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1. In the present paper by a hypergraph (or a graph) we mean an ordered pair
(V, &), where Vs a finite nonempty set and & is a set of subsets of I with the property
that if E € &, then IEI =1 (or IE[ =2, respectively); elements of V or & are called
vertices or edges, respectively. If H = (V, é”) is a hypergraph, then we shall write
V(H) = V and 6(H) = &. Obviously, every graph is a hypergraph. Our concept of
a graph is the same as that in [1] or [6], and our concept of a hypergraph is relative
to the concept of a simple hypergraph in [2]. (Graph theoretical terms which we shall
use without definitions can be found in [1] or [6]).

If &, is a finite nonempty set of a finite nonempty sets, then we denote by {&,)
the hypergraph H, with
V(Ho) = U Eo
Eoeéo

and &§(Hy) = &,.

In the present paper the letters g, h, i, j, k, m, and n mean integers. We shall say
that a sequence (vl, e v,,), n = 1, is an arrangement, if forany g and h, 1 < g <
< h £ n, we have that v, # v,. An arrangement (vl, e v,,) is referred to as an ar-
rangement on a set Vif V= {vy, ..., v,}. Let & = (vy, ..., v,) be an arrangement on
a set V; we say that X < Vis an interval set in o if there exist iand k, 1 £ i < k < n,
such that X = {v BiSjE k}; the set of all interval sets in « will be denoted by
Int («).

Let V be a finite nonempty set, and let A be a nonempty set of arrangements on V;
then we denote

Int (4) = () Int ().

Let H be a hypergraph. Following [9] we shall say that an arrangement = on V(H)
is a projectoidic arrangement on H if &(H) < Int (r). We shall say that H is a projec-
toid if there exists a projectoidic arrangement on H. Note that the terms “projec-
toidic” and “projectoid” have a relation to the term “projective’ in the sense in which
it is used in mathematical linguistics (see, for example, [8]).
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Projectoids were investigated in [3], [4], [9], [10] and [11], but in [4] and [11]
projectoids were studied by means of the matrix theory (as a class of (0, 1)-matrices),
and in [11] also as bipartite graphs. Various characterizations of projectoids are
known. In this section the characterization given by the present author in [9] will be
recorded.

Let H be a hypergraph. Following [9] we denote by Q(H) the set of all sets R =
< V(H) such that at least one of the following conditions holds:

(1) there exists v e V(H) with the property that R = {v};
(2) Re &(H);
(3) there exist Ry, R, € Q(H) such that Ry " R, + @ and R = R; U R,.

The following theorem was proved in [9]:

Theorem 1. A hypergraph H is a projectoid if and only if for every three
Ry, Ry, Ry € Q(H), the hypergraph {{Ry, Ry, R3}) is a projectoid.

2. Let H be a hypergraph. We denote by II(H) the set of projectoidic arrangements
on H. This means that H is a projectoid if and only if II(H) * 0.

Let H be a projectoid. According to the definition, &(H) < Int (I1(H)). In this
section a characterization of the set Int (IT(H)) will be given.

Let H be a hypergraph. Consider arbitrary X, Y = V(H); we shall write X ~ Y
if at least one of the sets X n ¥, X — Yand Y — X is empty; on the other hand, we
shall write X ~ Y if the sets X N Y, X — Yand Y — X are nonempty. We denote
by Z(H) the set of all sets S = V(H) such that at least one of the following conditions
holds:

(0) s = V(H);
(1) there exists v e V(H) with the property that S = {v};
(2) Seé(H);
(3) there exist Sy, S, € X(H) such that S; 'S, = @ and Se{S, N S,, S; U S,};
(4) there exist S, S” € X(H) such that S’ ~ S” and S = §' — S".
Obviously, 2(H) = X(H). We shall prove that if II(H) # 0, then X(H) = Int (II(H)).
Let H be a hypergraph, and let U = V(H). We say that U is free in H if for every
Eeé(H), E ~ U.

Lemma 1. Let H be a projectoid, {V(H)[ =n 2 2, let (vy, ...,v,) be a projectoidic
arrangement of H, and let 1 < j < n. Then there existiand k,1 < i <£j <k < n,
such that {v;, ..., v;}, {vj41, ..., i} € Z(H), and {v,, ..., v} is free in H.

