-2 
with m^{Ci2) = i ^ ^^li^iz)' Denoting C2 = U^ i i . we have mi(C2) == i^ YJ ^li^ii) = 

i ' i 

= \K mi([0, 1] \ Ci) = \y.{\ - \y) and ^^([0, 1] \ ( C i u C2)) = 1 - i% - ix( l -
— \'K) = (1 — ix) (1 — \K). Proceeding by induction, we construct after n steps 
a set C„ which consists of countably many Cantor's sets and 

m,(Q) = 1.(1 - -H . . . ( 1 - ^ 1 

m,( [0 , l ]4UC,) = ( l - H - - - ( l ~ ^ ^ 

Denote Di = U Q . ^1 = [0, 1] \ i^i so that D^ n E^ = 0, D^\JE^ = [O, 1]. 
n = 1 

Further, 0 < mi(C„) < (1/2") %, hence ^ <m^{p^ < 
Finally, let У be an open subset of [0, 1]. It is easily seen that there exist positive 
integers j , к such that V contains the interval J^i^. Cantor's set Сд constructed 
on ^^д in the way described above has a measure m^(C^]^ = (1/2^) % ^^(с/д); due 
to the similarity of construction of Cantor's sets on J^^ and on the whole interval 
[0, 1] we conclude that the union of all Cantor's sets С,„ which fulfil the inclusion 
^ш ^ '^jk has a measure less than m^{Jj^) but certainly positive. This yields im
mediately my{p^ n Jjj^) > 0, mi(£i n «/^) > 0 and hence also m^{D^ n F) > 0, 
mi(£i n V) > 0 which completes the proof of the lemma in the case r = 1, A = 
= [0, 1]. 

Now let r = 1, Л cz [0, 1], 0 < % < 1, Л measurable with mi{A) > 0. Denote 
by XA the charactetistic function of the set A and define 

X ( 5 ) = ' Хл{а)аа for s e [0, 1] , 
0 

D = {teA; X{t) € D^} , E = {t e A ; X{t) e E^} , 
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where D^, E^ are the sets constructed in the first part of the proof. The sets D, E are 
evidently measurable, disjoint and D и E = A. Moreover, 

(19) 
J M JX- i (M) ^1\^) J X-i(M) 

provided M <= [0, 1] is measurable. (See e.g. [7], Chap. IV, Sec. 9.43, Theorem 1, 
or [8].) Substituting M = D^, we obtain (notice that D cz A) 

\ d^ = —^— j x^{a) da == —^ [ da , 

i.e. mi(Di) mi(A) = mi(Z)), and similarly M = E^ yields т^^Е^) mi(A) = mi(E). 
Hence (15) holds (with r = 1) in virtue of the properties of the sets D^, E^. 

Let (a, ß) с [О, 1], a < j5 and mi{A n (a, ß)) > 0. Then obviously 0 ^ X{(x) < 
< X{ß) ^ 1 and the substitution M = D^ n (Z(a), X{ß)) or M = Ej n (X(a), X{ß)) 
into (19) yields analogously as above 

(20) m,{D, n (X(a), X{ß))) m,{A) = m,{D n (a, ß)), 

m,{E, n (X(a), X{ß))) m,{A) = пц{Е n (a, ß)) . 

This immediately impHes the assertion (16) of the lemma. 
Let us now pass to the general case of the lemma. If Л с [О, l]*", г > 1, m^(A) > О, 

let us write the elements of the set A in the form (x, 5), x G [0, 1] ' ' "^ 5 G [0, 1]. 
Let again ХА(^^ ^) be the characteristic function of the set A and define 

1 f̂  
Z(x, s) = — - — — ^ x^(x, a) da 

m^{A{xr)) Jo 
(cf. (14)). 

The function X(x, •) is defined for xeY= {ye[0, lj~^ ; m^{A{y, •)) > 0}. 
As mi(^(x, •)) = 0 for X e [0, l]'"~^ \ F, we find that the function X is defined for 
all (x, 5) e Л \ N, where m,(N) = 0. We put 

D = {(x, s)eA\N; X{x, S)G D^} , E = {(x, s)eA\N; Z(x, s) e £1} . 

