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NONLINEAR ALTERNATIVE PROBLEMS IN A BANACH SPACE
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(Received September 17, 1980)

Dedicated to the memory 6f SVATOPLUK Fuclik

A major success in nonlinear analysis was dachieved when Landesman and Lazer
proved their celebrated existence theorem for elliptic nonlinear Dirichlet problems
([9])- Their theorem has since been extended in various directions by Williams [13],
Necas, Hess, de Figueiredo, Fucik [6] and others; for a detailed account of these
developments see e.g. Cesari [1].

In [2], Cesari and Kannan gave an abstract existence theorem for nonlinear
alternative problems in a Hilbert space X from which the Landesman-Lazer theorem,
most of its extensions, and similar results like the Lazer-Leach theorem [10] can be
derived. A different proof of essentially the same abstract result appeared in Kannan-
McKenna [7], again for nonlinear problems in a Hilbert space X. (A version in some
sense more general of such abstract results was proved afterwards by Cesari in [3, p.
46] for nonlinear alternative problems concerning two Banach spaces X and Y).
(See Cesari [1] for some of these versions).

In this paper we generalize the Cesari-Kannan-McKenna form of the result as it
appears in [2] and [7] for nonlinear alternative problems in an arbitrary Banach
space X. We illustrate our abstract result by applying it to the problem of existence
of periodic solutions for a simple nonlinear ordinary differential equation with lag,
and by taking for X the space C of continuous functions.

Let X be a real Banach space, L: D(L) — X be a closed linear operator with dense
domain D(L), N : X — X continuous and bounded (not necessarily linear). We will
make the following assumptions:

(1) dim ker (L) < + o0,
(2) range (L) closed, X = ker (L) @ range (L).
Let P:X — X denote the projector onto ker (L) parallel to range (L). Then,

¥) The paper was written while this author was at the Department of Mathematical Sciences,
University of Delaware, Newark, Delaware, USA.
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L: D(L) o range (L) - range (L) is one to one and onto, and admits, therefore,
a linear inverse H :range (L) — D(L)  range (L), which is often denoted as the
partial inverse of L. For this concept, as well as for some views on the “alternative
method”, see Cesari [4].

About the nonlinearity we will assume that
(4) H(I — P)N is completely continuous.
Assumption (4) is fulfilled if N is completely continuous, since it follows from (2)
that H is bounded. For differential operators L and suitable spaces, H is frequently
compact, so that the nonlinearity need not be completely continuous, but only
bounded and continuous.

One approach used in the “alternative method” for treating the equation

(5) Lx = Nx

is to replace (5) by the system

(6) x = Px + H(I — P) Nx,
(7) PNx =0,

which is equivalent to (5) under assumption (2) (cf. [1]). In various ways system (6),
(7) can be replaced by a fixed point problem, say, x = Tx. For instance, as pointed
out in [1], Williams [12] (1966) and later Mawhin (1972) noted that system (6), (7)
can be replaced by the sole equation

(8) x = Px + H(I — P) Nx — PNx,

which is equivalent to (6), (7), and therefore to (5), under assumption (2). In [1]
Cesari has given a number of applications of this and other processes of reduction
of (6), (7) to a fixed point problem.

In the present paper we shall use the abstract form (8) Our main result is the fol-
lowing “‘existence theorem at resonance’:

Theorem 1. Let L,P, H, and N be as above and assume that (1), (2), and (4) are
fulfilled. Let X be a fixed element in X. We assume the existence of R, r > 0 such
that

(9) For x e X with |P(x — X)| < Rand |[(I — P)(x — %)| = r we have
INx — Lz < [H({I = P)|~* .

(10) For x e X with |P(x — X)| = Rand |(I — P)(x — %)| < r we have | PNx|*> 2
2 |P(x — X — Nx)|* — R%.
Then Lx = Nx has at least one solution x with |P(x — %)| < R and
[0 -=P)(x—%)| =r, ie, |[x—X|S<R+r.
Proof. Let N:X -» X be defined by Nz:= N(X + z) — LX. To prove the
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theorem, we have to show that there exists a ze B(R,r):= {ze X/|Pz| < R,
|(T = P)z| < r} with Lz = Nz, which is equivalent with the existence of a fixed
point of T, in B(R, r), where T, : X — X is defined by T,z := Pz + H(I — P) Nz —
— PNz. By the properties of Leray-Schauder degree ([5], [11]), it suffices to show
that

(11) T(s,z) + 0 for ze dB(R,r), 0 < s < 1, where T:[0,1] x X — X is defined
by T(s, z) 1= z — sTyz.
We assume the contrary; let 0 < s < 1 and z € dB(R, r) be such that T(s, z) = 0.
We distinguish between two cases:

a) |[Pz| <R, ||(I — P)z| =r. By assumption, 0 = (I — P) (z — sT,z2)
= (I — P)z — sH(I — P) Nz, which implies r < s|H(I — P)| . [N(x + z) — Lx|
< rs by assumption (9) with x := X + z.