Proof. Denote
B ={ip; 1 £ ip £ J, {vigp ..., v;} € Z(H)} and
B ={ko; j+ 1= ko =n {vjiy,..., 0} € Z(H)} .
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Since {v;}, {v;+,} € Z(H), we have that B # 0 + B'. We denote by i and k the
minimum integer in B and the maximum integer in B’, respectively. We wish to show
that {v,, ..., v} is free in H.

Assume, on the contrary, that {v,, ..., vk} is not free in H. Then there exists E €
€ &(H) such that E ~ {v;, ..., v}. Since (vy,...,1,) is a projectoidic arrangement
on H, there exist f and g, 1 < f < g < n, such that E = {v,, ..., v,}. Since
{vjs s v} » {vs, ..., 1}, we have that either f<i<g<kori<f=k<y.
We shall assume that f < i < g < k (the latter case would be proved analogously).

First, let g <j; then En{v;...,v;} % 0; we have that {v,,...,v;} =Euv
U {v;, ..., v;}. Next, let g > j; then E ~ {v;,4, ..., v,}; we have that {v,,...,v;} =
=E — {vj41, ..., v4). In both cases {v,,...,v;} € Z(H) and thus f = i, which is
a contradiction.

Thus {v,, ..., v} is free in H, which completes the proof.

Lemma 2. Let H be a projectoid, let m be a projectoidic arrangement of H, and
let X be an interval set in m such that X¢Z(H). Then there exists an interval
set Z in w such that Z is free in H and X ~ Z.

Proof. Denote @ = (vy, ..., ,). Since X e Int (r), there exist g and j, 1 < g <
< j £ n, such that X = {v,, ..., v;}. Since X ¢ Z(H), we have that |X| % n. Without
loss of generality we assume that j < n. According to Lemma 1, there exist i and k,
1 i <j<kZn,such that {v, ..., v} is free in H and {v,, ..., v;} € Z(H). Since
X ¢ 2(H), we have that i # g. If i > g, then we put Z = {v,, ..., v}, and the lemma
is proved.

Now, assume that i < g. Then 1 < g. According to Lemma 1, there exist f and h,
1 <f<g—1<hZn,such that {v,, ..., v,} is free in H and {v,, ..., v,} € Z(H).
Hence, h & j. If h > j, then {v,, ...,v,} ~ {v;,...,0;} and thus {v,,...,v;} =
= {v,,...,0} n{v;,....,v;} € 2(H), which is a contradiction. This means that
h < j. We put Z = {v,, ..., v} and the lemma is proved.

Theorem 2. Let H be a projectoid. Then Int (II(H)) = Z(H).

Proof. Since H is a projectoid, we have that &(H) < Int (I1(H)). It follows from
the definition of X(H) that 2(H) < Int (11(H)).

We now wish to prove that Int (II(H)) < X(H). Assume, on the contrary, that
there exists X e Int (II(H)) — Z(H). Consider an arbitrary projectoidic arrangement

n = (vy, ..., v,) on H. Since X € Int (x), there exist i and j, 1 < i < j < n, such that
X = {v;, ..., v;}. Since X ¢ X(H), it follows from Lemma 2 that there exist g and h,
1 <g <h<n, such that {v,...,v,} is free in H and {v,,...,0,} ~ {v;,...,v;}.

Without loss of generality we assume that g < i. Then g < i £ h < j. We denote
by 7’ the sequence (vi, ..., v;), where v;, = v, for | <m < g or h <m < n, and
the subsequence (v,, ..., v;) is identical with the sequence (v, ..., v,). Since {v,, ..., v;)
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is free in H, we have that n’ is a projectoidic arrangement on H. Obviously, X ¢
¢ Int ('), which is a contradiction.
Thus the theorem is proved.

Corollary. Let H, and H, be projectoids with V(H) = V(H,). Then I1(H,)
< II(H,) if and only if X(H,) < X(H,).

Proof. If II(H,) < I(H,), then Int ([I(H,)) < Int (TI(H,)) and therefore, ac-
cording to Theorem 2, X(H,) < Z(H,).

Let X(H,) < X(H,). Since &(H,) < X(H,) and X(H,) = Int ([I(H,)), we have
that &(H,) < Int (r) for each m € II(H,). Hence, I1(H,) < I1(H,), which completes
the proof.

3. A graph isomorphic to the intersection graph (in the sense of [6]) of a finite
nonempty family of intervals in the real line is called an interval graph. Various
characterizations of interval graphs can be found in [4], [5] and [7]. The following
characterization of interval graphs is due to Lekkerkerker and Boland [7]:

(LB) A graph G is an interval graph if and only if (a) G contains no induced cycle
of length >4, and (b) for any three vertices vy, v, and v; of G, there exist distinct
i,j, ke{1,2,3} with the property that every v; — v, path P in G contains
a vertex vp such that {v;, vp} € &(G).