The sets D, E are evidently measurable, disjoint and D и E = A\N. Quite 
analogously as in the preceding case we obtain the inequalities 

(21) 0 < mi(Z)(x, •)) < X m,{A{x, • )) , 

0 < mi(£(x, •)) 

provided mi(A(x, •)) > 0. As m (̂y4) > 0 by assumption, we immediately have the 
assertion (15) of the lemma. 
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Let V be an open set, V с [0, l]*", m,{A n V) > 0. As we are concerned with the 
metrical density only, we may assume without loss of generahty that F is a p-di-
mensional open interval. The set F(x, •) is a one-dimensional interval. As above, 
we establish identities analogous to (20): 

m,{D, n X{V{x, •))) т,{Л{х, •)) = mi(Z)(x, •) n V(x, • ) ) , 

m,{E, n Z(F(x, •))) m,{A{x, •)) = m,{E{x, •) n V{x, •)) • 

If mi{Ä{x, •)) > 0, we have 

(22) mi(D(x, •) n V{x, ')) > 0 , m^{E{x, •) n V{x, •)) > 0 

and hence also 

mi(Z)i n Z(F(x, •))) > 0 , mi(Ei n Z(F(x, •))) > 0 . 

However, the set of x such that mi{A(^x, •)) > 0 has a positive (r — l)-dimensional 
measure in virtue of the assumption т^(Л) > 0. Hence the assertion (16) of the lemma 
follows. 

Moreover, if r = 2 then the inequahties (21), (22) coincide (after unessential 
changes of notation) with the assertions (17), (18) of the lemma. 

If r > 2, we can write the elements of Л in the form (t, y, s), t e [0, 1], у e [0, 1]*""^, 
s e [0, 1] to obtain (21), (22) as above (with x = (t, y)). Now the assumption 
m^_i(^(r, • , • ) ) > 0 implies (17), (18) in the same way as m^(Ä) > 0 implies (15), 
(16). The proof of the lemma is complete. 

4. FUNDAMENTAL LEMMA 

Lemma. Let p ^ Q be an integer, Aj с [0, l ]^" ' '^ j = 1, 2, ... . Let Aj be mea-
00 

surable, [j Aj = [0, 1]^"^^. Then there exist measurable pairwise disjoint sets Cp 

Cj c: AJ for j — 1, 2, ... such that \] Cj = [0, 1]^"^^ and Cj is metrically dense 

in AjJ = 1,2, ... . 
Moreover, if ts [0, 1], then Cj{t, •) is metrically dense in Aj(t, •),7 = 1, 2, . . . . 

Proof. We shall describe a step-by-step construction which eventually yields the 
sets Cj from Fundamental Lemma. 

1st s tep. Denote Ai = Cj . 

kth s tep, Ic ^ 2. We start with disjoint measurable sets C\~\ C\~\ ..., C^l} 
and the set Aj^. We introduce the following family of cubes: 
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Let г = (ri, Г2,..., Гр+i) be a (p + l)-tuple of integers, О й rj й 2^' - 1 for 
J = 1, 2, ..., р + 1 and denote 

(22a) К", = {г, I-', (г, + 1)2-^) x .. . x {r^,,2-\{r^,, + 1 )2 - " ) . 

According to Lemma 1 we find for each set C\~^ n A), n K^ (which is obviously 
measurable) disjoint measurable sets'" D]~^/E\~^ such that 

which satisfy the assertion of Lemma 1 with x = % = 1/2̂  and with the set A = 
= С Г ' nAj^nKl 

Denote D\~'^ = [j "D^"^, E\~^ = [j ''E]'^ the unions being taken over all multi-
r г 

indices r described above. It is evident that these sets D^" \ E\~ ^ are again measurable 
and disjoint. We may assume that 

(23) C'r' пА,= Dl'uE'r' *) 

and the sets D]~^, E]~^ satisfy the assertion of Lemma 1 with x = % = ijl^ and 
with the set C)"^ n Aj^ instead of A. We denote 

(24) C\ = C]-'\D'r^ for / = 1,2, ...,/c - 1 , 

Cl = A,^'[jE\-K 

Let us denote 
CO 

(25) С J = n C^ 
k = j 

We assert that these sets meet the requirements of Fundamental Lemma. 
Indeed, we have 

i=i i=j 

provided к ^ j , hence Cj c: Aj, Further, it is clear from the construction that 
Cjj (^ C)^ = 0 provided ji Ф jz- Hence evidently Cj^ n Cj^ = 0 under the same 
assumption according to (25). The measurabihty of Cj is evident. We shall prove 
that 

(26) m^^,{\JCj)= 1 . 