IA I

Since r > 0and s << 1, thisis a contradiction.

b) uPzH =R, [(I = P)z| < r. Then 0 = P(z — sTyz) = (1 — 5) Pz + sPNz =
= (1 — 5) Pz + sPN(X + z), so that |PN(X + z)||* = s™*(1 — s5)* R%. On the other
hand it follows from 0 = Pz — sP(z — N(X + z)) that |P(z — N(Xx + 2))|* =
= s 2R?. Together with assumption (10), applied to x := X + z, this implies
s7%1 — 5> R* 2 s7?R*> — R% ie, 0 < s (s — 1), which is a contradiction.

Thus, (11) must be true, which proves the theorem.

Remark 2. The estimates of Theorem 1 can be viewed as conditions about the
existence of an exact solution in the neighborhood of an approximate solution X
(note that assumption (9) implies for those x for which it is valid that |Lx — Nx| <
< [H( ~ P~ 7 + L] (R + )

To simplify the comparison with previous results in [2] and [7], we give the
following corollary, which is nothing but Theorem 1 with X = 0.

Corollary 3. Let L, P, H, and N be as above and assume that (1), (2), and (4) are
fulfilled. Let X, := ker (L), X, := range (L). Assume that there exist R,r >0
such that

(12) For x*eX,, x,€X, with |x*| S R, |x,| =r we have |N(x* + x,)| £
< |H@I - P)|~*r

(13) For x*eX,, x; € X, with |x*| =R, ||x,| £ r we have |PN(x* + x,)|* 2
2 [x* — PN(x* + x,)|* — R~

Then Lx = Nx has at least one solution

x=x*+x, with |x*| SR, [x=r.
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Remark 4. If X is a Hilbert space, then the inequality in assumption (13) can be
written as

(14) (PN(x* + x;), x*) 2 0,

or, if ker (L) and range (L) are orthogonal, (N(x* + x,), x*) = 0, which is the con-
dition used in [2], [3], [7]-

It is also of interest to consider two extreme cases. If L= 0, then assumption (12)
is empty, while assumption (13) is closely related to a condition used in a fixed point
theorem due to Altman. For dim X < +co (only then (1) is fulfilled) we get a result
about existence of a zero of N. The other extreme case is the case that L is regular.
Then assumption (13) is empty, while assumption (12) implies |L™'Nx| < r for
[ x[| = r, which is precisely Rothe’s condition for existence of a fixed point for L™'N.
Similar remarks apply to Theorem 1. For Altman’s and Rothe’s fixed point theorems

see e.g. [5].
The assumptions of Corollary 3 are invariant under a change from L to — L. Thus
we get also an existence result for Lx = —Nx, or, if the assumptions are fulfilled

for —N instead of N, another existence result for Lx = Nx. More precisely, the
conclusion of Corollary 3 also holds if the inequality in (13) is replaced by

(15) [PN(x* + x,)|? = |x* + PN(x* + x,)|*> — R?,
or in the Hilbert space case by
(16) (PN(x* + xq),x*> £ 0.

Again a similar modification can be made in Theorem 1. It is worth noting that the
following conditions, Hilbert space versions of which have been used in the literature
before, imply the assumptions of Corollary 3. In the following propositions we use
the notation of Corollary 3 and assume L # 0.

Proposition 5. If there are J, > 0, Ry = 0 such that |[Nx| < J, for all xe X
and |PN(x* + x,)||> 2 [[x* — PN(x* + x,)|*> — R} for all x* e X,, x, € X, with
[x*| = Ro, |x1| < |[H(I — P)| Jo, then the assumptions (12), (13) hold with
R 2 Ry, r = |H(I — P)| J,.

Proposition 5 yields a Banach space version of the Cesari-Kannan-McKenna theo-
rem as originally formulated in [2] and [7].