It is clear that a graph G is an interval graph if and only if there exists a pro-
jectoid H such that G is isomorphic to the intersection graph of &(H). Therefore,
a necessary condition for a hypergraph H to be a projectoid is that the intersection
graph of §(H) be an interval graph. However, examples showing that this condition
is not sufficient can be easily found. On the other hand, the concept of projectoid
can serve as a tool for characterizing interval graphs. In the language of the matrix
theory such an approach was adopted by Fulkerson and Gross [4]. In the present
section another approach will be suggested.

Let D be a digraph in the sense of [1] or [6]. We denote by V(D) and A(D) its
vertex set and arc set, respectively. For every v e V(D), we denote

N(v, D) = {we V(D); (v,w)e A(D)} and M(v, D) = N(v, D) L {v} .
We denote by M, the hypergraph with V(M) = V(D) and
&(Mp) = {M(v, D); ve V(D)}.

A hypergraph H is said to be an M-hypergraph of G is there exists a digraph D
such that the underlying graph of D (see [1]) is identical with G, and M, is identical
with H.

Lemma 3. Let G be an interval graph. Then at least one of its M-hypergraphs
is a projectoid.
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Proof. Obviously, there exists a projectoid H such that G is isomorphic to the
intersection graph of é"(H) Consider a projectoidic arrangement'(vl, cens v,,) of H.
For every E € §(H), we denote i(E) = min {i; v; € E}. Moreover, we denote by D
the digraph with V(D) = &(H), such that (E', E")e A(D) if and only if vz € E’
for any distinct E’, E” € &(H). It is easy to see that the underlying graph of D is
isomorphic to G. Denote m = |6"(H)| Consider such an arrangement (E,, ..., E,,)
that for any j, ke {1, ..., m}, i(E;) < i(E,) implies j < k. It is clear that (E,, ..., E,,)
is a projectoidic arrangement of M. Hence, M, is a projectoid, which completes the
proof.

Remark. Lemma 3 gives a necessary condition for a graph to be an interval graph,
but this condition is not sufficient. For example, let D be a digraph with n = 4
vertices vy, ..., v, such that

A(D) = {(vy, v2), (015 03)s -+ (V3 V1) (Ons 02)s (V4 03), s (Vs Va1 -

Since (vy, ..., v,) is a projectoidic arrangement of M ,, we have that M, is a projectoid.
Obviously, the underlying graph of D is K(2, n — 2), which is not an interval graph.

Lemma 4. Let G be a graph with no induced cycle of length four. Assume that
at least one of the M-hypergraphs of G is a projectoid. Then G is an interval graph.

Proof. It follows from the assumption that there exists a digraph D such that the
underlying graph of D is identical with G and M}, is a projectoid. Consider a pro-
jectoidic arrangement (vy, ..., v,) of My,

First, let G contain an induced cycle C of length = 5. Then there exist i, j and k,
1 £i<j <k £ n,such that v, v;, v, € V(C), {v;, v} € &(C), and {v;, v;}, {v; v,} ¢
¢ 6(C). Without loss of generality we assume that (v;, v;) € A(D). Since C is an induced
subgraph of G, we have that {v;, v;} ¢ £(G). This implies that v; ¢ M(v;, D). Since
v;, v, € M(v, D) and i < j < k, we have that (vy, ..., v,) is not a projectoidic ar-
rangement of M, which is a contradiction. This means that G contains no induced
cycle of length > 3.

Assume that G is not an interval graph. Since G contains no induced cycle of
length > 3, it follows from (LB) that there exist integers i,j, k, 1 S i<j<k<n,
and a v; — v, path P in G such that for no v € V(P), {v;, v} € &(G). It is clear that there
exist integers g and h, 1 < g <j < h < n, such that {v,, v,} € &(P). Without loss
of generality we assume that (v,, v,) € A(D). It is obvious that v; ¢ M(v,, D). There-
fore, (vy, ..., v,) is not a projectoidic arrangement of M, which is a contradiction.
This means that G is an interval graph, which completes the proof.

According to (LB), an interval graph contains no induced cycle of length four.
Combining this observation with Lemmas 3 and 4, we find the following

Theorem 3. A graph G is an interval graph if and only if G contains no cycle of
length four and at least one of the M-hypergraphs of G is a projectoid.
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