To this aim we shall first prove that 

(27) \JC] = \JA,, 

*) Actually, the set (Cf ^ n Aj^)\ (D\ ^ U £:f ^) is not void but only of measure zero. 
Nonetheless, this does not affect our further considerations. 
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Indeed, for /с == 1 the identity is immediately verified by the first step of the construc
tion. Further, (24) implies 

к k - i k - l 

(28) и c; = и (er ' X D;.-') ^ (A \ и 4"') • 
The sets 0)"^ E]~^ being disjoint, we have by (23) 

E)-' cz C)-'\D]-' , D]-' Œ A,\E)-' 

and, since C\~^, ..., C^l} are pairwise disjoint, we have even 

i = 1 

(here always i,j ^ к — 1). Hence (28) yields 

[JC) = {}C)-'KJA, 

and, by the induction hypothesis, we conclude that (27) holds. 
Now assume that (26) is false, i.e. 

CX) 

(29) ш , ^ , ( и С , ) = а < 1 . 

00 

The first formula in (24) implies Cj = C)\\j D] (k ^ ;) and hence 
l = k 

00 

l = k 

(cf. (15) in Lemma 1; recall that Xj^ == 2~^). 
Thus 

00 

by (29). On the other hand, (27) together with the last inequality yields mp+1( (J A^ < 1 

which contradicts the assumption of Fundamental Lemma. Hence (26) holds and 
consequently 

00 

j = i 

Since adding sets of measure zero to the sets Cj does not affect their properties 
involved in Fundamental Lemma, we may assume without loss of generality that 

00 
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The last assertion of Fundamental Lemma to be proved is that concerning the 
metrical density of the sets Cj and Cj(t, •) in Aj and Aj{t, •), respectively. We shall 
prove it for Cj, A J, the proof for Cj{t, •), Aj{ty •) being quite analogous. 

Thus, let Vci IR^+p be open, 

(30) m,^,{AjnV)>0, 

We shall prove by induction that then 

(31) m,^,{C].nV)>0, k^j. 

Firstly, recalhng (23) we have 

Aj = {Aj n C{-') u (Aj n СГ ' ) u ... u {Aj n CjZ}) u 

u [Aj\{C{~' u Ci~^ u ... u CJZ\)] = 

= iöDi-') u ([iEi-') u (Л, \ и Ci"^). 
j = l i = l » = 1 

Now (30) implies that either 
j - i 

1 = 1 

or there exists h, i ^ h ̂  j — 1, such that 

m i ^ , [ ( ^ ; n C r O n F ] > 0 . 

In both cases we conclude with regard to the second identity in (24) that (31) with 
к = j holds. (Recall (23) and, in the latter case, also the fact that Djj"^ is metrically 
dense in Aj n CjJ~^) 

Secondly, let us assume that (30) implies (31) with /c = 1, 2, ..., s — 1 where 
5 > j . We have 

q = q ~ 4 D f ^ = ( q - 4 v 4 , ) u ву^ 

(cf. (24), (23)). By the induction hypothesis it is either 

m,^l{Cy'\A,)nV]>0 
or 

m , + , ( q - ^ n ^ , n F ) > 0 ; 

in the former case, (31) with к = s follows immediately, in the latter we recall similarly 
as above that £}" ̂  is metrically dense in Cy ^ n A^ which completes the proof of 
implication (30) => (31). 