Proposition 6. If there are J, =20, J; >0, 0<a<1, Ry>0, K, =
2 |H(I — P)| Jo, Ky > |H(I = P)|| J, such that |Nx| £ Jo + J||x|* for all
xeX and |[PN(x* + x,)|* = |x* — PN(x* + x,)||> — R} for all x* € X,, x, € X,
with |x*| Z Ro, |x;]| £ Ko + K,||x*||*, then the assumptions (12), (13) hold with
suitable R, r > 0.
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Proof. Let g :[0, + o0)* — R be defined by g(s, 1) := Jo + J4(1 + s)* = It is
possible to choose s, > 0 such that |H(I — P)| Jy(1 + so)* < K, and g(so, Ro) -
. |H(I = P)|| = soR,. Since sot increases faster than g(so, 7). [H(I — P)|| as t — oo,
we can find an R = R, such that g(so, R) . |H(I — P)|| = soR =: r. We claim that
for those R, r > 0 the assumptions (12), (13) hold. Let x* € X, x, € X, with ||x*| <
< R, |x,| = r. Then we have:

(= P [N+] £ [0 = P (o + 9,Jx) < 16 = P gloo: )= 7,
so that (12) is fulfilled.

For x*eX,, x,eX; with |x*| =R, |x,]| £r we have |x;| Sr=sR =
= |HU = P)| . g(s0. R) £ Ko + |H(I — P)|| J4(1 + so)* R* £ K, + K,R* = K¢ +
+ K,|x*|% so that by assumption, |PN(x* + x,)|* = |x* — PN(x* + x,)|* —
— R} z ||x* — PN(x* + x,)|*> — R% Thus assumption (13) holds.

Proposition 7. If there are J, 2 0, J; > 0, 2 = 1, Ry > 0, Ko = |H(I — P)|| Jo,
K, > |[H(I — P)| J, such that |[Nx|| < Jo + J,|x||* for all xe X and |PN(x* +
+ x,)|* 2 |x* — PN(x* + x,)|> = R} for all x*eX,, x;€X, with |x*| =
> R,, ”‘61” <K, + K1||x*”“ and if Jy is sufficiently small (for details see the
proof), then the assumptions (12), (13) hold with suitable R, r > 0.

Proof. Define g as in the proof of Proposition 6 and choose J; > 0 so small that
(|H(I = P)| Jo + Ky) RG™" < (|H(I — P)||~* JT'K,)"* = 1 =:55 > 0, which is
possible.

Then |H(I — P)|| J,(1 + so)* = K,. Note that |H(I — P)| . g(so, ) increases
faster than syt as t — co0. On the other hand, |H(I — P)| . g(so, Ro) £ soRo, so that
there is an R = R, with |[H(I — P)| . g(so, R) = soR =:r. Now we proceed as
in the proof of Proposition 6.

These proposition generalize to the situation of Theorem 1 in a suitable way.

Using a result due to R. B. Kellogg [8], we give a sufficient condition for existence
of a unique solution of Lx= Nx, for simplicity of notation only for the situation of
Corollary 3.

Theorem 8. Let the assumptions of Corollary 3 be fulfilled and assume in addition
that N is continuously Fréchet differentiable. Furthermore we assume that we have
for all x*e Xy and x, € X¢:

(17) If |x*| < R and |x,| < r, then
ker [L — N'(x* + x,)] = {0} .
(18) If |x*|| < R and ||x,| = r or |x*|| = R and |x,| £ R, then
L(x* + x;) # N(x* + x,).

Then Lx = Nx has exactly one solution x with HPx“ < R and ”(I — P) x“ <r
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Proof. The existence of such an x follows from Corollary 3. To prove the unique-
ness we note that (with the notation of the proof of Theorem 1) the map T, (with
X := 0) has no fixed point in @B(R, r). T, is continuously Fréchet differentiable;
if we can show that for all x e int B(R, r), 1 is not an eigenvalue of Tg(x), then the
result follows from [8]. Assume that for an xeint B(R,r), 1 is an eigenvalue of
Ts(x), so that there exists an h % 0 with h = Ph + H(I — P)N'(x) h — PN'(x) h.
By applying P, we obtain PN'(x) h = 0, by applying L, we get Lh = LH(I— P) N'(x)h.
Since LH(I — P) = I — P, addition of these two equalities gives (L — N'(x)) h = 0,
which contradicts (17).

We illustrate our abstract results by applying Corollary 3 to the problem of

existence of a periodic solution for an ordinary differential equation. We do not
claim, that this particular result could not have been obtained by different means.

Proposition 9. Let g : R > R be continuous and bounded, G := sup lg(s)], h:
R

SE
:R — R continuous and 2m-periodic, S := sup |h(s)l, teR. Assume that there
Se

exist ¢, d, P, 0 € R with:

(19) szd=g(s)< 0
(20) sSc=g(s)=P
(21) 2nQ < J“h(s) ds < 2nP .