We have (cf. (25), (24)) 

k = j k = q k = q 
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provided q ^ j . Considering an open cube Щ. (see (22a)) with q ^ j , we can write 

k = q 

As D^ = [j ^D^-by construction where Q denotes multiindices described at the begin-
Q 

ning of the proof, and ^D^- с i^^'^\ we may write further 
00 

k = q Q 

where the star indicates that the sum is taken over all multiindices Q such that 
^D) cz X^+^ с Kf. Thus (cf. (23) and the text below) 

00 

k = q Q 
00 

> m,^,{C] n Kf) - X x,^,m,^,{q n Kf) = m^+^q n K^,) (1 - 2~^) . 
k = q 

Thus, in virtue of the above proved implication (30) => (31), m^^J^Aj n X )̂ > 0 
implies mij^p{Cj n Kfj > 0. Since the sets K^ form a countable basis of open sets 
in R^""^, this impHcation yields metrical density of Cj in Aj, 

Fundamental Lemma is completely proved. 

5. PROOF OF MAIN RESULT 

Let j be a positive integer, r = (r^, ..., r„) a multiindex, r^-integers, 0 ^ r̂  ^ 2̂  — 1 
for i = 1, 2,... , n. Let us denote 

Qi = [r, 2-J, (r, + 1) 2-q X ... X [r„ 2-J, (r„ + 1) 2-^] 

(a closed cube in R" with edges of the length 2~-'), 

qi = {r,2'\...,r„2-J)eM". 
Further, denote 

(32) Ai = {{t, x); F{t, x) n Qi + 0} . 

The family of sets A^ for r, j described above is countable, the sets AJ are measurable 
(cf. (9)) and 

[jAi= [0, IJi^". • 

(Evidently, it is even 

(33) [jAi = [0,1]^^^ 
г 

for every positive integer) — cf. (10).) 
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By Fundamental Lemma there exist measurable pairwise disjoint sets C ,̂ Cl с Aj 
such that 

(34) U C / = [ 0 , 1 ] ' ^ ^ 
r,j 

and the sets C/, Ci{t, •) are metrically dense in Al, Al[t, •), respectively, for t e [0,1]. 
(To avoid misunderstanding, let us point out that the sets C/ correspond to those 
denoted in Fundamental Lemma by Cj.) 

We shall construct the function / satisfying (12) as the limit of a sequence of 
functions /fc. 

For (t, x) e Ci let us define/i(r, x) = qj. Then obviously 

d{f,{t, x), F{t, x)) й i 

by (32). (For the sake of simplicity, we take d(^, t]) = max |̂ ^ — ;7,| if ^ = ((^i,... 
,.., (̂ „) G R"", f] = (f/i, ..., rj„) e ^", and define the distance of a point from a set as 
usual.) Due to (34) and to the disjointness of the sets Cj the function / i is defined 
uniquely on the whole [0, l]^"^^. 

Now let us assume that /c ^ 2 and the function /^_i : [0, 1]^"^^ -^ R" has been 
defined so that it is measurable, satisfies 

(35) 4A_,(f,4F(r,x))g2-(^"^> 

for {t, x)e [0, 1 ]^^^ and for {t, x)eCl its value is fk-i{t, x) == q^ where / ^ ;, 
Ql ^ Or- (For к = 2, these conditions for/^_i = /^ are immediately verified.) 

If (r, x) e cl, then three cases excluding each other may occur: 

{i)j>k- 1; 
(ii) j й к - I d{f,_,{t, x), F(r, x)) й 2-'; 

(iii) j й к - 1, 4A_i(^ , x), F{t, x)) > 2-\ 

In the cases (i), (ii) put 

To verify the inequality (35) with к instead of /c — 1, notice that in the case (i) 
we evidently have d{z, F(t, x)) ^ 2~-^^ 2"^ for z G g/, hence in particular 
d{ql F{t, x)) й 2'^ for/fc_i(r, x) = ^^ e ß^ CI g/; the case (ii) is trivial. 

In the case (iii), notice that the cube ß^ may be divided into T parts, namely the 
cubes Q^^^ where о = (Ö-^, ..., a,,) with cr,- = Iq^ or d,- = 2 ,̂- + 1. We can always 
choose one of these smaller cubes, say Q^^\ such that 

(36) d{C\F{t,x))^l''. 
(In order to determine this choice uniquely, we have to order the multiindices о in 
a fixed way and then to use always the "least" multiindex 5 satisfying (36).) Now we set 

285 



which completes the definition of Л on the whole interval [0, l]^""''. The function Л 
evidently satisfies the assumptions imposed onfu-i (with к instead of к — 1). 

Moreover, it is clear that if {t, x) e С{ then fj^t, x) = ^(t , x) = • • • = fj{U ^). 
Further, 

\fs{t,x)-h_,{t,x)\^2-^ 

for 5 = /, ; + 1, ..., hence 

provided / is a positive integer. 
Thus the (pointwise) limit 

/(r, x) = lim f„{t, x) 
k-* CO 

exists and (35) implies 
f{t, x) e F{t, x) 

and consequently 

(37) ^f{t,x)c:F{t,x) 

(cf. Introduction, (4)). 
It remains to prove the converse inclusion, i.e. 

(38) 

Let us denote 

and assume 

(39) 

Denote 

(40) 

F{t, x) <= ^ f{t, x) . 

W = {((, x); F{t, x) \ ^f{t, x) Ф 0} 

m,^^{W)>0. 

Bi = {{t, x); ^f{t, x) n Qi = 0} , 

Hi = л; n Bi. 

Then it is easy to see that 

(41) W=[j Hi. 

Indeed, if {t, x)eW then there is z G F{t, x) with d{z, ̂  f{t, x)) > 0; hence there 
is Qi, ^ f{t, x) n Qi = Ф and simultaneously z e Qi which together with the in
clusion 2 G F(f, x) yields (t, x) e Щ. On the other hand, if (t, x) e Щ then there is 
z G F(t, x) n Qi and hence z e Qi; thus necessarily z ф ^ f{t, x) which completes 
the proof of (41). 
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The relations (39), (41) imply that there exist Q, i such that 

(42) Ш 1 + , ( я ; ) > 0 . 
We shall prove that then also 

(43) ,щ^,{C;nB^^)>0. 

Indeed, by (2') we know that ^f{t, •) is upper semicontinuous for te [0, 1]. 
If t e [0, 1], X e Bl{t, •) then ^ f{t, x) n Q^ - 0 by definition of B^^, hence there 
exists 8 > 0 such that Q[^ f[t, x), e) n ß^ = 0. By the upper semicontinuity of 
^f{t, •) there exists ö > 0 such that d{x, y) < ô imphes ^ f{t, y) с Q(^ f(t, x), e), 
consequently ^ f{t, y) n g^ = 0. Thus Б^(г. •) is open (in R^^ provided t e [0, 1]. 
(The symbol ß(M, г) means the 8-neighbourhovp of the set M.) 

Now (42) implies that there is a set Л с [О, 1], mi{Ä) > О, such that 

mXH^{t,')) = mXA^{t,^)nB'Xt,^))>0 
for t e A. Taking into account that the sets C/ have been constructed so as to satisfy 
the assertions of Fundamental Lemma (see (34) and the following text) and the just 
proved openness of Б^(г, •) we conclude that also 

m,(c;(r, •)ПБ;(Г, •))>o 
for te A. This evidently yields (43). 

Let (t, x)e C^ n B'^. Then, as mentioned above, /i(r, x) = ... == /^(r, x) = q^^ 
\f{t,x)-f,{t,x)\ ^ 2 - \ i . e . 

| / ( ^ , x ) - ^ ; | ^ 2 - \ 

Moreover, it follows from the construction that 

f{t,x)eQ',. 

Since/(f, x) e ^ f{t, x) for almost all (t, x) (cf. (3')), we have 

(44) J ^ / ( r , x ) n Q ; # 0 

for (t, x)e CQ n B^\iV, m^+p(N) = 0 (this is a nonempty set due to (43)). However, 
(44) implies (r, x) ф Щ (cf. (40)) which is a contradiction since С[ r\ B''^ a Щ. Thus 
(39) is impossible and hence 

The rest of the proof is easy. There exists a set N^ c: [0, 1], nii(Ni) = 0 such that 
mp{W{t, •)) = 0 provided t e [0, 1] \ iVi. This means F{t,x) с ^ f{t, x) for almost 
all X (t e [0, 1] \ Ni being arbitrary but fixed) which obviously yields 

^ F{t,x) c= ^f{t,x) 

for all X (t as above) since # " # / = # / . 
Now the assumption (U) yields (38) which completes the proof of Main Result. 
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