Then the equation

(22) x'(s) + g(x(s — 1)) = h(s), (seR)
has a 2mn-periodic continuously differentiable solution X with

(23) sup li(s)l < 8n(G + s) + max {d, —c} .
SER
Proof. Let X be the Banach space of all continuous, 2n-periodic functions from R
into itself with the supremum-norm. Let D(L):= {x e X/x continuously dif-
ferentiable}, and define L: D(L) — X by Lx := x'. L is closed and densely defined,
and with the notation of Corollary 3 we have:

PX = X, = {x : R > R/x constant} ,

*2n '

(Px) (1) := (2n)~* J x(s) ds,
(o]

and

t
(Hxl)(t):=jx1(s)ds forall teR, xeX, x;eX,=(—-P)X.
V]
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H is completely continuous with |H(I — P)| = 4n. We define N:X — X by
(Nx) (¢) := —g(x(t — 7)) + h(t). N is continuous and bounded. Choose r:=
:=4n(G + S) and R:= max {r + d, r —¢}. Then ||[Nx|| < |H(I — P)|~'r for
all x € X, so that assumption (12) is fulfilled.

Let x* € X, x; € X, with |x*| = R and ||x,|| < r. There are only two possibilities
for x*:

a) x*(r) = R forall reR.

Then PN(x* + x;) (1) = (2n)™" 37 [h(s) — g(R + x4(s — 7))]ds =:v, for all
teR, so that |PN(x* + x,)|* = v} and |x* — PN(x* + x,)||* = R* — 2Rv, +
+ k.

Thus assumption (13) is fulfilled if
(24) vy 2 0.

Since for all s€ R we have R + x;(s — 1) 2 R — r 2 d, it follows from assumption
(19) that g(R + x,(s — 7)) < @, which together with (21) implies (24).

b) x*(f) = —R for all teR.

One shows analogously that assumption (13) reduces to

(25) _ <0

with v_ = (2n) 7" [3* [h(s) — g(—=R + x,(s — 7))] ds.

The proof of (25) follows as above from (20) and (21).

Thus the assumptions of Corollary 3 are fulfilled, which implies the existence of
an Xe X with Lx = Nx and ||X|| < r + R, i.e., (22) and (23).

It should be noted that Proposition 9 is sharp in the sense that for the linear case
(g9 = 0, where we can choose P = § = 0), (21) is necessary and sufficient for the
existence of a 2m-periodic solution.

Also, at least for selfadjoint L, the Hilbert space version of Corollary 3 is not only
sufficient, but also necessary for the existence of a solution in the linear case (i.e.:
Nx = y with y € X). For, in this case, condition (14) reads

(26) {y,x*» 20 forall x*eker(L)

and hence also {y, —x*)» = 0 for all x* € ker (L). Thus, condition (14) is equivalent
to

(27) y € ker (L)*

in this case. But this is the well-known Fredholm alternative, which is necessary
and sufficient for solvability of the linear inhomogeneous equation Lx = y.

Corollary 10. For all T € R, the equation
(28) x'(s) = arctan (x(s — 7)) + sin(s), (seR)
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has a 2mn-periodic continuously differentiable solution X with
(29) sup ‘)‘c(s)l < 4n® + 33n/4.

S€

Remark 11. The following extension of Theorem 1 to problems involving two
Banach spaces is of interest. Let X, Y be real Banach spaces, let L: D(L) — Y be
a linear operator with domain D(L) < X dense in X, X, = ker (L) € X, and Y, =
= range (L) < Y. Let N : X — Y be continuous and bounded (not necessarily linear).
Let us assume that

(1) X, =ker(L)isclosedin X; dimX, < +o.

e

BY X =X,®X,, Y=Y, @®Y,, where Xo=PX, X,=(I-P)X,
Yo=0Y, Y,=(I-0Q)Y, and P:X—>X, Q:Y—Y are

range (L) is closed in Y;

projectors in X and Y, respectively.
Then, (6) and (7) are replaced by the equations
(6) x = Px + H(I — Q) Nx,
7y ONx =0.

If S:Y, > X, is any continuous bounded operator (not necessarily linear) such
that S7'(0) = 0, then the system (6)', (7)’ is equivalent to the fixed point problem
x = Tyx, where Tox = Px + H(I — Q) Nx — SONx.

Under these assumptions, Theorem 1 still holds, where (9) and (10) are replaced by
(9) For xe X with |[P(x — X)| < R and |(I — P)(x — X)|| = r we have
I = L¥| 5 | - Q) r
(10)" For x e X with |P(x — X)| = R and ||(I — P) (x — X)| < r we have
[SONx||* = |P(x — X) — SQONx|?* — R

The proof is the same. Whenever X = Y, P = Q, S = I, the present statement
reduces to Theorem 1.
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